

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 37** 4 (2019): 69–82. ISSN-00378712 IN PRESS doi:10.5269/bspm.v37i4.36226

$\begin{array}{c} \textbf{Characterization of Weighted Function Spaces In Terms of Wavelet} \\ \textbf{Transforms} \end{array}$

Sanjay Sharma, Drema Lhamu and Sunil Kumar Singh*

ABSTRACT: In this paper, we have characterized a weighted function space $B^{p,q}_{\omega,\psi}$, $1 \le p,q < \infty$ in terms of wavelet transform and shown that the norms on spaces $B^{p,q}_{\omega,\psi}$ and $\bigwedge^{p,q}_{\omega}$ (the space defined in terms of differences \triangle_x) are equivalent.

Key Words: Wavelets, Wavelet Transforms, Weight Functions.

Contents

1 Introduction 69

2 Characterization of Function Spaces by Using the Wavelet

Transform 71

1. Introduction

In this section, we recall some notations and basic definitions, also mention certain weight functions and results given in [2], which we will invoke in the analysis. In Section 2, we define the spaces $\bigwedge_{\omega}^{p,q}$ in terms of differences \triangle_x , and $B_{\omega,\psi}^{p,q}$, $1 \le p,q < \infty$ by means of wavelet transforms. Furthermore, by using the techniques of Ansorena and Blasco [2], we show that the norms on these spaces are equivalent.

Notations: Throughout the paper, \mathbb{R}^+ denote the set of positive real numbers, \mathscr{S} denote the Schwartz class of test functions on \mathbb{R}^n , \mathscr{S}' the space of tempered distributions, \mathscr{S}_0 the set of functions in \mathscr{S} with mean zero and \mathscr{S}'_0 its topological dual.

Definition 1.1. The Fourier transform of a function f is denoted by \hat{f} and defined as

$$\mathscr{F}(f)(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle \xi, x \rangle} f(x) \, dx, \tag{1.1}$$

provided the integral exists.

Definition 1.2. The wavelet transform W_{ψ} of a function f with respect to a wavelet ψ is defined as

$$(W_{\psi}f)(a,b) = \langle f, \psi_{a,b} \rangle = \frac{1}{a^n} \int_{\mathbb{R}^n} f(x) \overline{\psi\left(\frac{x-b}{a}\right)} dx = (f * h_{a,0})(b), \qquad (1.2)$$

^{*} Corresponding author 2010 Mathematics Subject Classification: 65T60. Submitted March 17, 2017. Published May 16, 2017

where $a \in \mathbb{R}^+$, $b \in \mathbb{R}^n$, $\psi_{a,b}(x) = \frac{1}{a^n} \psi\left(\frac{x-b}{a}\right)$ and $h(x) = \overline{\psi}(-x)$, provided the integral exists.

Definition 1.3. A non-negative bounded measurable function $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ is referred to as a weight function or simply a weight.

Definition 1.4. A weight function ω is said to satisfy Dini's condition if there exists a constant C > 0 such that

$$\int_0^s \frac{\omega(t)}{t} dt \le C \,\omega(s) \quad a.e. \quad s > 0.$$

Definition 1.5. Let $\epsilon \geq 0$, $\delta \geq 0$ and ω be a weight function. Then ω is said to be a d_{ϵ} -weight if there exists $C \geq 0$ such that

$$\int_0^s t^{\epsilon} \omega(t) \frac{dt}{t} \le C s^{\epsilon} \omega(s) \quad a.e. \quad s > 0$$
 (1.3)

and ω is called a b_{δ} -weight if there exists C > 0 such that

$$\int_{0}^{\infty} \frac{\omega(t)}{t^{\delta}} \frac{dt}{t} \le C \frac{\omega(s)}{s^{\delta}} \quad a.e. \quad s > 0.$$
 (1.4)

Remark 1.6. If (d_{ϵ}) denotes the class of d_{ϵ} -weights and (b_{δ}) denotes the class of b_{δ} -weights then we write $\mathscr{W}_{\epsilon,\delta} = (d_{\epsilon}) \cap (b_{\delta})$.

Some important properties:

- 1. For any $\epsilon' > \epsilon$, $\omega \in (d_{\epsilon}) \implies \omega \in (d_{\epsilon'})$.
- 2. For any $\delta' > \delta$, $\omega \in (b_{\epsilon}) \implies \omega \in (b_{\delta'})$.
- 3. Let $\overline{\omega(t)} = \omega(t^{-1})$, then $\omega \in (b_{\epsilon})$ if and only if $\overline{\omega} \in (d_{\epsilon})$.
- 4. If $\omega \in \mathcal{W}_{\epsilon,\delta}$, then $\omega(t) > C \min(t^{-\epsilon}, t^{\delta})$.

Definition 1.7 (Radial function). A function defined on Euclidean space \mathbb{R}^n whose values at each point depends only on the distance between that points and the origin is called a radial function. For example a radial function Φ in two dimensional space has the form $\Phi(x,y) = \phi(r)$, $r = \sqrt{x^2 + y^2}$ where ϕ is a function of a single non-negative real variable.

