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On a Positive Solution for (p, q)-Laplace Equation with Nonlinear
Boundary Conditions and Indefinite Weights

Abdellah Zerouali, Belhadj Karim, Omar Chakrone, Abdelmajid Boukhsas

abstract: In the present paper, we study the existence and non-existence results
of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous
operator (p, q)-Laplacian with indefinite weights. We also prove, under appropriate
conditions, that the results are completely different from those for the usual Steklov
eigenvalue problem involving the p-Laplacian with indefinite weight. Precisely, we
show that there exists an interval of principal eigenvalues for our Steklov eigenvalue
problem.
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1. Introduction

Consider the (p, q)-Laplacian Steklov eigenvalue problem

(Pλ,µ)

{

div[A
(µ)
p,q (∇u)] = A

(µ)
p,q (u) in Ω,

〈A
(µ)
p,q (∇u), ν〉 = λ[mp(x)|u|

p−2u+ µmq(x)|u|
q−2u] on ∂Ω

where Ω is a bounded domain in R
N (N ≥ 2) with smooth boundary ∂Ω, ν is the

outward unit normal vector on ∂Ω, 〈., .〉 is the scalar product of RN , λ ∈ R, µ ≥ 0
and 1 < q < p < ∞. Let r = p, q and let N−1

r−1 < sr < ∞ if r < N and sr ≥ 1

if r ≥ N . A
(µ)
p,q (s) = |s|p−2s + µ|s|q−2s and the function weight mr ∈ Mr may be

unbounded and change sign, where Mr := {mr ∈ Lsr(∂Ω);m+
r 6≡ 0}.

The problem (Pλ,µ) comes, for example, from a general reaction diffusion system

ut = div(D(u)∇u) + c(x, u), (1.1)

2010 Mathematics Subject Classification: 35J20, 35J62, 35J70, 35P05, 35P3.

Submitted April 11, 2017. Published December 26, 2017

219
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v38i4.36661


220 A. Zerouali, B. Karim, O. Chakrone, A. Boukhsas

where D(u) = (|∇u|p−2+µ|∇u|q−2). This system has a wide range of applications
in physics and related sciences like chemical reaction design [2], biophysics [5] and
plasma physics [14]. In such applications, the function u describes a concentration,
the first term on the right-hand side of (1.1) corresponds to the diffusion with a
diffusion coefficient D(u); whereas the second one is the reaction and relates to
source and loss processes. Typically, in chemical and biological applications, the
reaction term c(x;u) has a polynomial form with respect to the concentration.

The nonhomogeneous operator (p, q)-Laplacian have been the topic of many
studies (see [6,7,13,17]). However, there are few results one the eigenvalue problems
for the (p, q)-Laplacian, we cite [3,9,10,15]. The classical eigenvalue problem for
the (p, q)-Laplacian

{

−△pu− µ△qu = λ[mp(x)|u|
p−2u+ µmq(x)|u|

q−2u] in Ω,
u = 0 on ∂Ω,

(1.2)

where △ru = div (|∇u|r−2∇u) indicate the r-Laplacian, has attracted consid-
erable attention. In [12], the authors study the problem (1.2) for domains with
boundary C2 and bounded weights. They proved, in the case where µ > 0, the
existence of an interval of eigenvalues and the existence of positive solutions in
nonresonant cases. A non-existence result is also given. In [18], A. Zerouali and
B. Karim are proved the same results by assuming the singularities on the domain
and the weights. Our purpose in this article is to extend the results of the classi-
cal eigenvalue problem involving the (p, q)-Laplacian (see for example [11,12]) and
generalize some results knouwn in the classical p-Laplacian Steklov problems (see
[4]).

We will write ‖u‖r :=
(∫

Ω
|u|rdx

)1/r
for the Lr(Ω)−norm and W 1,r(Ω) will

denote the usual Sobolev space with usual norm ‖u‖W 1,r(Ω) := (‖∇u‖rr + ‖u‖rr)
1/r.

We recall that a value λ ∈ R is an eigenvalue of problem (Pλ,µ) if and only if there
exists u ∈W 1,p(Ω)\{0} such that
∫

Ω

A(µ)
p,q (∇u)∇ϕdx+

∫

Ω

A(µ)
p,q (u)ϕdx = λ

[
∫

∂Ω

(mp(x)|u|
p−2 + µmq(x)|u|

q−2)uϕdσ

]

(1.3)
for all ϕ ∈ W 1,p(Ω), where dσ is the N − 1 dimensional Hausdorff measure and u
is then called an eigenfunction of λ.

Letting µ→ 0+, our problem (Pλ,µ) turns into the (p−1)-homogeneous problem
known as the usual weighted eigenvalue Steklov problem for the p-Laplacian with
indefinite weight mp:

(Pλ,mp
)

{

△pu = |u|p−2u in Ω,
|∇u|p−2 ∂u

∂ν = λmp(x)|u|
p−2u on ∂Ω

Moreover, after multiplying our equation (Pλ,µ) by 1/µ and then letting µ→ +∞,
we obtain the (q − 1)-homogeneous equations in:

(Pλ,mq
)

{

△qu = |u|q−2u in Ω,
|∇u|q−2 ∂u

∂ν = λmq(x)|u|
q−2u on ∂Ω
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Nonlinear Steklov eigenvalue problem (Pλ,mr
), where r = p, q and with indefi-

nite weight mr ∈ Mr have been studied by several authors, for example (see [4]).
These works proved that there exists a first eigenvalue λ1(r,mr) > 0, where

λ1(r,mr) := inf

{

1

r
‖u‖rW 1,r(Ω);u ∈W 1,r(Ω) and

1

r

∫

∂Ω

mr(x)|u|
rdσ = 1

}

, (1.4)

which is simple in the sense that two eigenfunctions corresponding to it are propor-
tional. Moreover, the corresponding first eigenfunction φ1(r,mr) can be assumed
to be positive. It was also shown in [4] that λ1(r,mr) is isolated and monotone.

