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Nonresonance Conditions on the Potential for a Nonlinear
Nonautonomous Neumann Problem ∗

A. Sanhaji and A. Dakkak

abstract: The aim of this paper is to establish the existence of the principal
eigencurve of the p−Laplacian operator with the nonconstant weight subject to
Neumann boundary conditions. We then study the nonresonce phenomena under
the first eigenvalue and under the principal eigencurve, thus we obtain existence re-
sults for some nonautonomous Neumann elliptic problems involving the p−Laplacian
operator.
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1. Introduction

In this paper we are concerned with the following class of problems

(Pα)






−∆pu = αm1(x)|u|p−2u+m2(x)g(u) + h(x) in Ω

∂u
∂ν

= 0 on ∂Ω,

where Ω is a bounded domain in IRN (N ≥ 2) with smooth boundary ∂Ω, −∆pu =
−div (|∇u|p−2∇u) denotes the p-Laplacian operator with 1 < p < ∞, h is taken
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in L∞(Ω), α ∈ IR, ν is the outward unit normal to ∂Ω.
We assume that, m1 and m2 are two weight functions belongs to M+(Ω) which
satisfies the following conditions

(A1) : m1 changes sign on Ω and

∫

Ω

m1(x)dx < 0,

(A2) : ess inf
Ω

m2 > 0,

where
M+(Ω) = {m ∈ L∞(Ω) : meas({x ∈ Ω : m(x) > 0}) 6= 0} .

Furthermore, we suppose that g is a continuous function on IR and satisfying

(H1) : lim sup
s→±∞

g(s)

|s|p−2s
≤ β,

(H2) : lim inf
s→±∞

G(s)

|s|p
< β,

where G(s) =
∫ s

0
g(t)dt for all s ∈ IR and β ∈ IR.

Since the 80’s, several works have been devoted to questions of nonresonance
for this kind of problem, in the semilinear and autonomous case (p = 2, m1 = 0
and m2 = 1) has been discussed by many authors (see e.g., [8], [9], [12], [13],
[14],· · · ) in connection with various qualitative assumptions on the function g and
its potential G. In the nonautonomous case A. Anane and A. Dakkak considered
problem (Pα) in the following particular case α = λ1(m1) and m2 = 1, where λ1

is the first eigenvalue of the p-Laplacian operator with weight and the Neumann
boundary condition (see [6]), they showed the existence of the weak solution of
the problem (Pα) with conditions of nonresonance below the first eigenvalue of the
−∆p.

Motivated by the papers ( [6], [7]) and some ideas introduced in ( [6]), the goal of
this work is to study the existence of solutions in the sense weak for problem (Pα).
In other words, assuming that (A1), (A2), (H1) and (H2) hold, our purpose is
to show that problem (Pα) has at least one solution that verifies

∫

Ω

|∇u|p−2∇u∇vdx =

∫

Ω

(αm1(x) +m2g(u) + h(x))|u|p−2uvdx,

for any v ∈ W 1,p(Ω) and for all h ∈ L∞(Ω).
The proof of the main result is based on the Leray-Schauder degree method and
exploits some techniques introduced in [6].

The remaining part of this paper is organized as follows: In section 2, we
recall some results which are necessary in what follows. In section 3, we show (see
theorem 3.2) the existence of principal eigencurve of the p-Laplacian operator with
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Neumann boundary conditions. In section 4, we show a theorem of nonresonance
under the first eigenvalue (see theorem 4.4). Finally the results of sections 3 and 4
are then employed in section 5 in order to obtain the main result the existence of
solution for problem (Pα).

2. Preliminary

Throughout this paper, Ω will be a smooth bonded domain of IRN , W 1,p(Ω) will

denote the usual Sobolev space equipped with the norm ‖.‖1,p = (‖.‖pp+‖∇(.)‖pp)
1
p ,

where ‖.‖p is the Lp(Ω)-norm.
In this preliminary section we collect some results relative to usual nonlinear eigen-
value problem 




−∆pu = λm(x)|u|p−2u in Ω

∂u
∂ν

= 0 on ∂Ω,
(2.1)

where m ∈ M+(Ω).

Definition 2.1. Let u ∈ W 1,p(Ω) and λ ∈ IR.
1) (u, λ) is called a weak solution of problem (2.1) if

∫

Ω

|∇u|p−2∇u∇vdx = λ

∫

Ω

m(x)|u|p−2uvdx, for all v ∈ W 1,p(Ω).

2) λ is called an eigenvalue of problem (2.1) if there exists u ∈ W 1,p(Ω) \ {0} such
that (u, λ) is a solution of problem (2.1). In this case u is called an eigenfunction
associated to λ.

