
Bol. Soc. Paran. Mat. (3s.) v. 38 1 (2020): 173–183.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i1.36468

On Some Variant of a Whittaker Integral Operator and its

Representative in a Class of Square Integrable Boehmians

Shrideh Khalaf Al-Omari

abstract: This paper investigates some variant of Whittaker integral operators
on a class of square integrable Boehmians. We define convolution products and
derive the convolution theorem which substantially satisfy the axioms necessary for
generating the Whittaker spaces of Boehmians. Relied on this analysis, we give a
definition and properties of the Whittaker integral operator in the class of square
integrable Boehmians. The extended Whittaker integral operator, is well-defined,
linear and coincides with the classical integral in certain properties.
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1. Introduction

The Whittaker functions mk,µ and wk,µ (of first and second order, respectively)
have acquired an increasing significance due to their frequent use in applications of
mathematics and some physical and technical problems. They are closely related
to the confluent hypergeometric function which fairly play an important role in
various branches of applied mathematics and theoretical physics; this is the case in
fluid mathematics, electromagnetic diffraction theory and atomic structure theory,
which indeed justifies a continuous effort in studying properties of these functions,
as well as those integral operators generated by them.

Boehmians are a motivation of regular operators [18] and contain all distribu-
tions and some objects which are neither operators nor distributions. An abstract
construction of Boehmian spaces with two notions of convergence is given by [17].
Various integral transforms for various Boehmians spaces are defined in the recent
past and their properties are developed. In this article , we define a Whittaker
integral operator in a class of Boehmians and study some operational properties.
We further in section define convolution products and recall some auxiliary results
from literature. Throughout Section 2 we derive requested axioms for generating
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the Boehmian spaces. In Section 3, we prove the convolution theorem and give
definition and properties of the generalized integral.

The Whittaker integral operator with a kernel involving confluent hypergeo-
metric functions is a generalization of the classical Laplace transform

l (p) =

∫ ∞

0

e−pxf (x) dx (1.1)

given by the integral equation [26]

φv
k,µ (p) =

∫ ∞

0

(px)
v
e−1/2pxwk,µ (px) f (x) dx, (1.2)

where the kernel function is expressed in a Mellin type representation,

Γ
(

v + z − µ+ 1
2

)

Γ
(

v + z + µ+ 1
2

)

Γ (v + z − k + 1)
, (1.3)

where z = σ + it.

A generalization, varying from those given in [1-4], which generalizes (1.2) and
the Laplace integral, for v = µ, k + µ = 1

2 and r = q = 1 is, due to Srivastava [27],
given as

φv
k,µ (p) =

∫ ∞

0

(px)v−
1

2 exp

(

−
1

2
qpx

)

wk,µ (rpx) f (x) dx. (1.4)

An inversion formula can be recovered from (1.2) as follows.

Theorem 1.1 (Inversion Theorem) Let p > 0, 1 + v > max
(

|µ| , k − 1
2

)

, µ + k >
1
2 , f (x) ∈ l

2 (0,∞) , xv+µ+ 1

2 f (x) ∈ l
2 (0,∞) , then an inversion formula of the

Whittaker integral (1.2) is given as

f (x) = x−(v+µ+ 1

2
)l−1

(

p−(v+µ+ 1

2
)R−

(

v + µ−
1

2
, v − k + 1 : 1

)

φv
k,µ (p)

)

,

(1.5)

where l−1 is the inverse Laplace transform and R is the fractional integration
operator

R (α, β : 1) f (x) =
xβ

Γ (α)

∫ ∞

x

(v + x)
α−1

v−β−1f (v) dv, (1.6)

whereas, the series representation of a hypergeometric function φ (b; c; z) is given
as

φ (b; c : z) =
∞
∑

n=0

ß (b+ n, c− b)

ß (b, c− b)

zn

n!
,

where Re (c) > Re (b) > 0, ß is the classical beta function.
The product we recall here is given by the following definition.
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Definition 1.2 The Mellin type convolution product of two integrable functions f
and g is defined by [15]

(f ∗ g) (y) =

∫ ∞

0

x−1f
(

yx−1
)

g (x) dx (1.7)

whose properties that we recite here are as follows
(i) g1 ∗g2 = g2∗g1; (ii) (g1 ∗ g2)∗g3 = g1∗(g2 ∗ g3) ; (iii) (αg1)∗g2 = α (g1 ∗ g2)

and that

(iv) g1 ∗ (g1 + g3) = g1 ∗ g2 + g1 ∗ g3.