This paper is divided into three sections, organized as follows. In Section 2, we
study Rayleigh quotient for our problem (Pλ,µ). In contrast to homogeneous case,
we prove that if λ1(p,mp) 6= λ1(q,mq) or φ1(p,mp) 6= kφ1(q,mq) for every k > 0,
then the infimum in Rayleigh quotient is not attained. We also show non-existence
results for positive solutions of the eigenvalue problem (Pλ,µ) formulated as The-
orem 2.5. Our existence results for positive solutions of the eigenvalue problem
(Pλ,µ) are presented in Section 3. We study the non-resonant case (Theorem 3.1)
which prove that when µ > 0 there exists an interval of positive eigenvalues for the
problem (Pλ,µ).

2. Rayleigh quotient and non-existence results

This section concerns the Rayleigh quotient and non-existence results for our
eigenvalue Steklov problem (Pλ,µ). It is inspired from [11] and [15].

Remark 2.1. We start by pointing out to find a solution for the problem (Pλ,µ) is
equivalent to seek a solution in the case µ = 1, that is to solve the problem (Pλ,1).
Indeed, if u is a solution of (Pλ,1), then multiplying equation (Pλ,1) by sp−1 for
s > 0 we deduce that v = su is a solution for problem (Pλ,µ=sp−q ).

Conversely, let u be a solution of problem (Pλ,µ). Then it follows that v = µ1/p−qu
is a solution of (Pλ,1).

2.1. Rayleigh quotient for the problem (Pλ,µ)

We introduce now the functionals A and B on W 1,p(Ω) by

A(u) :=
1

p
‖u‖pW 1,p(Ω) +

1

q
‖u‖qW 1,q(Ω) (2.1)

B(u) :=
1

p

∫

∂Ω

mp(x)|u|
pdσ +

1

q

∫

∂Ω

mq(x)|u|
qdσ (2.2)

for all u ∈W 1,p(Ω).

Proposition 2.2. (i) The functional A is well defined and sequently weakly lower
semi-continuous.
(ii) If mp ∈ Mp and mq ∈ Mq, then the functional B is also well defined and weakly
continuous.
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Proof. (i) The functional A is well defined. Indeed, since Ω bounded and q < p,
we have W 1,p(Ω) ⊂ W 1,q(Ω). Then for all u ∈ W 1,p(Ω), 1

p‖u‖
p
W 1,p(Ω) < ∞ and

1
q ‖u‖W 1,q(Ω) <∞. It follows that A(u) <∞. It is clear that A is sequently weakly
lower semi-continuous.
(ii) The functional B is also well defined. Indeed, for u ∈ W 1,p(Ω), by Hölder’s
inequality, for r = p, q and s′r = sr/(sr − 1), we obtain

1

r

∫

∂Ω

mr(x)|u|
rdσ ≤

1

r

(
∫

∂Ω

|mr(x)|
srdσ

)1/sr (∫

∂Ω

|u|rs
′

rdσ

)1−1/sr

=
1

r
‖mr‖sr,∂Ω‖u‖

r
rs′r,∂Ω

<∞,

since mr ∈ Mr and the trace embedding W 1,r(Ω) −→ Lrs′r(∂Ω) is compact.
Let us now show that B is weakly continuous. If un → u weakly in W 1,r(Ω), up to
a subsequence, un → u strongly in Lrs′r (∂Ω) and |un|

r → |u|r strongly in Ls′r(∂Ω)
with r = p, q. Hence by Hölder’s inequality, we have

|B(un)−B(u)| ≤
1

p

∣

∣

∣

∣

∫

∂Ω

mp(x)(|un|
p − |u|p)dσ

∣

∣

∣

∣

+
1

q

∣

∣

∣

∣

∫

∂Ω

mq(x)(|un|
q − |u|q)dσ

∣

∣

∣

∣

≤
1

p
‖mp‖sp,∂Ω‖|un|

p − |u|p‖s′p,∂Ω +
1

q
‖mq‖sq,∂Ω‖|un|

q − |u|q‖s′q,∂Ω

→ 0.

Thus the functional B is weakly continuous. ✷

Define now the Rayleigh quotient

λ∗ = inf

{

A(u)

B(u)
;u ∈W 1,p(Ω), B(u) > 0

}

. (2.3)

Proposition 2.3. One assumes that mp ∈ Mp and mq ∈ Mq.
If λ1(p,mp) 6= λ1(q,mq) or φ1(p,mp) 6= kφ1(q,mq), for every k > 0. Then the
infimum in (2.3) is not attained.

For the proof of Proposition 2.3, we will need to use the following lemma.