The Lusternik-Schnirelman theory asserts that the spectrum of the p-Laplacian
operator contains at least an unbounded sequence of positive eigenvalues, say

λ1(m) < λ2(m) ≤ λ3(m) ≤ . . . ≤ λk(m) → ∞ as k → +∞

Unfortunately, to our best knowledge, nothing is known in general about the pos-
sible existence of other eigenvalues in ]λ1(m),+∞[.

Clearly 0 is a principal eigenvalue of problem (2.1), with the constants as eigen-
functions. The search for another principal eigenvalue involves the following quan-
tity:

λ1(m) = inf
A

∫

Ω

|∇u|pdx,

where A={u ∈ W 1,p(Ω);
∫
Ω
m(x)|u|pdx = 1}.

Proposition 2.2. ( [6], [11]). 1) If m changes sign on Ω and
∫
Ω
mdx < 0.

Then λ1(m) > 0 and λ1(m) is the unique nonzero principal eigenvalue; this eigen-
value is simple and the corresponding eigenfunction u can be chosen such that
u(x) > 0 in Ω, moreover λ1(m) is isolated, namely, there exist b > λ1(m) such that
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σ(−∆p)
⋂
]0, b[= {λ1}, where σ(−∆p) represents the set of all eigenvalues associ-

ated to the problem (2.1).

2) If
∫
Ωmdx > 0. Then λ1(m) = 0 and 0 is the unique nonnegative principal

eigenvalue.

3) If
∫
Ωmdx = 0. Then λ1(m) = 0 and 0 is the unique principal eigenvalue.

Proposition 2.3. ( [6]). Let m,m
′

∈ M+(Ω). If m ≤ m
′

, then λ1(m) ≥ λ1(m
′

).
moreover, if m < m

′

, meas{x ∈ Ω;m < m
′

} 6= 0 and
∫
Ωmdx < 0, then λ1(m) >

λ1(m
′

).

Proposition 2.4. ( [6]). 1) λ1 : m → λ1(m) is continuous in (M+(Ω), ‖.‖∞)
2) Let (mk)k be a sequence in M+(Ω) such that mk → m in L∞(Ω). then
limk→∞ λ1(mk) = +∞ if and only if m ≤ 0 almost everywhere in Ω.

3. Existence of the principal eigencurve of the −∆p with weights in the
Neumann case

In this section, we study the following problem: Find all the real numbers α and
β such that λ1(αm1+βm2) = 1. Precisely, we seek to find all the pairs (α, β) ∈ IR2

such that the following problem has at least one nontrivial solution u ∈ W 1,p(Ω)





−∆pu = (αm1(x) + βm2(x))|u|p−2u in Ω

∂u
∂ν

= 0 on ∂Ω,
(3.1)

the set of pairs (α, β) has the structure of a continuous curve called the principal
eigencurve of the −∆p with weights in the Neumann case.

Definition 3.1. Let m1,m2 ∈ M+(Ω). We define the graph of the first eigencurve
of the p-Laplacian with weight subject to Neumann boundary conditions by:

C1 =
{
(α, β) ∈ IR2;λ1(αm1 + βm2) = 1

}
.

Theorem 3.2. Let m1 and m2 be two weight functions. Assume that m1,m2 ∈
M+(Ω) and satisfying assumptions(A1) and (A2) respectively. Then for all α ∈
IR there exist a unique real number tα which satisfies.

λ1(αm1 + tαm2) = 1.

Proof: Let α ∈ IR. We consider the function fα : t 7−→ λ1(αm1 + tm2). In view
of propositon 2.3 and propsition 2.4, we affirm that fα is decreasing continuous.
It follows that fα is injective. In order to show that the equation fα(t) = 1 has a
solution we distinguish three cases.
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The case 0 ≤ α ≤ λ1(m1).
If α = 0 we take β = λ1(m2) and if α = λ1(m1) we take β = 0.

For all 0 < α < λ1(m1) we have

fα(0) = λ1(αm1) =
λ1(m1)

α
> 1.

Also, since α
t
m1 +m2 → m2 in L∞(Ω) as t → +∞, then

lim
t→+∞

fα(t) = lim
t→+∞

1

t
λ1(

α

t
m1 +m2) = 0

as 1 ∈]0, λ1(m1)
α

[, so there exist a unique real tα ∈]0,+∞[ which verifies fα(tα) = 1.

