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ABSTRACT: In this paper, we have characterized a weighted function space Bp"fp, 1<
p,q < oo in terms of wavelet transform and shown that the norms on spaces Bp’q

and AP? (the space defined in terms of differences A;) are equivalent.
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1. Introduction

In this section, we recall some notations and basic definitions, also mention
certain weight functions and results given in [2], which we will invoke in the analysis.
In Section 2, we define the spaces A7 in terms of differences A;, and BY,, 1 <
p,q < oo by means of wavelet transforms. Furthermore, by using the techmques of
Ansorena and Blasco [2], we show that the norms on these spaces are equivalent.

Notations: Throughout the paper, R* denote the set of positive real numbers,
. denote the Schwartz class of test functions on R", .%’ the space of tempered
distributions, .7 the set of functions in . with mean zero and .7 its topological
dual.

Definition 1.1. The Fourier transform of a function f is denoted byf and defined
as

FEN) = F©) = [ e f(a) d, (11)
provided the integral exists.

Definition 1.2. The wavelet transform Wy, of a function f with respect to a wavelet
1 is defined as

(Vo) = fots) = o5 [ 1@0 (522 )do = (e han) 0, (12)
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where a € RT, b € R", ¢, ,(x) = ¢ (22) and h(z) = (—x), provided the
integral exists.

Definition 1.3. A non-negative bounded measurable function w : Rt — RT is
referred to as a weight function or simply a weight.

Definition 1.4. A weight function w is said to satisfy Dini’s condition if there
exists a constant C' > 0 such that

/@dtﬁCu(s) a.e. s> 0.
0

Definition 1.5. Let € > 0, § > 0 and w be a weight function. Then w is said to
be a d.-weight if there exists C' > 0 such that

s dt
/ tew(t)7 < Cs‘w(s) a.e s>0 (1.3)
0
and w is called a bs-weight if there exists C > 0 such that
 w(t) dt w(s)

Remark 1.6. If (d.) denotes the class of de-weights and (bs) denotes the class of
bs-weights then we write #e 5 = (de) N (bs).

Some important properties:
1. Forany € > ¢, we (d.) = w € (do).
2. For any &' > §, w € (b)) = w € (bs').
3. Let w(t) = w(t™1), then w € (b,) if and only if @ € (d.).
4. If w e #e 5, then w(t) > C' min (t_e,t‘s).

Definition 1.7 (Radial function). A function defined on Fuclidean space R™ whose
values at each point depends only on the distance between that points and the origin
is called a radial function. For example a radial function ® in two dimensional

space has the form ®(x,y) = ¢(r), r = /22 + y? where ¢ is a function of a single

non-negative real variable.

Definition 1.8. In this paper, &/ and <71 denote the space of the functions defined
by

o = <¢ey0; /OOO (@(tg))Q%:lforé eR"\{0}>,

o = (1/1 € & : Y radial and real, and supp ¥ C {|z| < 1},

/ xp(x)de =0, i=1,2,--- ,n).
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Definition 1.9 (Calderén Reproducing Formula [2]). Let ¢ € &7 and f € .. For
¢ € R™\ {0}, the Fourier transform of f is given by

FO= [ 00w, DON©%: ubere vo) = v () and € R

Furthermore, fes(x) = fj Uy x Yy x f(2)4 converges to ¢ in .7 as € — 0 and
0 — 00.

Lemma 1.10. /2, p. 8] Let f € L* (R”, Mﬁ) and € @. For 0 <e <6
define

0 dt

fes(x) = (wt*l/’t*f)(w)T

Then fes(x) converges to f in #§ as e — 0 and § — oo.

2. Characterization of Function Spaces by Using the Wavelet
Transform

Definition 2.1 (The space A\”?). Given a weight function w and 1 < p,q < oo,
the space /\f}’q denotes the space of measurable functions f: R™ — C such that

1

P dz)g
pia= TP T ) < oo, 1<q< oo,
17 Az </ ) or) <0 forisa<es

and

I/ H/\ﬂ"x’: nf{C > 0: || Azf [p,< Cw(|z]) a.ex e R"} < o0, for g = o0,

1
where || Ay f ||p= (I]R" | Ay f(y)|pdy) " and Dpf(y) = flz+y)— fly).
Now, we define a new function space B.%, by means of the wavelet transform.