The major product we request here can be introduced as follows.
Definition 1.3 Let f and g be integrable functions defined on (0,∞) ; then for f
and g we define a product given by

(f ⊗ g) (y) =

∫ ∞

0

f (yx) g (x) dx, (1.8)

provided the integral is finite. By l2 (0,∞) we denote the space of square Lebesgue
integrable functions defined on (0,∞) .
Lemma 1.4 ( Fox’s Lemma )[28] Let the following hold.

(i)x > 0;
(ii) f (z) , g (z) ∈ l

2 (0,∞) ;
(iii)µ (f (x)) ,µ (g (x)) ; are the Mellin transforms of f and g, respectively.
(iv)µ (g (x)) is bounded on the line s = 1

2 + it, t ∈ (0,∞) .
Then, we have

(i)

∫ ∞

0

g (xz) f (z)dz ∈ l
2 (0,∞) (1.9)

(ii)µ

(
∫ ∞

0

g (xz) f (z)dz

)

= µ (g (x)) (s)µ (f (x)) (1− s) . (1.10)

Following lemma is justified by the Fox’s lemma.
Lemma 1.5 [27, p.310] Let p > 0, v > |µ| − 1, f (x) ∈ l

2 (0,∞) ; then we have

∫ ∞

0

(px)
v
e−

1

2
pxwk,µ (px) f (x) dx ∈ l2 (0,∞)

and

µ

(
∫ ∞

0

(px)
v
e−

1

2
pxwk,µ (px) f (x) dx

)

=

Γ
(

v + s+ µ+ 1
2

)

Γ
(

v + s− µ+ 1
2

)

Γ (v + s− k + 1)
F (1− s) .

More information on Whittaker integral operators are given by [1, 4, 5, 27] are ref-
erences cited therein.
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2. Boehmians

Boehmians were introduced by Mikusinski and Mikusinski [8] as quotients of
sequences to generalize functions and distributions . From the remarkable work on
the convergence of Boehmians , a lot of works on Boehmians and integral transforms
have been carried out by many researchers with different perspectives such as [6, 9−
25]. In this article, we extend the Whittaker transform (1.2) to a space of square-
integrable Boehmians, which is properly larger than the space l

2 (0,∞) of square-
integrable functions defined on R. Then we investigate some properties of the
extended transform.

Now we predicate the spaces of extension.

Let k (0,∞) denote the space of test functions of compact support over (0,∞) ,
and ∆ be the subset of k (0,∞) of sequences satisfying

(i)

∫ ∞

0

(δn) (x) dx = 1, (2.1)

(ii) |δn (x)| < m∗,m∗ ∈ R,m∗ > 0, (2.2)

(iii) supp δn ⊆ (an, bn) , an, bn → 0 as n → ∞. (2.3)

Each (δn) in ∆ is called delta sequence or an approximating identity to corresponds
with the delta distribution.
Theorem 2.1 Let f ∈ l2 (0,∞) and g ∈ k (0,∞) then f ⊗ g ∈ l2 (0,∞) .

Proof of this theorem is an immediate result of Equation 9 of Fox’s lemma .

Lemma 2.2 Let f1, f2 ∈ l
2 (0,∞) and g1, g ∈ k (0,∞) ; then the following hold.

(i) ((f1 + f2)⊗ g) (x) = (f1 ⊗ g) (x) + (f2 ⊗ g) (x) .
(ii) (f1 ⊗ (g1 × g)) (y) = ((f1 ⊗ g1)⊗ g) (y) .

Proof of the identity (i) follows from simple integration. To prove the second
identity, we start from Definitions 1.2 and 1.3 to reach

(f1 ⊗ (g1 ∗ g)) (y) =

∫ ∞

0

f1 (yx)

∫ ∞

0

t−1g1
(

xt−1
)

g (t) dtdx. (2.4)

Fubini’s theorem and change of variables xt−1 = z puts (2.4) into the form

(f1 ⊗ (g1 ∗ g)) (y) =

∫ ∞

0

g (t)

∫ ∞

0

f1 (yzt) g1 (z) dzdt. (2.5)

Hence, (2.5) is reduced to give the integral equation

(f1 ⊗ (g1 ∗ g)) (y) =

∫ ∞

0

g (t) (f1 ⊗ g1) (yt) dt.