The case α > λ1(m1).
In this case α > 0 and

0 < fα(0) = λ1(αm1) =
λ1(m1)

α
< 1 (3.2)

Let γα = −α‖m1‖∞

ess infΩ m2
,

Aα = {t < 0;αm1 + tm2 ≤ 0 a.e. x ∈ Ω} and τα = supAα

one can easily see that

αm1 + γαm2 ≤ 0 almost everywher in Ω

Then Aα 6= ∅, we wile prove that τα ∈ Aα. Indeed, we first show that τα < 0.
Since fα(0) > 0, and fα, is a continuous function then there exist η < 0 such that
fα(t) > 0 for all t ∈ [η, 0]. So λ1(αm1 + tm2) > 0 for all t ∈ [η, 0]; which gives that

αm1 + tm2 ∈ M+(Ω) for all t ∈ [η, 0]

hence τα ≤ η < 0. Moreover according to the definition of τα we have, for all
n ∈ IN , there exist tn ∈ Aα such that τα − 1

n
< tn. It follows that

αm1(x) + ταm2(x) ≤ αm1(x) + tnm2(x) +
1

n
m2(x) ≤

1

n
‖m2‖∞ a.e. x ∈ Ω

and for all n ∈ IN∗.
Therefor, by letting n tends to +∞, we conclude that

αm1(x) + ταm2(x) ≤ 0 a.e. x ∈ Ω

Hence, τα ∈ Aα. Then proposition 2.4 implies

lim
t→τα

fα(t) = +∞ (3.3)
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It then follows from (3.2) and (3.3) that there exist a unique real tα ∈]τα, 0[ which
verifies

fα(tα) = 1

The case α < 0.
In this case we have

∫
Ω αm1dx > 0, thus fα(0) = λ1(αm1) = 0.

We seek a real θα such that limt→θα fα(t) = +∞.

Indeed, let µα = α‖m1‖∞

ess infΩ m2
,

Bα = {t < 0;αm1 + tm2 ≤ 0 a.e. x ∈ Ω} and θα = supBα

Clearly µα ∈ Bα, so Bα 6= ∅.
The rest of the proof can be carried out in a similar manner to that of the case 2.

✷

4. Nonresonance under the first eigenvalue

This section is devoted to the study of the problem (Pα) in the particular case
where (α = λ1(m1)) and the function g and its primitive G satisfying the following
conditions

(g±) : lim sup
s→±∞

g(s)

|s|p−2s
≤ 0,

(G±) : lim inf
s→±∞

G(s)

|s|p
< 0.

That is to say, we show that the following problem admits at least one weak solution

(Pλ1
)





−∆pu = λ1m1(x)|u|p−2u+m2(x)g(u) + h(x) in Ω

∂u
∂ν

= 0 on ∂Ω

where λ1 = λ1(m1) is the principal eigenvalue of −∆p with weight m1.
The main result of this section lies in the ( [6]). The improvement of this work is
due to the insertion of a second weight m2 in the right side of the problem (Pλ1

).
By using the theory of the Leray-Schauder degree, the hypotheses (g±) and (G±)
are not sufficient to obtain the result of existence (see theorem4.4), for this we are
compelled to treat the following possible cases.

4.1. Possible cases

. In order to study the problem (Pλ1
) we will suggest four cases.

case 1: (g+−1) : lim inf
s→+∞

g(s)

|s|p−2s
< δ and (g−−1) : lim inf

s→−∞

g(s)

|s|p−2s
< δ,

case 2: (g−−1) : lim inf
s→−∞

g(s)

|s|p−2s
< δ and (g+0 ) : lim inf

s→+∞

g(s)

|s|p−2s
≥ δ,
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case 3: (g+−1) : lim inf
s→+∞

g(s)

|s|p−2s
< δ and (g−0 ) : lim inf

s→−∞

g(s)

|s|p−2s
≥ δ,

case 4: (g+0 ) : lim inf
s→+∞

g(s)

|s|p−2s
≥ δ and (g−0 ) : lim inf

s→−∞

g(s)

|s|p−2s
≥ δ,

where δ =
−λ1‖m

+
1 ‖∞

γ
, γ = ess infΩm2 and m+

1 = max(m1, 0) . There are all

possible cases and by a classical method of lower and upper solutions (cf. [1], [12])
one can show that if the case 1 holds, then (Pλ1

) is solvable for every h ∈ L∞(Ω),
so it remains to consider only the other cases.

. Therefore we will keep the hypotheses (g+0 ) and (g−0 ) in order to be used in the
next, and (g+−1), (g

−
−1) will be used in the proof of the following proposition and

used also in the truncated function fi which will be defined just after.