Lemma 2.4. The infimum in (2.3) verifies

λ∗ = min{λ1(p,mp), λ1(q,mq)}

Proof. For sufficiently large k > 0, using (2.1) and (2.2), we have

B(kφ1(p,mp)) = kq
(

kp−q +
1

q

∫

∂Ω

mq(x)φ
q
1(p,mp)dσ

)

> 0.
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and

A(kφ1(p,mp)) = kp
(

λ1(p,mp) +
1

q
kq−p‖φ1(p,mp)‖

q
W 1,q(Ω)

)

.

By (2.3), we find

λ∗ ≤
A(kφ1(p,mp))

B(kφ1(p,mp))

=
λ1(p,mp) +

1
qk

q−p‖φ1(p,mp)‖
q
W 1,q(Ω)

1 + 1
qk

q−p
∫

∂Ω
mq(x)φ

q
1(p,mp)dσ

→ λ1(p,mp) as k → +∞, because q < p.

It follows that λ∗ ≤ λ1(p,mp). On the other hand, we also have

λ∗ ≤
A(kφ1(q,mq))

B(kφ1(q,mq))

=
λ1(q,mq) +

1
pk

p−q‖φ1(q,mq)‖
p
W 1,p(Ω)

1 + 1
pk

p−q
∫

∂Ωmp(x)φ
p
1(q,mq)dσ

→ λ1(q,mq) as k → 0+, because q < p.

Thus, we obtain λ∗ ≤ λ1(q,mq), which implies that

λ∗ ≤ min{λ1(p,mp), λ1(q,mq)}

Conversely, suppose by contradiction that λ∗ < min{λ1(p,mp), λ1(q,mq)}. Then,
by (2.3), there exists u ∈ W 1,p(Ω) such that B(u) > 0 and

A(u)

B(u)
< min{λ1(p,mp), λ1(q,mq)}.

We distinguish three cases.
Case (i): Suppose that

∫

∂Ωmp|u|
pdσ > 0 and

∫

∂Ωmq|u|
qdσ ≤ 0. There hold

pB(u) ≤
∫

∂Ω
mp|u|

pdσ and pA(u) ≥ ‖u‖pW 1,p(Ω). Using the definition of λ1(p,mp),

we arrive at the contradiction.

min{λ1(p,mp), λ1(q,mq)} >
A(u)

B(u)
≥

‖u‖pW 1,p(Ω)
∫

∂Ωmp|u|pdσ
≥ λ1(p,mp). (2.4)

Case (ii): Suppose that
∫

∂Ω
mp|u|

pdσ ≤ 0 and
∫

∂Ω
mq|u|

qdσ > 0. Using the
definition of λ1(q,mq), we also arrive at contradiction

min{λ1(p,mp), λ1(q,mq)} >
A(u)

B(u)
≥

‖u‖qW 1,q(Ω)
∫

∂Ω
mq|u|qdσ

≥ λ1(q,mq). (2.5)

Case (iii): Suppose now that
∫

∂Ωmp|u|
pdσ > 0 and

∫

∂Ωmq|u|
qdσ > 0. It follows

from the definition of λ1(r,mr), where r = p, q that

‖u‖rW 1,r(Ω) ≥ λ1(r,mr)

∫

∂Ω

mr|u|
rdσ.
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Hence we get

A(u) ≥
λ1(p,mp)

p

∫

∂Ω

mp|u|
pdσ +

λ1(q,mq)

q

∫

∂Ω

mq|u|
qdσ

≥ min{λ1(p,mp), λ1(q,mq)}B(u).

(2.6)

Against the assumption in our reasoning by contradiction.
✷

Proof of Proposition 2.3. By contradiction, we suppose that:

there exists u ∈W 1,p(Ω) such that B(u) > 0 and
A(u)

B(u)
= λ∗.

Using Lemma 2.4, we give

A(u)

B(u)
= λ∗ = min{λ1(p,mp), λ1(q,mq)}. (2.7)

We argue by considering the three cases in the proof of Lemma 2.4.
Case (i): By (2.4), (2.7) and

∫

∂Ωmq|u|
qdσ ≤ 0, we have

λ∗ =
A(u)

B(u)
≥

‖u‖pW 1,p(Ω) +
p
q ‖u‖

q
W 1,q(Ω)

∫

∂Ωmp|u|pdσ
≥

‖u‖pW 1,p(Ω)
∫

∂Ωmp|u|pdσ
≥ λ1(p,mp) ≥ λ∗.

We deduce that

‖u‖pW 1,p(Ω) = λ1(p,mp)

∫

∂Ω

mp|u|
pdσ and ‖u‖W 1,q(Ω) = 0.

Thus u = 0. This contradicts the fact that u 6= 0.
Case (ii): similarly, By (2.5), (2.7) and

∫

∂Ω
mp|u|

pdσ ≤ 0, we get

‖u‖qW 1,q(Ω) = λ1(q,mq)

∫

∂Ω

mq|u|
qdσ and ‖u‖W 1,p(Ω) = 0.

Thus u = 0. Which contradicts u 6= 0.
Case (iii): In this case, using (2.6) and (2.7), we find

A(u) = λ∗B(u) =
λ1(p,mp)

p

∫

∂Ω

mp|u|
pdσ +

λ1(q,mq)

q

∫

∂Ω

mq|u|
qdσ.

It follows

[λ1(p,mp)− λ∗]

∫

∂Ω

mp|u|
pdσ + [λ1(q,mq)− λ∗]

∫

∂Ω

mq|u|
qdσ = 0.