Definition 1.8. In this paper, $\mathscr A$ and $\mathscr A_1$ denote the space of the functions defined by

$$\mathscr{A} = \left(\psi \in \mathscr{S}_0 \colon \int_0^\infty \left(\hat{\psi}(t\xi)\right)^2 \frac{dt}{t} = 1 \text{ for } \xi \in \mathbb{R}^n \setminus \{0\}\right),$$

$$\mathscr{A}_1 = \left(\psi \in \mathscr{A} \colon \psi \text{ radial and real, and supp } \psi \subseteq \{|x| \le 1\},$$

$$\int_{\mathbb{R}^n} x_i \psi(x) dx = 0, \ i = 1, 2, \dots, n\right).$$

Definition 1.9 (Calderón Reproducing Formula [2]). Let $\psi \in \mathscr{A}$ and $f \in \mathscr{S}$. For $\xi \in \mathbb{R}^n \setminus \{0\}$, the Fourier transform of f is given by

$$\hat{f}(\xi) = \int_0^\infty \left[(\psi_t * \psi_t * f)(\cdot) \right] \hat{\ } (\xi) \frac{dt}{t}; \ \ where \ \psi_t(x) = \frac{1}{t^n} \psi \left(\frac{x}{t} \right) \ \ and \ x \in \mathbb{R}^n.$$

Furthermore, $f_{\epsilon,\delta}(x) = \int_{\epsilon}^{\delta} \psi_t * \psi_t * f(x) \frac{dt}{t}$ converges to ψ in $\mathscr S$ as $\epsilon \to 0$ and

Lemma 1.10. [2, p. 8] Let $f \in L^1\left(\mathbb{R}^n, \frac{dx}{(1+|x|)^{n+1}}\right)$ and $\psi \in \mathscr{A}$. For $0 < \epsilon < \delta$

$$f_{\epsilon,\delta}(x) = \int_{\epsilon}^{\delta} (\psi_t * \psi_t * f)(x) \frac{dt}{t}.$$

Then $f_{\epsilon,\delta}(x)$ converges to f in \mathcal{S}'_0 as $\epsilon \to 0$ and $\delta \to \infty$.

2. Characterization of Function Spaces by Using the Wavelet Transform

Definition 2.1 (The space $\bigwedge_{\omega}^{p,q}$). Given a weight function ω and $1 \leq p,q \leq \infty$, the space $\bigwedge_{\omega}^{p,q}$ denotes the space of measurable functions $f: \mathbb{R}^n \to \mathbb{C}$ such that

$$\parallel f \parallel_{\bigwedge_{\omega}^{p,q}} = \left(\int_{\mathbb{R}^n} \frac{\parallel \triangle_x f \parallel_p^q}{(\omega(|x|))^q} \frac{dx}{|x|^n} \right)^{\frac{1}{q}} < \infty, \text{ for } 1 \le q < \infty,$$

and

$$\parallel f \parallel_{\bigwedge_{\omega}^{p,\infty}} = \inf\{C > 0 \colon \parallel \triangle_x f \parallel_p \le C \,\omega(|x|) \text{ a.e } x \in \mathbb{R}^n\} < \infty, \text{ for } q = \infty,$$

where
$$\| \triangle_x f \|_p = \left(\int_{\mathbb{R}^n} |\triangle_x f(y)|^p dy \right)^{1/p}$$
 and $\triangle_x f(y) = f(x+y) - f(y)$.

Now, we define a new function space $B^{p,q}_{\omega,\psi}$ by means of the wavelet transform.

Definition 2.2 (The space $B^{p,q}_{\omega,\psi}$). For $1 \leq p,q \leq \infty, \ \psi \ \epsilon \ \mathscr{S}_0$ and a weight ω , the space $B^{p,q}_{\omega,\psi}$ denotes the space of functions $f: \mathbb{R}^n \to \mathbb{R}$ belonging $L^1\left(\mathbb{R}^n, \frac{dx}{(1+|x|)^{n+1}}\right)$ such that

$$\| f \|_{B^{p,q}_{\omega,\psi}} = \left(\int_{\mathbb{R}^+} \frac{\| (W_{P\psi} f)(a,\cdot) \|_p^q}{(\omega(a))^q} \frac{da}{a} \right)^{\frac{1}{q}} < \infty, \text{ for } 1 \le q < \infty,$$
 (2.1)

and

$$\| f \|_{B^{p,\infty}_{\omega,\psi}} = \inf\{C > 0 \colon \| (W_{P\psi}f)(a,\cdot) \|_p \le C\omega(a) \text{ a.e } a > 0\} < \infty,$$
 (2.2)

for $q = \infty$, where P is the parity operator defined by $P\psi(x) = \psi(-x)$ for all $x \in \mathbb{R}^n$.

Theorem 2.3. Let $1 \le p \le \infty$, $\varrho \ge 0$ and $\psi \in \mathscr{A}$. Then, for any $f \in L^1\left(\mathbb{R}^n, \frac{dx}{(1+|x|)^{n+1}}\right)$, we have

$$\|W_{P\psi}f(a,\cdot)\|_{p} \leq C \int_{\mathbb{R}^{n}} \min\left(\left(\frac{|x|}{a}\right)^{n}, \left(\frac{a}{|x|}\right)^{\varrho}\right) \|\Delta_{x}f\|_{p} \frac{dx}{|x|^{n}}, \qquad (2.3)$$

and

$$\| \Delta_x f \|_p \le C \int_0^\infty \min\left(1, \frac{|x|}{a}\right) \| W_{P\psi} f(a, \cdot) \|_p \frac{da}{a}, \tag{2.4}$$

where C > 0, is a constant.