Proposition 4.1. i) If g satisfy the hypothesis (g−−1) then, for any given h ∈
L∞(Ω) there exists A = Ah < 0 such that:

λ1m1(x)|A|
p−2A+m2(x)g(A) + h(x) > 0 a.e. in Ω. (4.1)

ii) If g satisfy the hypothesis (g+−1) then, for any given h ∈ L∞(Ω) there exists
B = Bh > 0 such that:

λ1m1(x)|B|p−2B +m2(x)g(B) + h(x) < 0 a.e. in Ω. (4.2)

Proof: We only show the first assertion since the proof of the second one proceeds
in the same way. According to the hypothesis (g−−1), let us fix ε > 0, such that

lim inf
s→−∞

g(s)

|s|p−2s
<

−λ1‖m
+
1 ‖∞

γ
− ε

Let Ah < 0 such that
−εγ|Ah|

p−2Ah ≥ ‖h‖∞

then
εγ|Ah|

p−1 ≥ ‖h‖∞,

thus,
εγ|Ah|

p−1 + h(x) ≥ 0 a.e. in Ω

for this Ah, there exists A < Ah such that

εγ|A|p−1 + h(x) > εγ|Ah|
p−1 + h(x) ≥ 0 a.e. in Ω (4.3)

and
g(A)

|A|p−2A
<

−λ1‖m
+
1 ‖∞

γ
− ε. (4.4)

Indeed, assume by contradiction, that for all s < Ah, we have

g(s)

|s|p−2s
≥

−λ1‖m
+
1 ‖∞

γ
− ε
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then

lim inf
s→−∞

g(s)

|s|p−2s
≥

−λ1‖m
+
1 ‖∞

γ
− ε

which gives a contradiction.
According to (4.4), we have

−m2(x)
g(A)

|A|p−2A
>

m2(x)

γ
λ1‖m

+
1 ‖∞ + εm2(x) a.e. in Ω

since γ = ess infΩm2, we get

(−λ1m1(x)−m2(x)
g(A)

|A|p−2A
)|A|p−1 + h(x) > (−λ1m(x) + λ1‖m

+
1 ‖∞)|A|p−1

+εγ|A|p−1 + h(x) a.e. in Ω

It is easy to see that

−λ1m(x) + λ1‖m
+
1 ‖∞ ≥ 0 a.e. in Ω

Therefore, using (4.3) we conclude that

λ1 m1(x)|A|
p−2A+m2(x) g(A) + h(x) > 0 a.e. in Ω

This concludes the proof of (4.1).
✷

4.2. Homotopic Problems.

Let θ < 0 be fixed, and let µ ∈ [0, 1] and consider for i ∈ {2, 3, 4} the following
problem

(Pi,µ)





−∆pu = (1− µ)θ|u|p−2u+ µfi(x, u) in Ω

∂u
∂ν

= 0 on ∂Ω,

where fi(., .) is defined for every s ∈ IR and a.e x ∈ Ω by

f2(x, s) = f4(x, T
+
A (s)), (4.5)

f3(x, s) = f4(x, T
−
B (s)),

and

f4(x, s) = λ1m1(x)|s|
p−2s+m2(x)g(s) + h(x),

where T+
A (s) = max(s, A), T−

B (s) = min(s,B), A and B comes from the Proposi-
tion 4.1.
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Proposition 4.2. If u is a solution of (Pi,µ) for i = 2 or i = 3, then we have
1) If i = 2, u(x) ≥ A a.e. x ∈ Ω and u is also a solution of (P4,µ)
2) If i = 3, u(x) ≤ B a.e. x ∈ Ω and u is also a solution of (P4,µ),
where A and B comes from the proposition 4.1.

Proof: 1) Since u is a solution of (P2,µ), then

∫

Ω

|∇u|p−2∇u.∇(u−A)−dx =

∫

Ω−

[(1− µ)θ|u|p−2u+ µf2(x, u)](u −A)−dx,

where Ω− = {x ∈ Ω, u(x) ≤ A}.
Using the fact that u−A = (u−A)+ − (u −A)−, we get

−

∫

Ω

|∇(u−A)−|pdx =

∫

Ω−

[(1 − µ)θ|u|p−2u+ µf2(x,A)](u −A)−dx, (4.6)

since A < 0 and θ < 0, it is easy to see that

(1− µ)θ|u|p−2u(u−A)− ≥ 0 a.e. x ∈ Ω. (4.7)

By using (4.6), (4.7) and proposition 4.1, we obtain

−

∫

Ω

|∇(u−A)−|pdx ≥ 0,

thus, ∇(u − A)− = 0 which means (u − A)− = C, where C is a constant real. If
C 6= 0, then C is positive and u(x) = A−C a.e. x ∈ Ω, according to the fact that
u is a solution of (P2,µ) we get

0 = ∆pu = (1− µ)θ|A− C|p−2(A− C) + µf2(x,A) > 0,

which gives a contradiction, so (u −A)− ≡ 0. This completes the proof.
For 2), using similar arguments as in the proof of 1). ✷

Corollary 4.3. 1) If g satisfy (g−−1) and u is a solution of (P2,µ), then u is also
a solution of (Pλ1

).
2) If g satisfy (g+−1) and u is a solution of (P3,µ), then u is also a solution of (Pλ1

).