Therefore, the theorem is completely proved.
The proof of the following theorem is straightforward from simple integration.
Theorem 2.3 Let (fn) , f ∈ l

2 (0,∞) be such that fn → f as n → ∞, and
g ∈ k (0,∞) ; then fn ⊗ g → f ⊗ g as n → ∞.
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Theorem 2.4 (i) Let f ∈ l2 (0,∞) and (δn) ∈ ∆; then f ⊗ δn → f as n → ∞.

(ii) Let α ∈ C; then α (f ⊗ g) = (αf)⊗ g, for f ∈ l
2 (0,∞) and g ∈ k (0,∞) .

Proof Under the assumption that f ∈ l2 (0,∞) and that (δn) ∈ ∆, it follows, by
(1.8) , that

‖(f ⊗ g − f) (y)‖
2
l2

=

∫ ∞

0

|(f ⊗ g − f) (y)|
2
dt

=

∫ ∞

0

∣

∣

∣

∣

∫ ∞

0

f (yx) δn (x) dx− f (y)

∣

∣

∣

∣

2

dt. (2.6)

Hence, by (2.1) and Jensen’s inequality, the integral equation (2.6) can be read as

‖(f ⊗ g − f) (y)‖
2
l2
≤

∫ ∞

0

∫ ∞

0

|f (yx)− f (y)|
2
|δn (x)|dxdt.

If [an, bn] is an interval such that supp δn (x) ⊆ [an, bn] , an, bn > 0, an < bn, then,
we write

‖(f ⊗ δn − f) (y)‖
2
l2
≤

∫ ∞

0

∫ bn

an

|f (yx)− f (y)|
2
|δn (x)| dxdt.

By (2.2) we get

‖(f ⊗ δn − f) (y)‖
2
l2
≤ M∗ (an, bn)

∫ ∞

0

|f (yx)− f (y)|
2
dx.

Hence, (2.3) yields

‖(f ⊗ δn − f) (y)‖
2
l2
→ 0 as n → ∞.

Proof of the second part is straightforward from usual properties of simple integra-
tions.
This completes the proof of the theorem.
Theorem 2.5 Let (δn) , (ǫn) ∈ ∆; then for every natural n, δn ∗ ǫn ∈ ∆.

Proof of this theorem can be easily inspected from (1.7) . We prefer to omit the
details .
Hence, the space β1 := β

(

l2, (k, ∗) ,⊗,∆
)

is regarded as a Boehmian space.
The sum and multiplication by a scalar of two Boehmians can be defined in a
natural way

[

{fn}

{ǫn}

]

+

[

{gn}

{τn}

]

=

[

{fn ⊗ τn}+ {gn ⊗ ǫn}

{ǫn ∗ τn}

]

, λ

[

{fn}

{ǫn}

]

=

[

{λfn}

{ǫn}

]

,

λ being complex number.
The operation ⊗ and differentiation are defined by

[

{fn}

{ǫn}

]

⊗

[

{gn}

{τn}

]

=

[

{fn ⊗ gn}

{ǫn ∗ τn}

]

and D
α

[

{fn}

{ǫn}

]

=

[

{Dαfn}

{ǫn}

]

.



178 S. K. Q. Al-Omari

The operation ⊗ is extended to β1 ×k as follows: If

[

{fn}

{ǫn}

]

∈ β1 and φ ∈ k, then

[

{fn}

{ǫn}

]

⊗ φ =

[

{fn ⊗ φ}

{ǫn}

]

.

In β1, two types of convergence, δ and ∆-convergence, are defined as follows :
A sequence of Boehmians (βn) in β1 is said to be δ-convergent to a Boehmian

β in β1, denoted by βn
δ
→ β, if there exists a delta sequence (ǫk) such that

(βn ⊗ ǫk) , (β ⊗ ǫk) ∈ l
2, ∀k, n ∈ N, and

(βn ⊗ ǫk) → (β ⊗ ǫk) as n → ∞, in l2, for every k ∈ N.

The following is equivalent for the statement of δ-convergence

The sequence βn
δ
→ β (n → ∞) in β1 if and only if there is fn,k, fk ∈ l2 and ǫk ∈ ∆

such that βn =

[

{fn,k}

{ǫk}

]

, β =

[

{fk}

{ǫk}

]

and for each k ∈ N,

fn,k → fk as n → ∞ in l2.