Definition 2.2 (The space B}). For 1 <p,q < oo, ¢ € % and a weight w, the

space Bf}’ffp denotes the space of functions f: R™ — R belonging L" (R”, Mjﬁ%)
such that

| (Weyf)(a,-) |12 da®
|| f ”35’,1: (/}R+ I(Dz(a); p;a) < 00, forl<q< oo, (2.1)

and
Il f HB&’,ZO: inf{C > 0: || Wpyf)(a,-) ||p,< Cw(a) a.ea>0} < oo, (2.2)

for g = oo, where P is the parity operator defined by Pi(x) = ¢(—x) for all x € R™.
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Theorem 2.3. Let 1 <p<o00,0>0 and € &. Then, for any
felLl (R”, (Hlfcﬁ), we have

iwrosa < ¢ [ (D) () Y 1w & o)

i d
1oty <e [Cwin (L) pwess@o 1, T @)

where C' > 0, is a constant.

and

Proof. Since 1) is a wavelet, therefore [, ¥ (x)dz = 0 and hence the wavelet trans-
form of f with respect to Py may be written as

zb)dz

)dz (Since Py(x) = ¢(—x))

Weoab) = = [ f)po (

4t

=— fy+b (=2)dy

a™ Jr
:in/ f<y+b>w(%y)dy—f<b>/nw(%)j—§
= ain @) = fO)]v (=%)dy,
that is,
Weaf)(a.0)= 5 [ 20700 25)

Using LP norm and Minkowski’s mequahty [7, p-41], we get

(e = (/R = Ayf(b)@dypdb>;

<[ =l (2) (/nl(Ayf)(b)lpdb)%dy
= [ =l (Z)| 1 et an

and hence we get the following inequality
—y dy
P (—) ’ ANyfllpy —- 2.6
)08t (26)

| (Weef)a,) lp < / o

an
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Suppose 1 satisfies the following estimates

< ifly >1
< ) T |yl =
|w<y>|_{a il

Then by using (2.7) in (2.6), we get

a?

| (Wesf)a,) lp< C / i <|yl"

an e

dx
| Dy fllp —
) I yln

Now we prove the second part. For 0 < € < §, we have

5
Bafes®) = [ (Bos) x5 F0) 5

Using Minkowski’s inequality [7, p-41] we get the following estimate

dutslo= ([ 100 stt)
(. )
< /f ([ 10at) s f(y)lpdy>; &

-/ 5 ([ | @@, -
< /f (/ (Bath)(@)] </ (W, *f><yw>l”dy)p dfﬂ) -

é
da
— [ 15t il w71

)
/ (D) * o * Fly) 22

a

N
dy) da (2.8)

é
d
— [ 1Bt I Weaa) 1 g
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Now

18wl = [ 18, 0@l
= [ it ) - v(o)lds
< [ W+l + W) da

_ / e+ )l + / (e lds
= [ s+ [ 1wl

=29 [l1; if [y| > 1,

and

1801 = [ 18,0()|do

bl +y) — (@)
Yy

<|y|/ mal)illvw 2)|du; if Jy| <1,

= |yl dz

where 17 denotes the gradient Z?Zl €; (%), where €; is the unit vectors. Hence
J

1 8esttalh= [ 1620 valw)ldy
()
LI v
:/n Aeth(z)|dz

S

< C min (1,m) ,
a

where C' = max (2 || ¥ |1, [, max|,_y | V

e
12cf = [Tmin (LI v 1, 20 o)

d

)|du). Hence from (2.8), we have
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Lemma 2.4. [2, pp. 11-12] Let 1 < p < o0 and f be a measurable function. If

Theorem 2.5. Let 1 <p < oo, ) € & andw € #y1. Then NV = Bf)’yfbo (with
equivalent semi norms).