Proof. Since ψ is a wavelet, therefore $\int_{\mathbb{R}^n} \psi(x) dx = 0$ and hence the wavelet transform of f with respect to $P\psi$ may be written as

$$(W_{P\psi}f)(a,b) = \frac{1}{a^n} \int_{\mathbb{R}^n} f(x) \overline{P\psi\left(\frac{x-b}{a}\right)} dx$$

$$= \frac{1}{a^n} \int_{\mathbb{R}^n} f(x) \overline{\psi\left(\frac{b-x}{a}\right)} dx \quad (\text{Since } P\psi(x) = \psi(-x))$$

$$= \frac{1}{a^n} \int_{\mathbb{R}^n} f(y+b) \overline{\psi\left(\frac{-y}{a}\right)} dy$$

$$= \frac{1}{a^n} \int_{\mathbb{R}^n} f(y+b) \overline{\psi\left(\frac{-y}{a}\right)} dy - f(b) \int_{\mathbb{R}^n} \overline{\psi(x)} dx$$

$$= \frac{1}{a^n} \int_{\mathbb{R}^n} f(y+b) \overline{\psi\left(\frac{-y}{a}\right)} dy - f(b) \int_{\mathbb{R}^n} \overline{\psi\left(\frac{-y}{a}\right)} \frac{dy}{a^n}$$

$$= \frac{1}{a^n} \int_{\mathbb{R}^n} [f(y+b) - f(b)] \overline{\psi\left(\frac{-y}{a}\right)} dy,$$

that is,

$$(W_{P\psi}f)(a,b) = \frac{1}{a^n} \int_{\mathbb{R}^n} \triangle_y f(b) \, \overline{\psi\left(\frac{-y}{a}\right)} \, dy. \tag{2.5}$$

Using L^p norm and Minkowski's inequality [7, p-41], we get

$$\| (W_{P\psi}f)(a,\cdot) \|_{p} = \left(\int_{\mathbb{R}^{n}} \left| \frac{1}{a^{n}} \int_{\mathbb{R}^{n}} \triangle_{y} f(b) \overline{\psi \left(\frac{-y}{a} \right)} dy \right|^{p} db \right)^{\frac{1}{p}}$$

$$\leq \int_{\mathbb{R}^{n}} \frac{1}{a^{n}} \left| \psi \left(\frac{-y}{a} \right) \right| \left(\int_{\mathbb{R}^{n}} \left| (\triangle_{y}f)(b) \right|^{p} db \right)^{\frac{1}{p}} dy$$

$$= \int_{\mathbb{R}^{n}} \frac{1}{a^{n}} \left| \psi \left(\frac{-y}{a} \right) \right| \| \triangle_{y} f \|_{p} dy,$$

and hence we get the following inequality

$$\| (W_{P\psi}f)(a,\cdot) \|_p \le \int_{\mathbb{R}^n} \frac{|y|^n}{a^n} \left| \psi\left(\frac{-y}{a}\right) \right| \| \triangle_y f \|_p \frac{dy}{|y|^n}. \tag{2.6}$$

Suppose ψ satisfies the following estimates

$$|\psi(y)| \le \begin{cases} \frac{C}{|y|^{n+\varrho}}, & \text{if } |y| \ge 1\\ C, & \text{if } |y| \le 1. \end{cases}$$
 (2.7)

Then by using (2.7) in (2.6), we get

$$\| (W_{P\psi}f)(a,\cdot) \|_p \le C \int_{\mathbb{R}^n} \min\left(\frac{|y|^n}{a^n}, \frac{a^{\varrho}}{|y|^{\varrho}}\right) \| \triangle_y f \|_p \frac{dx}{|y|^n}.$$

Now we prove the second part. For $0 < \epsilon < \delta$, we have

$$\triangle_x f_{\epsilon,\delta}(y) = \int_{\epsilon}^{\delta} (\triangle_{-x} \psi_a) * \psi_a * f(y) \frac{da}{a}.$$

Using Minkowski's inequality [7, p-41] we get the following estimate

$$\| \Delta_{x} f_{\epsilon,\delta} \|_{p} = \left(\int_{\mathbb{R}^{n}} |\Delta_{x} f_{\epsilon,\delta}|^{p} dy \right)^{\frac{1}{p}}$$

$$= \left(\int_{\mathbb{R}^{n}} \left| \int_{\epsilon}^{\delta} (\Delta_{-x} \psi_{a}) * \psi_{a} * f(y) \frac{da}{a} \right|^{p} dy \right)^{\frac{1}{p}}$$

$$\leq \int_{\epsilon}^{\delta} \left(\int_{\mathbb{R}^{n}} |(\Delta_{-x} \psi_{a}) * \psi_{a} * f(y)|^{p} dy \right)^{\frac{1}{p}} \frac{da}{a}$$