We are now in position to give the following result.

4.3. Main result

Theorem 4.4. Let m1,m2 ∈ M+(Ω). Assume that the weight m1 and m2 satisfy
(A1) and (A2) respectively and the assumptions (g±) and (G±) hold. Then the
problem (Pλ1

) has at least one nontrivial weak solution u ∈ W 1,p(Ω) for any given
h ∈ L∞(Ω).

The proof needs some technical lemmas, the two next lemmas concern an a-
priori estimates on the possible solutions of the homotopic problem (Pi,µ).
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Lemma 4.5. We assume that g satisfy (g±) and the hypotheses of the case i, where
i ∈ {2, 3, 4}. Let be (un, µn) be a sequence of solutions of (Pi,µn

), then we have
1) (un)n is a sequence of L∞(Ω).
2) If ‖un‖∞ → +∞ when n → ∞. Then, for a subsequence vn = un

‖un‖∞

→ v

strongly in C1(Ω), where v = +ϕ if i = 2, v = −ϕ if i = 3, v = ±ϕ if i = 4 and
ϕ is a normed positive eigenfunction associated to the first eigenvalue λ1 of −∆p

with weight m1. Moreover, we have
∫

Ω

|g(un)|

‖un‖
p−1
∞

dx → 0 when n → +∞. (4.8)

Proof: 1) From the Anane’s L∞-estimation [2] and the Tolksdorf’s regularity
[15] we can see that (un)n ⊂ C1,α(Ω), since the embedding C1,α(Ω) →֒ L∞(Ω) is
continuous for some α ∈]0, 1[ independent on n, furthermore vn = un

‖un‖∞

remains

a bounded sequence in C
1,α(Ω).

2) By using the following compact embedding C1,α(Ω) →֒→֒ C1(Ω), then there
exists a subsequence still denoted (vn)n such that

vn → v stongly in C
1(Ω) and ‖v‖∞ = 1. (4.9)

Let use assume for instance that the case i = 2 holds, so by combining (g−−1) and

(g+1 ), we can write

g(s) = q(s)|s|p−2s+ r(s) for every s ∈ [A,+∞[, (4.10)

where A comes from proposition 4.1, q and r are two continuous functions on
[A,+∞[ satisfying

−λ1‖m
+
1 ‖∞ ≤ q(s) ≤ 0 for every s ∈ [A,+∞[,

and
r(s)

|s|p−2s
→ 0 uniformly, when s → +∞. (4.11)

Since un is a solution of (P2,µn
), we get

∫

Ω

|∇un|
p−2∇un∇wdx =

∫

Ω

[(1− µn)θ|un|
p−2un + µnf2(x, un)]wdx (4.12)

for all w ∈ W 1,p(Ω).
According to the proposition 4.2, we have un ≥ A a.e. in Ω, so by using (4.4) and
(4.10) it is easy to see that

f2(x, un) = (λ1m1(x) +m2(x)q(un))|un|
p−2un +m2(x)r(un) + h(x). (4.13)

On the other hand, since (un)n ⊂ L∞(Ω) and q is a continuous function, it follows
that q(un) is bonded in L∞(Ω), then for a subsequence we get

q(un) ⇀ q0 in L∞(Ω) weak− ∗,
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where −λ1‖m
+
1 ‖∞ ≤ q0(x) ≤ 0 a.e. in Ω

and from (4.11), we have for a subsequence

|r(un)|

‖un‖
p−1
∞

→ 0 strongly in L∞(Ω).

We can also suppose that for a further subsequence, µn → µ ∈ [0, 1].
By combining (4.12), (4.13) and dividing by ‖un‖p−1

∞ and passing to the limit as
n → ∞, we get

∫

Ω

|∇v|p−2∇v∇wdx =

∫

Ω

mµ,θ,q0(x)|v|
p−2vwdx for all w ∈ W 1,p(Ω), (4.14)

where v is given by (4.9) and mµ,θ,q0(x) = (1 − µ)θ + µ(λ1m1(x) +m2(x)q0(x)).
First of all we remark that µ 6= 0, because if µ = 0, testing (4.14) against w = v,
we get

∫
Ω
|∇v|pdx = θ

∫
Ω
|v|pdx < 0, which gives a contradiction.