Since
∫

∂Ωmp|u|
pdσ > 0,

∫

∂Ωmq|u|
qdσ > 0 and λ∗ = min{λ1(p,mp), λ1(q,mq)}, we

have
λ∗ = λ1(p,mp) = λ1(q,mq).
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We deduce that

‖u‖pW 1,p(Ω)
∫

∂Ωmp|u|pdσ
= λ1(p,mp) = λ1(q,mq) =

‖u‖qW 1,p(Ω)
∫

∂Ωmq|u|qdσ
.

Hence, the simplicity of eigenvalue λ1(r,mr) (for r = p, q), guarantees that u =
tφ1(p,mp) = sφ1(q,mq) for some t 6= 0 and s 6= 0. The hypotheses of proposition
is thus contradicted. ✷

2.2. Non-existence results

The following theorem is the main result of this section.

Theorem 2.5. One assumes that mp ∈ Mp and mq ∈ Mq.

(a) If 0 < λ < λ∗, then the problem (Pλ,1) has no non-trivial solutions.

(b) Moreover, if one of the following conditions holds

(i) λ1(p,mp) 6= λ1(q,mq);

(ii) φ1(p,mp) 6= kφ1(q,mq), for every k > 0,

then the problem (Pλ,1), with λ = λ∗ has no non-trivial solutions.

Remark 2.6. It is easy to see that if λ1(p,mp) = λ1(q,mq) and φ1(p,mp) =
kφ1(q,mq), for some k > 0, then φ1(p,mp) and φ1(q,mq) are positive solutions of
problem (Pλ,1), with λ = λ1(p,mp) = λ1(q,mq).

Proof of Theorem 2.5. Assume by contradiction that there exists a non-trivial solu-
tion u of problem (Pλ,1). Then, for every s > 0, we have that v = su is a non-trivial
solution of problem (Pλ,sp−q ) (see Remark 2.1). Choose sp−q = p/q and then act
with su as test function on the problem (Pλ,sp−q ). We arrive at

0 < pA(su) = pλB(su). (2.8)

From the estimate (2.8) and according to Lemma 2.4, we obtain

λ =
A(su)

B(su)
≥ λ∗ = min{λ1(p,mp), λ1(q,mq)}.

This contradiction yields the first assertion of the theorem.
The second part of the Theorem 2.5 follows by Proposition 2.3. ✷

3. Existence result with non-resonant case

The following theorem is our main existence result for problem (Pλ,1) (or (Pλ,µ))
in the non-resonant case. This result prove that there exists an interval of positive
eigenvalues for the problem (Pλ,1) (or (Pλ,µ), with µ > 0).
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Theorem 3.1. One supposes that mp ∈ Mp, mq ∈ Mq and λ1(p,mp) 6= λ1(q,mq).
If

min{λ1(p,mp), λ1(q,mq)} < λ < max{λ1(p,mp), λ1(q,mq)},

then the problem (Pλ,1) has at least one positive solution.

Remark 3.2. The proof of Theorem 3.1 reduces to provide a non-trivial critical
point of the functional Iλ,mp,mq

defined for all u ∈W 1,p(Ω) by

Iλ,mp,mq
(u) := A(u)− λB(u+),

where u+ = max{u, 0} and A, B are the functionals defined by (2.1) and (2.2). This
non-trivial critical point u of Iλ,mp,mq

is a non-negative solution of the problem
(Pλ,1). Indeed, inserting −u− = −max{−u, 0} as test function leads to

0 = 〈I ′λ,mp,mq
(u),−u−〉 = ‖u−‖pW 1,p(Ω) + ‖u−‖qW 1,q(Ω),

thus u− = 0. We can check that u ∈ C1,α(Ω) for some α ∈ (0, 1) (see [1]). Then
the maximum principle of Vasquez [16] can be applied to ensure positiveness of u.

The argument will be separately developed in two cases:
(a) λ1(q,mq) < λ < λ1(p,mp).
(b)λ1(p,mp) < λ < λ1(q,mq).
In case (a), we apply the minimum principle and in case (b), we use the mountain
pass theorem.

Proof of case (a). By Proposition 2.2, A is sequently weakly lower semi-
continuous and B is weakly continuous. It follows that Iλ,mp,mq

is sequently weakly
lower semi-continuous. Moreover Iλ,mp,mq

is bounded from below. Indeed for all
u ∈W 1,p(Ω), we have

Iλ,mp,mq
(u) ≥ −λB(u+) > −∞. (3.1)

It is remains to show that Iλ,mp,mq
is coercive in W 1,p(Ω).