$$= \int_{\epsilon}^{\delta} \left(\int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} (\Delta_{-x} \psi_{a})(x) (\psi_{a} * f)(y - x) dx \right|^{p} dy \right)^{\frac{1}{p}} \frac{da}{a}$$

$$\leq \int_{\epsilon}^{\delta} \left(\int_{\mathbb{R}^{n}} |(\Delta_{-x} \psi_{a})(x)| \left(\int_{\mathbb{R}^{n}} |(\psi_{a} * f)(y - x)|^{p} dy \right)^{\frac{1}{p}} dx \right) \frac{da}{a}$$

$$= \int_{\epsilon}^{\delta} \| \Delta_{-x} \psi_{a} \|_{1} \| \psi_{a} * f \|_{p} \frac{da}{a}$$

$$= \int_{\epsilon}^{\delta} \| \Delta_{-x} \psi_{a} \|_{1} \| (W_{P\psi} f)(a, \cdot) \|_{p} \frac{da}{a}.$$

Now

$$\| \Delta_y \psi \|_1 = \int_{\mathbb{R}^n} |\Delta_y \psi(x)| dx$$

$$= \int_{\mathbb{R}^n} |\psi(x+y) - \psi(x)| dx$$

$$\leq \int_{\mathbb{R}^n} (|\psi(x+y)| + |\psi(x)|) dx$$

$$= \int_{\mathbb{R}^n} |\psi(x+y)| dx + \int_{\mathbb{R}^n} |\psi(x)| dx$$

$$= \int_{\mathbb{R}^n} |\psi(x)| dx + \int_{\mathbb{R}^n} |\psi(x)| dx$$

$$= 2 \| \psi \|_1; \text{ if } |y| \geq 1,$$

and

$$\| \triangle_y \psi \|_1 = \int_{\mathbb{R}^n} |\triangle_y \psi(x)| \, dx$$

$$= |y| \int_{\mathbb{R}^n} \left| \frac{\psi(x+y) - \psi(x)}{y} \right| \, dx$$

$$\leq |y| \int_{\mathbb{R}^n} \max_{|z-u| < 1} |\nabla \psi(z)| \, du; \text{ if } |y| \leq 1,$$

where ∇ denotes the gradient $\sum_{j=1}^{n} \hat{e}_{j} \left(\frac{\partial}{\partial x_{j}} \right)$, where \hat{e}_{j} is the unit vectors. Hence

$$\begin{split} \parallel \triangle_{-x} \psi_a \parallel_1 &= \int_{\mathbb{R}^n} |\triangle_{-x} \psi_a(y)| dy \\ &= \int_{\mathbb{R}^n} \left| \frac{1}{a^n} \left(\psi \left(\frac{y-x}{a} \right) - \psi \left(\frac{y}{a} \right) \right) \right| dy \\ &= \int_{\mathbb{R}^n} \left| \left(\psi \left(z - \frac{x}{a} \right) - \psi(z) \right) \right| dz \\ &= \int_{\mathbb{R}^n} \left| \triangle_{\frac{-x}{a}} \psi(z) \right| dz \\ &= \parallel \triangle_{\frac{-x}{a}} \psi \parallel_1 \\ &\leq C \ \min \left(1, \frac{|x|}{a} \right), \end{split}$$

where $C = \max (2 \| \psi \|_1, \int_{\mathbb{R}^n} \max_{|z-u|} | \nabla \psi(z)| du)$. Hence from (2.8), we have

$$\| \triangle_x f \|_p \le C \int_0^\infty \min\left(1, \frac{|x|}{a}\right) \| (W_{P\psi} f)(a, \cdot) \|_p \frac{da}{a}. \tag{2.9}$$

Lemma 2.4. [2, pp. 11-12] Let $1 \leq p \leq \infty$ and f be a measurable function. If $\| \triangle_x f \|_p \in L^1\left(\mathbb{R}^n, \frac{dx}{(1+|x|)^{n+1}}\right)$ then $f \in L^1\left(\mathbb{R}^n, \frac{dx}{(1+|x|)^{n+1}}\right)$.

Theorem 2.5. Let $1 \leq p \leq \infty$, $\psi \in \mathscr{A}$ and $\omega \in \mathscr{W}_{0,1}$. Then $\bigwedge_{\omega}^{p,\infty} = B_{\omega,\psi}^{p,\infty}$ equivalent semi norms).

Proof. Suppose $f \in \bigwedge_{\omega}^{p,\infty}$ then

$$\int_{\mathbb{R}^n} \frac{\|\triangle_x f\|}{(1+|x|)^{n+1}} dx \le C \int_{\mathbb{R}^n} \frac{\omega(|x|)}{(1+|x|)^{n+1}} dx$$

$$\le C' \int_0^\infty \frac{\omega(t)t^{n-1}}{(1+t)^{n+1}} dt$$

$$\le C' \left(\int_0^1 \omega(t) \frac{dt}{t} + \int_1^\infty \omega(t) \frac{dt}{t^2} \right) < \infty.$$