Now let us prove

meas({x ∈ Ω,mµ,θ,q0(x) > 0}) 6= 0. (4.15)

Indeed, arguing by contradiction, taking v as test function in (4.14), we get

∫

Ω

|∇v|pdx =

∫

Ω

mµ,θ,q0(x)|v|
pdx.

Since mµ,θ,q0(x) ≤ 0 a.e. in Ω, then
∫
Ω |∇v|pdx = 0 this implies that

mµ,θ,q0(x)|v|
p = 0,

and the fact that v 6= 0, assures that mµ,θ,q0 = 0.
On the other hand, it is easy to see that mµ,θ,q0(x) ≤ µλ1m1(x) ≤ λ1m1(x).
Then

0 =

∫

Ω

mµ,θ,q0(x)dx ≤ λ1

∫

Ω

m1(x)dx.

consequently
∫
Ωm1(x)dx ≥ 0, which contradicts

∫
Ω m1(x)dx < 0.

According to (4.14) and (4.15) we can see that 1 is an eigenvalue of p−Laplacain
with weight mµ,θ,q0 , then

1

µ
= λ1(µλ1m1) ≤ λ1(mµ,θ,q0) ≤ 1. (4.16)

Since µ ∈ [0, 1], then from (4.16) necessarily µ = 1. By using the strict monotony
property of λ1 with respect to the weight and the definition of q0, we deduce

q0 ≡ 0 and mµ,θ,q0 ≡ λ1m1.

Thus, by virtue of (4.14) and the simplicity of λ1, we get v = ±ϕ. Finally, since
un ≥ A, then it is clear to see that v ≥ 0 and consequently v = ϕ.
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The other cases follows directly by the same proceedings.
According to (4.10) and (4.11), we get

∫

Ω

|m2(x)g(un)|

‖un‖
p−1
∞

dx ≤ ‖m2‖∞

∫

Ω

−q(un)|vn|
p−1 + ‖m2‖∞

∫

Ω

|r(un)|

‖un‖
p−1
∞

dx

by passage to the limit in the above inequality, we find (4.8). ✷

Lemma 4.6. Let un be a solution of (Pi,µn
) for some i ∈ {2, 3, 4} and for all

n, such that ‖un‖∞ → ∞ when n → +∞, and let us fix a ∈ Ω and η > 0 such
that B(a, η) ⊂ Ω. So, if g satisfy (g±) and the case i holds, then by putting
σx(t) = a+ t(x− a), we have

lim
n→∞

∫ 1

0

|g(un(σx(t))||∇un(σx(t))||x − a|

‖ un ‖∞
p dt = 0 a.e. x ∈ ∂B(a, η), (4.17)

where B(a, η) is the ball of a center and radius η.

Proof: For simplicity of the task we prove the lemma only in the case i = 2 and
other cases can be treated in a similar way.
Using relation (4.8), we deduce that

∫

B(a,η)

|m2(x)g(un)|

‖un‖
p−1
∞

dx ≤

∫

Ω

|m2(x)g(un)|

‖un‖
p−1
∞

dx → 0 when n → ∞.

By using the spherical coordinates, we obtain

lim
n→∞

∫

[0,π]n

∫ 2π

0

∫ η

0

tN−1 |g(un(a+ tω))|

‖ un ‖∞
p−1

N−2∏

j=1

(sin θj)
N−1−jdθjdθN−1dt = 0

(4.18)
where, ω = x−a

η
∈ ∂B(0, 1).

The above equality imply

|g(un(σx(τ )))|

‖un‖
p−1
∞

→ 0 when n → ∞ a.e. x ∈ ∂B(a, η) and a.e. τ ∈ [0, 1].

By using (g±) we can see that g satisfy the following growth condition:

|g(s)| ≤ a|s|p−1 + b, for some positive reals a, b and for all s ∈ [A,+∞[.

According to the proposition 4.2, we obtain un ≥ A, Consequently
(

|g(un(σx(.)))|

‖un‖
p−1
∞

)

n

and
(

|∇(un(σx(.)))|
‖un‖∞

)

n
are bounded in L∞([0, 1]).

By using the Lebesgue dominated convergence theorem, we conclude this proof. ✷
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Lemma 4.7. Let r ∈]0, 1[, and assume that there exists d < 0 such that

d < lim inf
s→+∞

G(s)

|s|p
≤ lim sup

s→+∞

G(s)

|s|p
≤ 0, (4.19)

then there is an equivalence between (G+) and (G+
r ), where

(G+) : lim inf
s→+∞

G(s)

|s|p
< 0 ; (G+

r ) : lim inf
s→+∞

G(s)−G(rs)

|s|p
< 0.

The same conclusion holds if we replace the sign + by the sign −.