Proof. Suppose f € AP then
| Aof | (||
—d C — =
/Rn R N
* w(t)nt
o [
_C/o S
1 o]
<’ /w(t)ﬂnL/ w(t)ﬁ < 0.
0 t 1 t2
Then from Lemma 2.4, it follows that
|f ()]
—— .
fo e <
Putting o =1 in (2.3) we get
. z[\" a dx
[(Wpy f)(a, )|, =C min (| — | || A fllp7
lz|<a a) |zl ||
T n
L) e
|z|>a | | | |
x
o[ gt [ Lo
|x|<a | | \z\>a| | | |
c |8 Flldo+a [ 118 fllp s
\z\<a g |z[>a ’ p|x|n+1
dx
<C x dx—i—a/ w(|z|) ———
< lz|<a | | |z[>a (| | |x|n+1>
/ t nw dt—l—a/oow(t)ﬂ
a a 12 )

Using (1.3) and (1.4) we get

IN

N(Wpy f)(a,)]lp < Cw(a).
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Now suppose f € B} Using (1.3), (1.4) and (2.2) in (2.4), we get
||

d
IAxf||p§C< I Wewf(@) Iy 2+ 2wy @, ) 1 j)

0 a J\z|

c(/o”” ol 4 °°w<a>d§)
(]

||
(a) .
" Mda + || - w(a)da>

2
|z| @

C

<€ (wllah + 1“5 )

— 2Cw(ja))
— Cuo(ja]).

d

Theorem 2.6. Let 1 < p < 00,9 € & and w such that p(a) = w™(a™t) € #p1.
Then /\Z’1 =By,

Proof. Let us assume that f € /\Z’l. We have to prove that fRn %dm < 00.
Since p(a) € #41, therefore

p(a) > Cmin(a® a')

1 .
— o) > C'min(1,a)
1 1
== > C'min (1, —)
w(lzl) |z
1 C 1
—t > " min <1, —> . (2.10)
|z w(|z]) [z |z
Note that
) ), iffef <1
TR T g il >
|x|™, if |z <1
Z9 1
W, if |.’L'| > 1
From (2.10)
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Again
c . | 1 C, if J2| <1
—— min ( |z|", — | =
|x|n ) |$| —|I|?\I\’ if |g;| >1
C, if |[z] <1
> c .
W, lf |.’L'| > 1,
that is,
c . ( 1 ) C
—— min | |z|", > ————— for all z.
|z |™ | (14 [z[)n+?
Hence

120 flly | 8 fllp dz
/Rn (1 + Ja))n T / W w(al) Jepr S

Let us now show that [|f[|gpr < C|[f]|zp1. With o =1, we have from (2.3),
W w

/°° (Wpy fla,)|lp da
w(a) a

o Lo () () S50
( mm<<lx) () ren %)
e
<ﬁ/ozﬂ 1)da+/|:u(a1)%>z_ﬁ

1 [ da =~ dy\ dx
<cC / Do fllp | = / =+ / )=
- || f||P <|$| 2] -1 /L(y) y2 0 /L(y) y |.T|n

.o dz
< cl/ 1 B Fllp ] e
Rn |$|

182 fllp da
Y
e (el Tl

SC |A fllp

SC ||A Fllp

7



78 S. SHARMA, D. LHAMU AND S. K. SINGH

Now consider f € BYY,. Then from (2.4)

/ | Ae fllp da

w(lz])  fa]?

< c/om 1(Wewf)a: )l (/ pllal ™) min (L u) d—) 0
- C/OOO [(Wpy f)(a,-)lp (/000 f1(s) min (1’ i) %) %
- c/om (Wewf)(a )l </ Eas + 1/00 &d> 0

<c [ IWrena e g

_ o [T 1Wey f(a)llp da
C/o :

w(a) < o0

d

Lemma 2.7. [2, pp. 8-9] Let 1 < ¢ < 0o and % + % = 1. Let (21,%1, 1) and

(Qa, X, 15) be two o - finite measure spaces and K : Q1 X Qy — RT be a measurable
function and define an operator Tk by

Tk (f)(w2) = , K (w1, wa) f(w1)dpy (wr). (2.12)

If there exist C' > 0 and measurable functions h;: Q; — R (i = 1,2) such that

) K (wy, w)h{ (wr)dpsy (wi) < ChY (wa)py (ae.), (2.13)

and

5 K (w1, w2)hg(wa)dpy(w2) < Chi(wi)py (a-e.), (2.14)

then Ty is a bounded operator from L%(Q1, py) into LI(Qa, p1s).