Then from Lemma 2.4, it follows that

$$\int_{\mathbb{R}^n} \frac{|f(x)|}{(1+|x|)^{n+1}} dx < \infty.$$

Putting $\varrho = 1$ in (2.3) we get

$$||(W_{P\psi}f)(a,\cdot)||_{p} = C\left(\int_{|x|

$$\leq C\left(\int_{|x|

$$= C\left(\frac{1}{a^{n}} \int_{|x|

$$\leq C\left(\frac{1}{a^{n}} \int_{|x|

$$\leq C\left(\int_{0}^{a} \left(\frac{t}{a}\right)^{n} \omega(t) \frac{dt}{t} + a \int_{a}^{\infty} \omega(t) \frac{dt}{t^{2}}\right).$$$$$$$$$$

Using (1.3) and (1.4) we get

$$||(W_{P\psi}f)(a,\cdot)||_p \le C\omega(a).$$

Now suppose $f \in B_{w,\psi}^{p,\infty}$. Using (1.3), (1.4) and (2.2) in (2.4), we get

$$\| \triangle_{x} f \|_{p} \leq C \left(\int_{0}^{|x|} \| W_{P\psi} f(a, \cdot) \|_{p} \frac{da}{a} + \frac{|x|}{a} \int_{|x|}^{\infty} \| W_{P\psi} f(a, \cdot) \|_{p} \frac{da}{a} \right)$$

$$= C \left(\int_{0}^{|x|} \omega(a) \frac{da}{a} + \frac{|x|}{a} \int_{|x|}^{\infty} \omega(a) \frac{da}{a} \right)$$

$$= C \left(\int_{0}^{|x|} \frac{\omega(a)}{a} da + |x| \int_{|x|}^{\infty} \frac{\omega(a)}{a^{2}} da \right)$$

$$\leq C \left(\omega(|x|) + |x| \frac{\omega(|x|)}{|x|} \right)$$

$$= 2C\omega(|x|)$$

$$= C'\omega(|x|).$$

Theorem 2.6. Let $1 \leq p \leq \infty, \psi \in \mathscr{A}$ and ω such that $\mu(a) = \omega^{-1}(a^{-1}) \in \mathscr{W}_{0,1}$. Then $\bigwedge_{\omega}^{p,1} = B_{\omega,\psi}^{p,q}$.

Proof. Let us assume that $f \in \bigwedge_{\omega}^{p,1}$. We have to prove that $\int_{\mathbb{R}^n} \frac{|f(x)|}{(1+|x|)^{n+1}} dx < \infty$. Since $\mu(a) \in \mathcal{W}_{0,1}$, therefore

$$\mu(a) \ge C \min(a^0, a^1)$$

$$\Rightarrow \frac{1}{\omega(a^{-1})} \ge C \min(1, a)$$

$$\Rightarrow \frac{1}{\omega(|x|)} \ge C \min\left(1, \frac{1}{|x|}\right)$$

$$\Rightarrow \frac{1}{|x|^n \omega(|x|)} \ge \frac{C}{|x|^n} \min\left(1, \frac{1}{|x|}\right). \tag{2.10}$$

Note that

$$\min\left(1, \frac{1}{|x|}\right) = \begin{cases} 1, & \text{if } |x| < 1\\ \frac{1}{|x|}, & \text{if } |x| > 1 \end{cases}$$
$$\geq \begin{cases} |x|^n, & \text{if } |x| < 1\\ \frac{1}{|x|}, & \text{if } |x| > 1. \end{cases}$$

From (2.10)

$$\frac{1}{|x|^n \omega(|x|)} \ge \frac{C}{|x|^n} \min\left(1, \frac{1}{|x|}\right) \ge \frac{C}{|x|^n} \min\left(|x|^n, \frac{1}{|x|}\right). \tag{2.11}$$

Again

$$\frac{C}{|x|^n} \min\left(|x|^n, \frac{1}{|x|}\right) = \begin{cases} C, & \text{if } |x| < 1\\ \frac{C}{|x|^n |x|}, & \text{if } |x| > 1 \end{cases}
\geq \begin{cases} C, & \text{if } |x| < 1\\ \frac{C}{(1+|x|)^{n+1}}, & \text{if } |x| > 1, \end{cases}$$

that is,

$$\frac{C}{|x|^n} \min\left(|x|^n, \frac{1}{|x|}\right) \ge \frac{C}{(1+|x|)^{n+1}} \text{ for all } x.$$

Hence

$$\int_{\mathbb{R}^n} \frac{||\triangle_x f||_p}{(1+|x|)^{n+1}} dx \le \int_{\mathbb{R}^n} \frac{||\triangle_x f||_p}{\omega(|x|)} \frac{dx}{|x|^n} < \infty.$$