A sequence of Boehmians (βn) in β1 is said to be ∆-convergent to a Boehmian β

in β1, denoted by βn
∆
→ β, if there exists a (ǫn) ∈ ∆ such that (βn − β) ⊗ ǫn ∈

l2, ∀n ∈ N, and (βn − β)⊗ ǫn → 0 as n → ∞ in l2.

Construction of the space β2 := β
(

l2,k, ∗,∆
)

can be similarly checked out by the
properties of ∗ given above.
The sum and multiplication by a scalar of two Boehmians in β2 := β

(

l2,k, ∗,∆
)

can be defined in a natural way

[

{fn}

{ǫn}

]

+

[

{gn}

{τn}

]

=

[

{fn ∗ τn}+ {gn ∗ ǫn}

{ǫn ∗ τn}

]

and λ

[

{fn}

{ǫn}

]

=

[

{λfn}

{ǫn}

]

, (2.7)

λ being complex number. The operation ∗ and differentiation are defined by

[

{fn}

{ǫn}

]

∗

[

{gn}

{τn}

]

=

[

{fn ∗ gn}

{ǫn ∗ τn}

]

and D
α

[

{fn}

{ǫn}

]

=

[

{Dαfn}

{ǫn}

]

.

The operation ∗ is extended to β2 × k by : If

[

{fn}

{ǫn}

]

∈ β2 and φ ∈ k, then we

have
[

{fn}

{ǫn}

]

∗ φ =

[

{fn ∗ φ}

{ǫn}

]

.

3. The generalized Whittaker integral operator

Before we get our transform be defined , we request the following convolution
theorem to be established .
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Theorem 3.1 Let {fn} ∈ l2 (0,∞) and {δn} ∈ ∆; then we have

(fn ∗ δn)
v
k,µ (p) =

(

(fn)
v
k,µ ⊗ δn

)

(p) . (3.1)

Proof For fn ∈ l2 (0,∞) and {δn} ∈ ∆, we have

(fn ∗ δn)
v
k,µ (p) =

∫ ∞

0

(px)
v
e−

1

2
pxwk,µ (px) (fn ∗ δn) (x) dx

=

∫ ∞

0

(px)v e−
1

2
pxwk,µ (px)

∫ ∞

0

fn
(

xt−1
)

t−1δn (t) dtdx

=

∫ ∞

0

δn (t)

∫ ∞

0

(px)
v
e−

1

2
pxwk,µ (px) fn

(

xt−1
)

t−1
dxdt.

By Fubini’s theorem and change of variables we get

(fn ∗ δn)
v
k,µ (p) =

∫ ∞

0

(px)
v
∫ ∞

0

(ptz)
v
e−

1

2
ptzwk,µ (ptz)dzdt. (3.2)

Hence, (3.2) gives

(fn ∗ δn)
v
k,µ (p) =

∫ ∞

0

(fn)
v
k,µ (pt) g (t) dt.

This completes the proof of the theorem.

Let β =

[

{fn}

{δn}

]

∈ β1; then in view of Theorem 3.1, we extend the Whittaker

integral operator to the space β as

w̆
v,ex
k,µ (β) :=

([

{fn}

{δn}

])v,ex

k,µ

=

[

(fn)
v
k,µ

{δn}

]

,

which is, indeed, a member of the space β2.

Theorem 3.2 The operator w̆v,ex
k,µ (.) : β

1
→ β2 is well- defined.

Proof Let

[

{fn}

{δn}

]

=

[

(gn)

{εn}

]

∈ β
1
; then by the concept of quotients of the space

β
1
we get

fn ∗ εm = gm ∗ δn,m, n ∈ N.

Hence,
(fn ∗ εm)

v
k,µ = (gm ∗ δn)

v
k,µ ,m, n ∈ N.

Therefore, Theorem 3.1 gives
(

(fn)
v
k,µ ⊗ εm

)

(p) =
(

(vm)
v
k,µ ⊗ δn

)

(p) , ∀p,m, n ∈ N.

Concept of quotients and equivalent classes in β2 imply




{

(fn)
v
k,µ

}

{δn}



 =





{

(gn)
v
k,µ

}

{εn}



 ,m, n ∈ N.
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That is
([

(fn)

{δn}

])v,ex

k,µ

=

([

(gn)

{εn}

])v,ex

k,µ

,m, n ∈ N.

This completes the proof of the theorem.
Theorem 3.3 The operator w̆v,ex

k,µ (.) : β
1
→ β2 is linear.