Fix ε > 0 such that
(1 − ε)λ1(p,mp) > λ (3.2)

which is possible due to the assumption in case (a). For every u ∈ W 1,p(Ω) with
∫

∂Ω
mp(u

+)pdσ ≤ 0, through Holder’s inequality we obtain

Iλ,mp,mq
(u) ≥

1

p
‖u‖pW 1,p(Ω) +

1

q
‖u‖qW 1,q(Ω) −

λ

q

∫

∂Ω

mq(u
+)qdσ

≥
1

p
‖u‖pW 1,p(Ω) +

1

q
‖u‖qW 1,q(Ω) −

λ

q
‖mq‖Lsq (∂Ω)‖(u

+)q‖
L
s′q (∂Ω)

≥
1

p
‖u‖pW 1,p(Ω) −

λC

q
‖mq‖Lsq (∂Ω)‖u‖

q
W 1,p(Ω)

(3.3)

for u ∈W 1,p(Ω) with
∫

∂Ωmp(u
+)pdσ > 0, by (1.4) we have

‖u+‖pW 1,p(Ω) ≥ λ1(p,mp)

∫

∂Ω

mp(u
+)pdσ.
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Then, taking into account (3.2), we derive

Iλ,mp,mq
(u) ≥

ε

p
‖u‖pW 1,p(Ω) +

(1− ε)λ1(p,mp)− λ

p

∫

∂Ω

mp(u
+)pdσ

−
λ

q
‖mq‖Lsq (∂Ω)‖u

+‖q
L
s′q (∂Ω)

≥
ε

p
‖u‖pW 1,p(Ω) −

Cλ

q
‖mq‖Lsq (∂Ω)‖u‖

q
W 1,p(Ω)

(3.4)

Since q < p, it follows from (3.3) and (3.4) that Iλ,mp,mq
is coercive and bounded

from below. Consequently, by a standard result(see, e.g., [ [8],Theorem 1.1]), there
exists a global minimizer u0 of Iλ. In order to have u0 6= 0 it suffices to show
that Iλ(u0) = minW 1,p(Ω) Iλ < 0. Let ψ1 be the eigenfunction corresponding to
λ1(q,mq) that satisfies

∫

∂Ωmqψ
q
1dσ = 1. Because λ > λ1(q,mq), for sufficiently

small t > 0 it holds

Iλ,mp,mq
(tψ1) = tq

(

tp−q

p ‖ψ1‖
p
W 1,p(Ω) −

λtp−q

p

∫

∂Ω
mpψ

p
1dσ +

λ1(q,mq)−λ
q

)

< 0,

which completes the proof.
Proof of case (b). We organize the proof of this case in several lemmas. In

the sequel, we design by o(1) a quantity tending to 0 as n −→ ∞.
Lemma 3.3. Let mp ∈ Mp, mq ∈Mq. If 0 ≤ λ 6= λ1(p,mp), Then the functional
Iλ,mp,mq

satisfies the Palais-Smale condition.

Proof. Let (un) ⊂ W 1,p(Ω) be a sequence such that Iλ,mp,mq
(un) −→ c for c ∈

R and I ′λ,mp,mq
(un) −→ 0 in (W 1,p(Ω))∗ as n −→ ∞. Let us first show that the

sequence (un) is bounded inW 1,p(Ω). It is sufficient only to prove the boundedness
of ‖un‖ps′p , because using the Hölder’s inequality and the continuous embedding

W 1,p(Ω) ⊂ Lqs′q (∂Ω), we have

‖un‖
p
W 1,p(Ω) ≤ pc+ c′λ‖mp‖sp‖un‖

p
ps′p

+ c′′
pλ

q
‖mq‖sq‖un‖

q
W 1,p(Ω) (3.5)

where c′ and c′′ are the positive constants.
Suppose by contradiction that ‖un‖ps′p → +∞ and let vn := un

‖un‖ps′p

. We claim

that the sequence vn bounded in W 1,p(Ω).
Indeed, dividing (3.5) by ‖un‖

p
ps′p

we have
‖vn‖

p
W 1,p(Ω) ≤

pc

‖un‖
p
ps′p

+ C1 + C2‖vn‖
q
W 1,p(Ω), (3.6)

where the positive contants C1 and C2 are defined by C1 = c′λ‖mp‖sp and C2 =

c′′ pλq ‖mq‖sq . Since 1 < q < p, the inequality (3.6) implies the boundedness of vn

in W 1,p(Ω). for a subsequence, vn ⇀ v (weakly) in in W 1,p(Ω). By the compact
embedding. W 1,r(Ω) ⊂ Lrs′r(∂Ω), (r = p, q) we have vn → v strongly in Lrs′r(∂Ω)
(r = p, q). First we observe that v− ≡ 0 in Ω. In fact, acting with −u−n as test
function, we have

o(1)‖u−n ‖ps′p = 〈I ′λ,mp,mq
(un),−u

−
n 〉 =

1

p
‖u−n ‖

p
W 1,p(Ω)+

1

q
‖u−n ‖

q
W 1,q(Ω) ≥ ‖u−n ‖

p
W 1,p(Ω)

(3.7)
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the inequality(3.7) quarantines the boundedness of ‖v−n ‖W 1,p(Ω) and so ‖v−n ‖W 1,p(Ω) =
‖u−

n ‖
W1,p(Ω)

‖u−

n ‖ps′p

→ 0, thus v− ≡ 0, holds, hence v ≥ 0 in Ω.