Let us now show that $||f||_{B^{p,1}_{\omega,\psi}} \le C||f||_{\bigwedge^{p,1}_{\omega}}$. With $\varrho = 1$, we have from (2.3),

$$\begin{split} &\int_0^\infty \frac{||W_{P\psi}f(a,\cdot)||_p}{\omega(a)} \frac{da}{a} \\ &\leq C \int_0^\infty \int_{\mathbb{R}^n} \min\left(\left(\frac{|x|}{a}\right)^n, \left(\frac{a}{|x|}\right)\right) \frac{||\Delta_x f||_p}{\omega(a)} \frac{dx}{|x|^n} \frac{da}{a} \\ &\leq C \int_{\mathbb{R}^n} ||\Delta_x f||_p \left(\int_0^\infty \min\left(\left(\frac{|x|}{a}\right)^n, \left(\frac{a}{|x|}\right)\right) \mu(a^{-1}) \frac{da}{a}\right) \frac{dx}{|x|^n} \\ &\leq C \int_{\mathbb{R}^n} ||\Delta_x f||_p \left(\int_0^{|x|} \frac{a\mu(a^{-1})}{|x|} \frac{da}{a} + \int_{|x|}^\infty \frac{|x|^n\mu(a^{-1})}{a^n} \frac{da}{a}\right) \frac{dx}{|x|^n} \\ &\leq C \int_{\mathbb{R}^n} ||\Delta_x f||_p \left(\frac{1}{|x|} \int_0^{|x|} \mu(a^{-1}) da + \int_{|x|}^\infty \mu(a^{-1}) \frac{da}{a}\right) \frac{dx}{|x|^n} \\ &\leq C \int_{\mathbb{R}^n} ||\Delta_x f||_p \left(\frac{1}{|x|} \int_{|x|^{-1}}^\infty \mu(y) \frac{da}{y^2} + \int_0^{|x|^{-1}} \mu(y) \frac{dy}{y}\right) \frac{dx}{|x|^n} \\ &\leq C_1 \int_{\mathbb{R}^n} ||\Delta_x f||_p \mu(|x|^{-1}) \frac{dx}{|x|^n} \\ &= C_1 \int_{\mathbb{R}^n} \frac{||\Delta_x f||_p}{\omega(|x|)} \frac{dx}{|x|^n}. \end{split}$$

Now consider $f \in B^{p,q}_{\omega,\psi}$. Then from (2.4)

$$\int_{\mathbb{R}^{n}} \frac{||\Delta_{x} f||_{p}}{\omega(|x|)} \frac{dx}{|x|^{n}}
\leq C \int_{0}^{\infty} ||(W_{P\psi}f)(a,\cdot)||_{p} \left(\int_{\mathbb{R}^{n}} \mu(|x|^{-1}) \min\left(1, \frac{|x|}{a}\right) \frac{dx}{x^{n}} \right) \frac{da}{a}
= C \int_{0}^{\infty} ||(W_{P\psi}f)(a,\cdot)||_{p} \left(\int_{0}^{\infty} \mu(s) \min\left(1, \frac{1}{sa}\right) \frac{ds}{s} \right) \frac{da}{a}
= C \int_{0}^{\infty} ||(W_{P\psi}f)(a,\cdot)||_{p} \left(\int_{0}^{a^{-1}} \frac{\mu(s)}{s} ds + \frac{1}{a} \int_{a^{-1}}^{\infty} \frac{\mu(s)}{s^{2}} ds \right) \frac{da}{a}
\leq C \int_{0}^{\infty} ||(W_{P\psi}f)(a,\cdot)||_{p} \mu(a^{-1}) \frac{da}{a}
= C \int_{0}^{\infty} \frac{||(W_{P\psi}f)(a\cdot)||_{p}}{\omega(a)} \frac{da}{a} < \infty.$$

Lemma 2.7. [2, pp. 8-9] Let $1 < q < \infty$ and $\frac{1}{q} + \frac{1}{q'} = 1$. Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be two σ - finite measure spaces and $K \colon \Omega_1 \times \Omega_2 \to \mathbb{R}^+$ be a measurable function and define an operator T_K by

$$T_K(f)(w_2) = \int_{\Omega_1} K(w_1, w_2) f(w_1) d\mu_1(w_1). \tag{2.12}$$

If there exist C > 0 and measurable functions $h_i: \Omega_i \to \mathbb{R}^+ (i = 1, 2)$ such that

$$\int_{\Omega_1} K(w_1, w_2) h_1^{q'}(w_1) d\mu_1(w_1) \le C h_2^{q'}(w_2) \mu_2 \ (a.e.), \tag{2.13}$$

and

$$\int_{\Omega_2} K(w_1, w_2) h_2^q(w_2) d\mu_2(w_2) \le C h_2^q(w_1) \mu_1 \quad (a.e.), \tag{2.14}$$

then T_K is a bounded operator from $L^q(\Omega_1, \mu_1)$ into $L^q(\Omega_2, \mu_2)$.

Lemma 2.8. [2, p. 10] Given $0 \le \epsilon, \delta < \infty, 1 < q < \infty$, and w a weight, let us consider $R_{\epsilon,\delta}(s,t) = \frac{\omega(s)}{\omega(t)} \min\left(\left(\frac{s}{t}\right)^{\epsilon}, \left(\frac{t}{s}\right)^{\delta}\right)$. If $\omega(s) = \lambda^{\frac{1}{q'}}(s)\mu^{\frac{-1}{q}}(s^{-1})$ for some pair of weights $\lambda, \mu \in \mathscr{W}_{\epsilon,\delta}$, then there exist C > 0 and $g: \mathbb{R}^+ \to \mathbb{R}^+$ measurable such that

$$\int_{0}^{\infty} R_{\epsilon,\delta}(s,t)g^{q'}(s)\frac{ds}{s} \le Cg^{q'}(t) \tag{2.15}$$

and

$$\int_0^\infty R_{\epsilon,\delta}(s,t)g^q(t)\frac{dt}{t} \le Cg^q(t). \tag{2.16}$$

Theorem 2.9. Let $1 \leq p < \infty, 1 < q < \infty, \ \psi \in \mathscr{A}$ and ω be a weight such that $\omega(t) = \lambda^{\frac{1}{q'}}(t)\mu^{\frac{-1}{q}}(t^{-1}), \ \frac{1}{q} + \frac{1}{q'}$ for some pair of weights $\lambda, \mu \in \mathscr{W}_{0,1}$. Then $\bigwedge_{\omega}^{p,q} = B_{\omega,\psi}^{p,q}$ (with equivalent semi norms).