Proof Let

[

{fn}

{δn}

]

,

[

{gn}

{εn}

]

∈ β1 be given; then

[

{fn}

{δn}

]

+

[

{gn}

{εn}

]

=

[

{fn ∗ εn + gn ∗ δn}

{δn ∗ εn}

]

. (3.3)

By using (2.3) , Theorem 3.1 and linearity of Whittaker integral operators, (3.3)
reveals

([

{fn}

{δn}

]

+

[

{gn}

{εn}

])v,ex

k,µ

=





{

(fn)
v
k,µ ⊗ εn + (gn)

v
k,µ ⊗ δn

}

{δn ∗ εn}



 .

Hence, addition of Boehmians in β2 leads to

([

{fn}

{δn}

]

+

[

{gn}

{εn}

])v,ex

k,µ

=

([

{fn}

{δn}

])v,ex

k,µ

+

([

{gn}

{εn}

])v,ex

k,µ

.

Moreover, for given α∗ ∈ C; it easy to see that

(

α∗

[

{fn}

{δn}

])v,ex

k,µ

= α∗

([

{fn}

{δn}

])v,ex

k,µ

.

This completes the proof of the theorem.

Theorem 3.4 Let

[

{fn}

{δn}

]

∈ β
1
,

[

{fn}

{δn}

]

= 0, then

([

{fn}

{δn}

])v,ex

k,µ

= 0.

Proof of this theorem is straightforward. Details are, therefore, omitted.

Theorem 3.5 Let

[

{fn}

{δn}

]

,

[

{gn}

{εn}

]

∈ β
1
; then

([

{fn}

{δn}

]

∗

[

{gn}

{εn}

])v,ex

k,µ

=

([

{fn}

{δn}

])v,ex

k,µ

⊗

([

{gn}

{εn}

])v,ex

k,µ

in the space β2.

Proof Let

[

{fn}

{δn}

]

,

[

{gn}

{εn}

]

∈ β
1
. Then, applying ∗ to β

1
yields

([

{fn}

{δn}

]

∗

[

{gn}

{εn}

])v,ex

k,µ

=

([

{fn ∗ gn}

{δn ∗ εn}

])v,ex

k,µ

.
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Hence, by Theorem 3.1, we write

([

{fn}

{δn}

]

∗

[

{gn}

{εn}

])v,ex

k,µ

=





{

(fn ∗ gn)
v
k,µ

}

{δn ∗ εn}





=





{

(fn)
v
k,µ

}

{δn}



⊗





{

(gn)
v
k,µ

}

{εn}



 .

That is
([

{fn}

{δn}

]

∗

[

{gn}

{εn}

])v,ex

k,µ

=

([

{fn}

{δn}

])v,ex

k,µ

⊗

([

{gn}

{εn}

])v,ex

k,µ

.

The theorem has been completely proved.
Theorem 3.6 The operator w̆v,ex

k,µ (.) is compatible with the classical integral op-
erator .

Proof Let f ∈ l
2 and β be its representative in β

1
; then β = f ∗

[

{δn}

{δn}

]

=
[

f ∗ {δn}

{δn}

]

, where {δn} ∈ ∆, ∀n ∈ N. Its clear that {δn} is independent from the

representative, ∀n ∈ N. On the other hand,

w̆
v,ex
k,µ (β) =

(

f ∗

[

{δn}

{δn}

])v,ex

k,µ

=

[

(f ∗ {δn})
v
k,µ

{δn}

]

=

[

(f)
v
k,µ ∗ {δn}

{δn}

]

as the representative of the classical operator (f)vk,µ .
Hence the proof is completed.
Theorem 3.7 w̆

v,ex
k,µ (.) : β

1
→ β2 is injective.

Proof Assume that

([

{fn}

{δn}

])v,ex

k,µ

=

([

{gn}

{εn}

])v,ex

k,µ

in β2. By Theorem 3.1 we

have (fn)
v
k,µ ⊗ εm = (gn)

v
k,µ ⊗ δn. Therefore, Theorem 3.1 implies

(fn ∗ εm)
v
k,µ = (gm ∗ δn)

v
k,µ .

Hence, fn∗εm = gm∗δn. Therefore, the concept of equivalent classes of β1
suggests

[

{fn}

{δn}

]

=

[

{gn}

{εn}

]

.

This completes the proof of the theorem.
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