Lemma 2.8. [2, p. 10] Given 0 < €,§ < 00,1 < q < 00, and w a weight, let
us consider Re 5(s,t) = ZE:? min ((%)6 : (%)6) If w(s) = )\ﬁ(s),u%l(s_l) for some
pair of weights A, € #es, then there exist C > 0 and g: Rt — RT measurable
such that

/OOOR (s t)gq/(S)% < Cyg? (t) (2.15)
and . .
/0 Re,a(s,t)gq(t)f < Cgi(). (2.16)
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Theorem 2.9. Let 1 < p < 00,1 < ¢ < 00, ¥ € & and w be a weight such

that w(t) = /\ﬁ(t),u%l(t’l), % + % for some pair of weights \,u € #o1. Then

N = B, (with equivalent semi norms).

Proof. Let f € AP, Let us first show that

/ Mdz < 0. (2.17)
rn (

L [a])m*t

Let us denote ®(|z|) = w(|z|)|z|"/(1 + |z])"T!. Then,

<t < —y nd’ dt
P (t)— = Aty s ) —.
/0 (t) ; /0 B ( )(1 T

Since p € #o,1 = (do) N (b1), then

I

-4 (t_l) < ('max (1,t%)

g / 11
7 () £ Cmax (1,t<‘1 *1>) , since — + — = 1.
¢ q

!

Therefore

< dt o0 , tnd’ dt
') —<C | Mt S ACAD) P —
/0 () < /0 (t) max(1, )(1+t)‘1/("+1) .

cof [k [TA08Y,

Since A € #6.1 = (dp) N (b1) then right hand side of above inequality is bounded

a.e., and hence
o dt
/ D7 (1) — < 0.
0 t
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Now, using Holder’s inequality, we have

Ag f Ny f d
[ s =| [ et

w(lx) ||

<(L %é_f) ([ |<I><|ac|>|q/|j%)ﬁ
<o([ 1etar o)

4 t’n,fl

§C’/ |P()|T ——dt
0

- c/ @) 2 < oo,
O t

»n\‘,_‘

and hence by lemma (2.4) the result (2.17) is proved.
Let us now prove that

1 fllBzs < ClIflIApa-

w, P

From (2.3) with ¢ = 1, it follows that

Wyt _ 1 5 fllp da
o =L EEOTTEY
||Amf||p)
— 0Ty (122l
TK( o(a) )

where

Consider two measurable spaces as

(Q1,31,119) = <R”,,%’(R”) d—z)

"l

and

(0 Bauy) = ( (0.09), 2(0.00) 7).

"l

Since K(z,a) = Ro,1(|z|,a), defined in Lemma 2.8. By applying Lemma 2.8 with
e =0 and § = 1 we can find a measurable function g that satisfies the conditions
(2.15) and (2.16). If we take hi(x) = g(|z|) and ha(a) = g(a) and using polar co-
ordinates, (2.15) and (2.16) gives (2.13) and (2.14) in lemma(2.7). Hence T}, define
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in (2.12) is bounded operator from L? (R", “j%) into L7 ((0,00), 42). Therefore
AV

(1201
w(|z[)

=)

= C|flpze

Now, let us prove that |[f[|zr.e < |[|f]|pra “
Suppose [ € Bf}’yq . Then from (2.4) we obtain

122 fllp C/C"’R(%a)IIW;mpf(a,-)llpd_a
0

1Lz, < C|

La((0,00), 4

La(R™, ‘j‘zn

w(|zl) w(a) a’
where
T, a) = w(a) min m
Rlaa) = Symin (1.51).
Now take
(1, Z1) = ((0.09), (0.0, 57
and

(Qa, S, 1) = (R”,%’(R”) |d”|””n) .

Using lemma (2.8) and (2.7) we get the boundedness of T} from L ((0,c0), 42)
into L9 (R” ﬂ). Therefore

) ‘1‘"

Wy f(a
||f||/\ﬁq < H (H pY ) ||;U)
Lo ()
< CH”prf(aa')Hp
w(a) La(da)
< Clifllsrys, -
O
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