Proof. Let $f \in \bigwedge_{\omega}^{p,q}$. Let us first show that

$$\int_{\mathbb{R}^n} \frac{|f(x)|}{(1+|x|)^{n+1}} dx < \infty. \tag{2.17}$$

Let us denote $\Phi(|x|) = \omega(|x|)|x|^n/(1+|x|)^{n+1}$. Then,

$$\int_0^\infty \Phi^{q'}(t) \frac{dt}{t} = \int_0^\infty \lambda(t) \mu^{\frac{-q'}{q}}(t^{-1}) \frac{t^{nq'}}{(1+t)^{q'(n+1)}} \frac{dt}{t}.$$

Since $\mu \in \mathcal{W}_{0,1} = (d_0) \cap (b_1)$, then

$$\begin{split} &\mu(s) \geq C' \min(1,s) \\ \Longrightarrow & \frac{1}{\mu(s)} \leq \frac{1}{C'} \max\left(1,\frac{1}{s}\right) \\ \Longrightarrow & \mu^{-\frac{q'}{q}}(s) \leq \left(\frac{1}{C'}\right)^{\frac{q'}{q}} \max\left(1,\left(\frac{1}{s}\right)^{\frac{q'}{q}}\right) \\ \Longrightarrow & \mu^{-\frac{q'}{q}}\left(t^{-1}\right) \leq C \max\left(1,t^{\frac{q'}{q}}\right) \\ \Longrightarrow & \mu^{-\frac{q'}{q}}\left(t^{-1}\right) \leq C \max\left(1,t^{(q'-1)}\right), \text{ since } \frac{1}{q'} + \frac{1}{q} = 1. \end{split}$$

Therefore

$$\int_0^\infty \Phi^{q'}(t) \frac{dt}{t} \le C \int_0^\infty \lambda(t) \max(1, t^{(q'-1)}) \frac{t^{nq'}}{(1+t)^{q'(n+1)}} \frac{dt}{t}$$
$$\le C \left(\int_0^1 \lambda(t) \frac{dt}{t} + \int_1^\infty \frac{\lambda(t)}{t} \frac{dt}{t} \right).$$

Since $\lambda \in \mathcal{W}_{0,1} = (d_0) \cap (b_1)$ then right hand side of above inequality is bounded a.e., and hence

$$\int_0^\infty \Phi^{q'}(t) \frac{dt}{t} < \infty.$$

Now, using Holder's inequality, we have

$$\left| \int_{\mathbb{R}^n} \frac{||\Delta_x f||_p}{(1+|x|)^{n+1}} dx \right| = \left| \int_{\mathbb{R}^n} \frac{||\Delta_x f||_p}{\omega(|x|)} \Phi(|x|) \frac{dx}{|x|^n} \right|$$

$$\leq \left(\int_{\mathbb{R}^n} \frac{||\Delta_x f||_p^q}{\omega(|x|)^q} \frac{dx}{|x|^n} \right)^{\frac{1}{q}} \times \left(\int_{\mathbb{R}^n} |\Phi(|x|)|^{q'} \frac{dx}{|x|^n} \right)^{\frac{1}{q'}}$$

$$\leq C \left(\int_{\mathbb{R}^n} |\Phi(|x|)|^{q'} \frac{dx}{|x|^n} \right)^{\frac{1}{q'}}$$

$$\leq C \int_0^\infty |\Phi(t)|^{q'} \frac{t^{n-1}}{t^n} dt$$

$$= C \int_0^\infty |\Phi(t)|^{q'} \frac{dt}{t} < \infty,$$

and hence by lemma (2.4) the result (2.17) is proved.

Let us now prove that

$$||f||_{B^{p,q}_{\omega,\psi}} \leq C||f||_{\bigwedge_{\omega}^{p,q}}.$$

From (2.3) with $\rho = 1$, it follows that

$$\frac{||W_{\psi}f(a,\cdot)||_{p}}{\omega(a)} \leq C \int_{\mathbb{R}^{n}} K(x,a) \frac{||\Delta_{x} f||_{p}}{\omega(|x|)} \frac{dx}{|x|^{n}},$$
$$= CT_{K} \left(\frac{||\Delta_{x} f||_{p}}{\omega(|x|)} \right),$$

where

$$K(x,a) = \frac{\omega(|x|)}{\omega(a)} \min\left(1, \frac{a}{|x|}\right).$$

Consider two measurable spaces as

$$(\Omega_1, \Sigma_1, \mu_1) = \left(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n), \frac{dx}{|x|^n}\right)$$

and

$$(\Omega_2, \Sigma_2, \mu_2) = \left((0, \infty), \mathscr{B}(0, \infty), \frac{dx}{|x|^n} \right).$$