Proof: Assume that (G+) hold, then there exists a sequence (sn)n with

lim
n→∞

sn = +∞,

such that

lim
n→∞

G(sn)

|sn|p
= lim inf

s→+∞

G(s)

|s|p
= l < 0.

According to (4.19), we get d < l < 0 and (G(rsn)
|rsn|p

)n is bounded, so there exists

k ∈ [l, 0] such that limn→∞
G(rsn)
|rsn|p

= k for some subsequence, thus we get

lim inf
s→+∞

G(s)−G(rs)

|s|p
≤ lim

n→∞

G(sn)−G(rsn)

|sn|p
= l − rpk ≤ l(1− rp) < 0.

Reciprocally, let us assume that (G+
r ), then there exists a sequence (s̃n)n with

lim
n→∞

s̃n = +∞

such that

lim
n→∞

G(s̃n)−G(rs̃n)

|s̃n|p
= lim inf

s→+∞

G(s)−G(rs)

|s|p
= lr < 0,

it is easy to see that (G(s̃n)
s̃
p
n

)n and (G(rs̃n)
rs̃

p
n

)n are bounded, and there exists k, k
′

∈

]d, 0] such that limn→∞
G(s̃n)
|s̃n|p

= k and limn→∞
G(rs̃n)
r|s̃n|p

= k
′

for some subsequence,

then we obtain

k − k
′

rp = lr < 0,

so, we have k 6= 0 or k
′

6= 0, and consequently

lim inf
s→+∞

G(s)

|s|p
≤ min{k, k

′

}.

✷
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4.4. Proof of main result

Let us fix h ∈ L∞(Ω), so we will distinguish three cases (i.e. 2, 3 and 4), thus for
any fixed i ∈ {2, 3, 4} we will assume that the case i holds and we will show the
existence of solutions of (Pi,µ), so according to the corollary 4.3, we can deduce
the existence of solution of (Pλ1

). Our proof consists in building in C(Ω) an open
bounded set O, with 0 ∈ O such that no solution of (Pi,µ) with µ ∈ [0, 1[ occurs on
the boundary ∂O. Homotopy invariance of the degree then yields the conclusion of
the Theorem 4.4. This open set O will have the form

O = OS,T = {u ∈ C(Ω); T < u < S}, (4.20)

where, S and T satisfy T < 0 < S.
In order to simplify this proof we will assume that the case 2 holds, since the proof
with the other cases is hardly the same. We take T = 2A, where A < 0 with A

coming from proposition 4.1. By using the hypothesis (G+) and lemma 4.7, we
can get the existence of a sequence of positive real numbers (sn)n which satisfy

lim
n→∞

sn = +∞

and,

lim
n→∞

G(sn)−G(rsn)

s
p
n

= lim inf
s→+∞

G(s)−G(rs)

|s|p
< 0, (4.21)

where, r = minϕ
maxϕ

and ϕ coming from lemma 4.5.
The proof is carried out by contradiction. precisely, one assumes the existence of
a sequence (un)n of solutions to (Pi,µn

) , with µn ∈ [0, 1] and un ∈ ∂OSn,T .
then by proposition 4.2, we get un ≥ A > 2A.
It follows that

max(un) = sn.

Let xn, yn ∈ Ω such that maxΩ(un) = un(xn) and minΩ(un) = un(yn), we clearly
can suppose that xn → x0 in Ω and yn → y0 in Ω, where x0 and y0 are two points
where ϕ attains its maximum and minimum respectively.
By character C1 of Ω, we obtain the existence of a sequence (zk)k=1,...,m ⊂ Ω such
that

m⋃

k=1

B(zk, |zk − zk−1|) ⊂ Ω where, z0 = x0 and zm+1 = y0.

We write

σk = [zk, zk+1], for k = 0, ...,m

where,
⋃m

k=1 σk is a smashed line.
Join xn to x0 by a C1 path δ0,n having range in Ω, and join y0 to yn by a C1 path
γn,0 having range in Ω.
Then, Cn=δ0,n

⋃
(
⋃m

k=1 σk)
⋃
γn,0 is a C1 with morsels line which connects the
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extremity xn and yn.
By lemma 4.6, we can rectify the sequence (zk)k=1,...,m such that

lim
n→∞

∫ 1

0

|g(un(σk(t))||∇un(σk(t))||σ
′

k(t)|

‖ un ‖∞
p dt = 0 for k = 1, ...,m− 1. (4.22)

Put rn = min(un)
max(un)

, by using lemma 4.5, it is clear to see that

lim
n→+∞

rn =
min(ϕ)

max(ϕ)
∈]0, 1[.

The proof is achieved if we obtain a contradiction from the formula (4.21), thus we
will proceed in two claims:

Claim 1. We will show that limn→∞
|G(sn)−G(rnsn)|

|sn|p
= 0.