Now, by taking (vn − v)/‖u−n ‖
p−1
ps′p

as test function, we have

o(1) =
〈

I ′λ,mp,mq
(un),

(vn − v)

‖u−n ‖
p−1
ps′p

〉

=
1

p

∫

Ω

|∇vn|
p−2∇vn∇(vn − v)dx +

1

q‖un‖
p−q
ps′p

∫

Ω

|∇vn|
q−2∇vn∇(vn − v)dx

+
1

p

∫

Ω

|vn|
p−2vn(vn − v)dx +

1

q‖un‖
p−q
ps′p

∫

Ω

|vn|
q−2vn(vn − v)dx

−
λ

p

∫

∂Ω

mp(v
+
n )

p−2v+n (vn − v)dσ

−
λ

q‖un‖
p−q
ps′p

∫

∂Ω

mq(v
+
n )

q−2v+n (vn − v)dσ

=
1

p

∫

Ω

|∇vn|
p−2∇vn∇(vn − v)dx +

1

p

∫

Ω

|vn|
p−2vn(vn − v)dx

−
λ

p

∫

∂Ω

mp(v
+
n )

p−2v+n (vn − v)dσ + o(1)

(3.8)

because q < p, ‖u−n ‖ps′p → +∞, vn is bounded in W 1,p(Ω) and converge to v

strongly in Lps′p(∂Ω). Thus by (3.8) and (S+) property of −∆pu + up−2u in
W 1,p(Ω), we deduce that vn → v strongly in W 1,p(Ω). For any ϕ ∈ W 1,p(Ω),
by taking ϕ

‖u−

n ‖p−1

ps′p

as test function, we obtain

o(1) =
〈

I ′λ,mp,mq
(un),

ϕ

‖un‖
p−1
ps′p

〉

=
1

p

∫

Ω

|∇vn|
p−2∇vn∇ϕdx+

1

q‖un‖
p−q
ps′p

∫

Ω

|∇vn|
q−2∇vn∇ϕdx

+
1

p

∫

Ω

|vn|
p−2vnϕdx+

1

q‖un‖
p−q
ps′p

∫

Ω

|vn|
q−2vnϕdx

−
λ

p

∫

∂Ω

mp(v
+
n )

p−2v+n ϕdσ −
λ

q‖un‖
p−q
ps′p

∫

∂Ω

mq(v
+
n )

q−2v+n ϕdσ

(3.9)

Passing to the limit in (3.9), we see that v is a non-negative and non-trivial solution
of problem (Pλ,mp

) (note v ≥ 0 and ‖v‖W 1,p(Ω) = 1). The eigenfunction v is

C1,α(Ω) for some α ∈ (0, 1) (see [1]). According to maximum principle of Vasquez,
we have v > 0 in W 1,p(Ω). This implies that λ = λ1(p,mp) because any positive
eigenvalue other than λ1(p,mp) has no positive eigenfunction. Therefore, we obtain
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a contradiction since we assumed λ 6= λ1(p,mp). Hence un is bounded in W 1,p(Ω).

For a subsequence, un ⇀ u (weakly) inW 1,p(Ω) and un → u (strongly) in Lps′p(∂Ω).
We claim now that un → u in W 1,p(Ω). As W 1,p(Ω) is reflexive and uniformly
convex, it suffices to prove that ‖un‖W 1,p(Ω) → ‖u‖W 1,p(Ω). It is clear that

o(1) =
〈

I ′λ,mp,mq
(un), un − u

〉

=
1

p

∫

Ω

|∇un|
p−2∇un∇(un − u)dx+

1

p

∫

Ω

|un|
p−2un(un − u)dx

+
1

q

∫

Ω

|∇un|
q−2∇un∇(un − u)dx+

1

q

∫

Ω

|un|
q−2un(un − u)dx+ o(1).

(3.10)

Using Hölder’s inequality and for (r = p, q), we have
∫

Ω

|∇un|
r−2∇un∇(un − u)dx+

∫

Ω

|un|
r−2un(un − u)dx

=

∫

Ω

|∇un|
rdx+

∫

Ω

|∇u|rdx−

∫

Ω

|∇un|
r−2∇unudx−

∫

Ω

|∇u|r−2∇u∇undx

=

∫

Ω

|un|
rdx+

∫

Ω

|u|rdx−

∫

Ω

|un|
r−2unudx−

∫

Ω

|u|r−2uundx

≥

∫

Ω

|∇un|
rdx+

∫

Ω

|∇u|rdx−

(
∫

Ω

|∇un|
rdx

)(r−1)/r(∫

Ω

|∇u|rdx

)1/r

+

∫

Ω

|un|
rdx+

∫

Ω

|u|rdx−

(
∫

Ω

|un|
rdx

)(r−1)/r(∫

Ω

|u|rdx

)1/r

=

(

‖un‖
r−1
W 1,r(Ω) − ‖u‖r−1

W 1,r(Ω)

)(

‖un‖W 1,r(Ω) − ‖u‖W 1,r(Ω)

)

≥ 0

(3.11)

Moreover, (3.10) and (3.11) imply that ‖un‖W 1,p(Ω) → ‖u‖W 1,p(Ω). Thus un → u
strongly in W 1,p(Ω). ✷

Lemma 3.4. Let mp ∈ Mp, mq ∈ Mq. If λ < λ1(q,mq), then there exist δ > 0
and ρ > 0 such that

Iλ(u) ≥ δ whenever ‖u‖
L

qs′q (∂Ω)
= ρ. (3.12)

To prove the Lemma 3.4, we need the following lemma.

Lemma 3.5.