Since $K(x,a) = R_{0,1}(|x|,a)$, defined in Lemma 2.8. By applying Lemma 2.8 with $\epsilon = 0$ and $\delta = 1$ we can find a measurable function g that satisfies the conditions (2.15) and (2.16). If we take $h_1(x) = g(|x|)$ and $h_2(a) = g(a)$ and using polar coordinates, (2.15) and (2.16) gives (2.13) and (2.14) in lemma(2.7). Hence T_k define

in (2.12) is bounded operator from $L^q\left(\mathbb{R}^n, \frac{dx}{|x|^n}\right)$ into $L^q\left((0, \infty), \frac{da}{a}\right)$. Therefore

$$||f||_{B^{p,q}_{\omega,\psi}} \le C \left| \left| T_k \left(\frac{||\Delta_x f||_p}{\omega(|x|)} \right) \right| \right|_{L^q((0,\infty),\frac{dt}{t})}$$

$$\le C \left| \left| \left(\frac{||\Delta_x f||_p}{\omega(|x|)} \right) \right| \right|_{L^q(\mathbb{R}^n,\frac{dx}{|x|^n})}$$

$$= C ||f||_{\Lambda^{p,q}_{\omega}}.$$

Now, let us prove that $||f||_{\bigwedge^{p,q}_{\omega}} \leq ||f||_{B^{p,q}_{\omega,\psi}}.$

Suppose $f \in B^{p,q}_{\omega,\psi}$. Then from (2.4) we obtain

$$\frac{||\Delta_x f||_p}{\omega(|x|)} \le C \int_0^\infty R(x, a) \frac{||W_{p\psi} f(a, \cdot)||_p}{\omega(a)} \frac{da}{a},$$

where

$$R(x, a) = \frac{\omega(a)}{\omega(|x|)} \min\left(1, \frac{|x|}{a}\right).$$

Now take

$$(\Omega_1, \Sigma_1, \mu_1) = \left((0, \infty), \mathscr{B}((0, \infty)), \frac{dx}{|x|^n}\right)$$

and

$$(\Omega_2, \Sigma_2, \mu_2) = \left(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n), \frac{dx}{|x|^n}\right).$$

Using lemma (2.8) and (2.7) we get the boundedness of T_k from $L^q\left((0,\infty),\frac{da}{a}\right)$ into $L^q\left(\mathbb{R}^n,\frac{dx}{|x|^n}\right)$. Therefore

$$||f||_{\Lambda_{w}^{p,q}} \leq C \left| \left| T_{R} \left(\frac{||W_{p\psi}f(a,\cdot)||_{p}}{\omega(a)} \right) \right| \right|_{L^{q} \left(\frac{dx}{|x|^{n}} \right)}$$

$$\leq C \left| \left| \frac{||W_{p\psi}f(a,\cdot)||_{p}}{\omega(a)} \right| \right|_{L^{q} \left(\frac{da}{a} \right)}$$

$$\leq C ||f||_{B_{w,\vartheta}^{p,q}}.$$

Acknowledgments

The authors are thankful to the referees for their valuable comments and suggestions.

References

- 1. M. A. Al-Gwaiz, Theory of Distributions, Marcel Dekker Inc., New York, 1992.
- J. L. Ansorena and O. Blasco, Characterization of weighted Besov spaces, Math. Nachr., Vol. 171 (1) (1995), pp. 5-17.
- 3. A. Boggess and F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, John Wiley & Sons, Inc. publication, New Jersey, 2009.
- 4. C. K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.
- I. Daubechies, Ten Lectures on Wavelets, CBMSNSF Regional Conference Series in Applied Mathematics (SIAM), 1992.
- 6. L. Debnath, Wavelet Transforms and Their Applications, Brkhäuser, Boston, 2002.
- 7. E. H. Lieb and M. Loss, Analysis, Narosa Publishing House, New Delhi, 1997.
- 8. R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Gordon and Breach Science Publishers, Amsterdam, 1997.
- 9. R. S. Pathak, A Course in Distribution Theory and Applications, Narosa Publishing House, New Delhi, India, 2001.
- 10. R. S. Pathak, The Wavelet transform, Atlantis Press/ world Scientific, France, 2009.
- 11. P. Wojtaszczyk , A Mathematical Introduction to Wavelets, Cambridge University Press, Cambridge, 1997.
- 12. A. H. Zemanian, *Generalized Integral Transformations*, Interscience Publishers, New York, 1968.

Sanjay Sharma,

 $Department\ of\ Mathematics,$

Rajiv Gandhi University, Doimukh-791112,

India.

E-mail address: sharmasanjay10111990@gmail.com

and

Drema Lhamu,

Department of Mathematics,

Rajiv Gandhi University, Doimukh-791112,

India.

 $E ext{-}mail\ address: dremalhamu114@gmail.com}$

and

Sunil Kumar Singh,

 $Department\ of\ Mathematics,$

Rajiv Gandhi University, Doimukh-791112,

India.

E-mail address: sks_math@yahoo.com