We write

G(sn)−G(rnsn)

|sn|p
=

G(un(xn))−G(un(yn))

‖un‖
p
∞

=
1

‖un‖
p
∞

∫

Cn

d(G ◦ un), (4.23)

where,
∫
Cn

=
∫
δ0,n

+
∑m

k=0

∫
σk

+
∫
γn,0

and d(G ◦ un)(σk) = g(un(σk))∇un(σk).σ
′

k,

with
∫
Cn

denotes a line integral.
So by using lemma 4.6, we obtain

lim
n→+∞

∑m−1
k=1

∫
σk

d(G ◦ un)

‖un‖
p
∞

= 0. (4.24)

Furthermore, we have for all ε > 0, there exists xε ∈ ∂B(z1, |z1 − x0|) such that

|xε − x0| < 0 and lim
n→+∞

∑m−1
k=1

∫
σ0,ε

d(G ◦ un)

‖un‖
p
∞

= 0, (4.25)

where, σ0,ε = [z1, xε].
Similarly, for all ε > 0, there exists yε ∈ ∂B(zm, |zm − y0|) such that

|yε − y0| < 0 and lim
n→+∞

∑m−1
k=1

∫
σm,ε

d(G ◦ un)

‖un‖
p
∞

= 0, (4.26)

where, σm,ε = [z1, xε].
By the C1 character of ∂Ω, δ0,n and γn,0 can be taken such that

ℓ(δ0,n) → 0 and ℓ(γn,0) → 0 when n → ∞,

where, ℓ(.) denotes the length of the corresponding path.
By combining (4.24), (4.25) and (4.26), we deduce that there exists c > 0 such that
for all ε > 0 and for all n sufficiently large, we get

|
∫
Cn

d(G ◦ un)|

‖un‖
p
∞

< εc.
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So, this concludes the proof of the first claim by replacing in (4.23).

Claim 2. We will show that limn→∞
|G(sn)−G(rsn)|

|sn|p
= 0.

It is easy to see that for all n ∈ IN∗, there exists cn which lives between rnsn and
rsn such that

|G(rnsn)−G(rsn)|

s
p
n

=
(rn − r)g(cn)

s
p−1
n

.

Since g satisfy the following growth condition

|g(s)| ≤ a|s|p−1 + b, for some positive reals a, b and for all s ∈ [A,+∞[

then, the sequence ( g(cn)
s
p−1
n

)n is bounded.

On the other hand, we have

|G(sn)−G(rsn)|

|sn|p
≤

|G(sn)−G(rnsn)|

|sn|p
+

|G(rnsn)−G(rsn)|

|sn|p
.

According to the first claim and the fact limn→∞ rn = r, we conclude the proof of
the second claim.
Finally, we get a contradiction from (4.21). This concludes the proof of theorem
4.4.

5. Nonresonance under the principal eigencurve

In this section, we turn to the problem (Pα) and we show that it has at least
weak solution. For this purpose, we will apply the main results the two of sections
previous.

Theorem 5.1. Let (α, β) ∈ C1 and let m1,m2 ∈ M+(Ω). Assume that the weight
m1 and m2 satisfy (A1) and (A2) respectively and the assumptions (H1) and (H2)
hold. Then the problem (Pα) has at least one nontrivial weak solution u ∈ W 1,p(Ω)
for any given h ∈ L∞(Ω).

Proof: Clearly, problem (Pα) can be written in the following equivalent form

(Pα,β)





−∆pu = mα,β(x)|u|p−2u+m2(x)g̃(u) + h(x) in Ω

∂u
∂ν

= 0 on ∂Ω,

where

g̃(s) = g(s)− β|s|p−2s,

and

mα,β = αm1 + βm2.

Since (α, β) ∈ C1, then 1 is the first eigenvalue of p-laplacian operator with weight
mα,β in Neumann case. In view of theorem 4.4, there exists at least one weak
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solution u ∈ W 1,p(Ω) of the problem (Pα,β) for all h ∈ L∞(Ω) if the function g̃

and his potential G̃ satisfy the two conditions (g±) and (G±). Indeed,

lim sup
±∞

g̃(s)

|s|p−2s
= lim sup

±∞

(
g(s)

|s|p−2s
− β

)
≤ 0

and,

lim inf
±∞

pG̃(s)

|s|p
= lim inf

±∞

(
pG(s)

|s|p
− β

)
< 0

Consequently, as (Pα,β) and (Pα) are equivalent, which gives that the problem (Pα)
has a solution u ∈ W 1,p(Ω), for every h ∈ L∞(Ω). ✷
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