X(d) :=
{

u ∈W 1,p(Ω); ‖u‖pW 1,p(Ω) ≤ d‖u‖p
L

ps′p(∂Ω)

}

(3.13)

for d > 0. Then there exists C = C(d) > 0 such that

‖u‖W 1,p(Ω) ≤ C‖u‖
L

qs′q
(∂Ω) for all u ∈ X(d).
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Proof. By way contradiction, we assume that

∀n ∈ N, ∃un ∈ X(d),
1

n
‖un‖W 1,p(Ω) > ‖un‖Lqs′q (∂Ω)

(3.14)

Set vn = un

‖un‖W1,p(Ω)
; hence vn bounded inW 1,p(Ω), then there exists a subsequence

that we still denote vn such that vn ⇀ v weakly in W 1,p(Ω). By the compact
embedding W 1,r(Ω) ⊂ Lrs′r(∂Ω)(r = p, q) we have vn → v strongly in Lrs′r (∂Ω).

By (3.14), we have ‖vn‖Lqs′q (∂Ω)
< 1

n , thus vn → 0 in Lqs′q (∂Ω). By uniqueness of

the limit we have v = 0, hence vn → 0 in Lps′p(∂Ω). As un ∈ X(d) we have

1

d
≤

‖un‖
p

L
ps′p(∂Ω)

‖un‖
p
W 1,p(Ω)

= ‖vn‖
p

L
ps′p(∂Ω)

.

Passing to the limit, we obtain a contradiction. ✷

Proof of Lemma 3.4. Let Cr the constant from embedding W 1,r(Ω) ⊂ Lrs′r(∂Ω),
where r = p, q. According to Lemma 3.5, there exists C(d) > 0 such that

‖u‖W 1,p(Ω) ≤ C(d)‖u‖Lqs′q(∂Ω) for all u ∈ X(d), (3.15)

where d such that

d > max

{

1, Cpλ‖mp‖Lsp(∂Ω), λ‖mp‖Lsp(∂Ω)

}

. (3.16)

For any u ∈ X(d) satisfying
∫

∂Ωmqu
q
+dσ ≤ 0 by (3.16) and (3.15) we have

Iλ(u) ≥
1− d

p
‖u‖pW 1,p(Ω) +

1

qCq
‖u‖q

L
qs′q(∂Ω)

+
d

p
‖u‖pW 1,p(Ω)

−
λ

p
‖mp‖Lsp (∂Ω)‖u‖

p

L
ps′p(∂Ω)

≥
1− d

p
‖u‖pW 1,p(Ω) +

1

qCq
‖u‖q

L
qs′q(∂Ω)

+
d

p
‖u‖pW 1,p(Ω)

−
Cpλ

p
‖mp‖Lsp(∂Ω)‖u‖

p
W 1,p(Ω)

≥
1− d

p
‖u‖pW 1,p(Ω) +

1

qCq
‖u‖q

L
qs′q(∂Ω)

+
(d− Cpλ‖mp‖Lsp (∂Ω))

p
‖u‖pW 1,p(Ω)

≥
(1 − d)Cp(d)

p
‖u‖p

L
qs′q(∂Ω)

+
1

qCq
‖u‖q

L
qs′q(∂Ω)

(3.17)

For any u /∈ X(d) satisfying
∫

∂Ω
mqu

q
+dσ ≤ 0 thanks to (3.13) and (3.16) we find

Iλ(u) ≥
d− λ‖mp‖Lsp(∂Ω)

p
‖u‖p

L
ps′p(∂Ω)

+
1

qCq
‖u‖q

L
qs′q(∂Ω)

≥
1

qCq
‖u‖q

L
qs′q(∂Ω)

(3.18)



On a Positive Solution for (p, q)-Laplace Equation . . . 231

If u ∈W 1,p(Ω) fulfills
∫

∂Ωmqu
q
+dσ > 0, we get

‖u‖qW 1,q(Ω) ≥ ‖u+‖
q
W 1,q(Ω) ≥ λ1(q,mq)

∫

∂Ω

mqu
q
+dσ (3.19)

Our assumption on λ enables us to fix (1 > ε > 0) with

(1− ε)λ1(q,mq) > λ. (3.20)

If in addition u /∈ X(d) then due to (3.16) and (3.20) we have the estimate

Iλ(u) ≥
d− λ‖mp‖Lsp(∂Ω)

p
‖u‖p

L
ps′p(∂Ω)

+
(1 − ε)λ1(q,mq)− λ

q

∫

∂Ω

mqu
q
+dσ

+
ε

q
‖u‖qW 1,q(Ω) ≥

ε

q
‖u‖qW 1,q(Ω) ≥

ε

qCq
‖u‖q

L
qs′q(∂Ω)

(3.21)

Finally, if u ∈ X(d) and
∫

∂Ωmqu
q
+dσ > 0, then (3.16), (3.19), (3.20) imply

Iλ(u) ≥
1− d

p
‖u‖pW 1,p(Ω) +

ε

q
‖u‖qW 1,q(Ω) +

(1− ε)λ1(q,mq)− λ

q

∫

∂Ω

mqu
q
+dσ

+
d

p
‖u‖pW 1,p(Ω)

λ‖mp‖Lsp(∂Ω)

p
‖u‖p

L
ps′p(∂Ω)

≥
(1− d)Cp(d)

p
‖u‖p

L
qs′q (∂Ω)

+
ε

q
‖u‖qW 1,q(Ω) +

d

p
‖u‖pW 1,p(Ω)

−
Cpλ‖mp‖Lsp(∂Ω)

p
‖u‖pW 1,p(Ω)

≥
(1− d)Cp(d)

p
‖u‖p

L
qs′q (∂Ω)

+
ε

qCq
‖u‖q

L
qs′q (∂Ω)

+
d− Cpλ‖mp‖Lsp (∂Ω)

p
‖u‖pW 1,p(Ω)

≥
(1− d)Cp(d)

p
‖u‖p

L
qs′q (∂Ω)

+
ε

qCq
‖u‖q

L
qs′q (∂Ω)

(3.22)

Using that q < p, the claim in (3.12) follows from (3.17), (3.18), (3.21), and (3.22).
✷

Lemma 3.6. Let mp ∈ Mp, mq ∈ Mq. If λ1(p,mp) < λ, then there exist R > 0
such that

‖Rϕ1‖Lqs′ (∂Ω) > ρ and Iλ(Rϕ1) < 0, (3.23)

where ρ > 0 is the constant in (3.12) and ϕ1 is the positive eigenfunction corre-
sponding to λ1(p,mp) satisfying

∫

∂Ω
mpϕ

p
1dσ = 1.
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Proof. Taking into account that λ > λ1(p,mp) and p > q, we claim that (3.23) is
true because for a sufficiently large R > 0 we have

Iλ(Rϕ1)

Rp
=
λ1(p,mp)− λ

1
+

1

qRp−q

(

‖ϕ1‖
q
W 1,q(Ω) −

∫

∂Ω

mqϕ
q
1dσ

)

< 0.

✷

Recalling that Iλ,mp,mq
satisfies the Palais-Smale condition by virtue of Lemma

3.3, the properties pointed out in (3.12) and (3.23) allow us to apply the mountain
pass theorem, which guarantees the existence of a critical value c ≥ δ of Iλ, with
δ > 0 in (3.12), namely

c := inf
γ∈Σ

max
t∈[0,1]

Iλ(γ(t)),

Σ :=
{

γ ∈ C([0, 1],W 1,p(Ω)); γ(0) = 0, γ(1) = Rϕ1

}

.

This completes the proof of Theorem 3.1.

Acknowledgments

The autors would like to thank the anonymous referee for valuable suggestions.

References

1. Anane, A., Chakrone, O., Moradi, N., Regularity of the solutions to a nonlinear boundary
problem with indefinite weight, Bol. Soc. Paran. Mat. V. 29 1, 17–23, (2011).

2. Aris, R., Mathematical Modelling Techniques, Research Notes in Mathematics, Pitman, Lon-
don, (1978).

3. Benouhiba, N., Belyacine, Z., On the solutions of (p, q)-Laplacian problem at resonance,
Nonlinear Anal. 77, 74–81, (2013).

4. Bonder, J.F., Rossi, J.D., A nonlinear eigenvalue problem with indefinite weights related to
the Sobolev trace embedding, Publ. Mat. 46, 221–235, (2002).

5. Fife, P.C., Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in
Biomathematics, 28, Springer Verlag, Berlin-New York, (1979).

6. Li, G., Zhang, G., Multiple solutions for the (p, q)-Laplacian problem with critical exponent,
Acta Mathematica Scientia, 29B, No.4, 903–918, (2009).

7. Marano, S.A., Papageorgiou, N.S., Constant-sign and nodal solutions of coercive (p, q)-
Laplacian problems, Nonlinear Anal. TMA, 77, 118–129, (2013).

8. Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian System, Springer-Verlag,
New York, (1989).

9. Micheletti, A. M., Visetti, D., An eigenvalue problem for a quasilinear elliptic field equation,
J. Differential Equations, 184 2 , 299–320, (2002).

10. Mihailescu, M., An eigenvalue problem possessing a continuous family of eigenvalues plus
an isolated eigenvalue, Commun. Pure Appl. Anal. 10, 701–708, (2011).

11. Motreanu, D., Tanaka, M., On a positive solution for (p, q)-Laplace equation with indeffinite
weight Minimax Theory Appl. 1, 1–18, (2015).

12. Motreanu, D., M. Tanaka, M. Generalized eigenvalue problems of nonho-mogeneous elliptic
operators and their application, Pacific J. Math. 265, 151–184, (2013).



On a Positive Solution for (p, q)-Laplace Equation . . . 233

13. Sidiropoulos, N.E., Existence of solutions to indefinite quasilinear elliptic problems of (p, q)-
Laplacian type, Elect. J. Diff. Equ., 162, 1–23, (2010).

14. Struwe, M., Variational Methods, Applications to Nonlinear Partial Differential Equations
and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, New York, (1996).

15. Tanaka, M., Generalized eigenvalue problems for (p, q)-Laplace equation with indefinite
weight, J. Math. Anal. Appl., Vol. 419(2), 1181–1192, (2014).

16. Vazquez, J.L., A strong maximum principle for some quasi-linear elliptic equations,
Appl.Math. Optim., 191–202, (1984).

17. Yin, H., Yang, Z., A class of (p, q)-Laplacian type equation with noncaveconvex nonlinearities
in bounded domain, J. Math. Anal. Appl. 382, 843–855, (2011).

18. Zerouali, A., Karim, B., Existence and non-existence of a positive solution for (p, q)-Laplacian
with singular weights Bol. Soc. Paran. Mat. (3s.) v. 34 2, 147–167, (2016).

Abdellah Zerouali

Centre Régional des Métiers de l’Éducation et de la Formation, Oujda,
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