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1. Introduction

Let © be an open subset of RY with N > 2 and let f be a distribution on .
We consider the Poisson equation

Au=f in Q. (1.1)

The regularity of solution u of the equation(1.1), in relation to the regularity of
the second member f is one of the classical questions concerning this equation (cf
.[6-9]).

In particular, it’s well known that if u is a solution de (1.1) then:

(Ry1) If f is a distribution of order 1 (resp. 0), then the solution u € L} (Q) for all
p < 54 (vesp. w e L, (Q) for all p < 25 and §% € L] () for all ¢ < ).

(Rg) If f € Lj,.(Q) with r > & (resp. r > N), then u is continuous (resp. contin-

loc

uously differentiable) on €.

(Rs) If f € LP(Q), then 527 € LP(Q) for all 1 < p < oo,
In the case where p = 1 (resp. p = 0o) the second derivatives of u are in general
not integrable (resp. bounded) in €.

These results are been generalized by E.Azroul,A.Benkirane and M.Tienari in the
setting of Orlicz-spaces( [3])Las(Q2), where the exponent function #? is replaced by

an N-function M convex even and nondecreasing .
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In this work, we propose to generalize the previous results ([3]) to the case of the
spaces of Musielak-Orlicz L, (§2),where ¢(x,t) is an N-function with respect to ¢
and measurable function with respect to x.

The main difficulty in our generalization lies in the fact that the function of
Musielak-Orlicze depends also on the space variable, which makes impossible the
use of classical operators of translation and convolution. Our results allow us,
in particular, to obtain results of regularity in the case of Lebesgue spaces with
variable exponents, see corollaries (3.1) and (3.2).

This work is organized as follows: In Section 2 we recall some will-know prelim-
inaries ,and results of Orlicz-spaces, Musielak -Orlicz Sobolev Spaces. In Section 3
we prove the analogous regularity result of (R1) and (R2) in the general setting of
Musielak-Orlicz spaces. Final section is devoted to obtain in the radial case some
regularity results on the second derivatives wu,

2. Preliminary

2.1- Let M : R™ — RT be an N-function (i.e. M is continuous, strictly in-
creasing, convex with M(t) > 0 for t > 0, @ — 0 (resp. +o0) as t — 0T (resp.
t — 400).

Equivalently, M admits the representation M (t) = fot a(s)ds where the function
a: Rt — RT is nondecreasing, right continuous, with a(0) =0, a(t) > 0 for t > 0
and a(t) — 400 as t — +o0.

2.2- Let © be an open subset of RY and M an N-function. The Orlicz class
K () is defined as the set of real-valued measurable function « on Q such that

AMMMW<M

The Orlicz-space Ly (€2) is the set of (equivalence classes of) real valued measur-
able functions u such that § € Kp/(9), for A = A(u) > 0.

Lemma 2.1. [10] Let M be an N-function and u be an element of Ly (RY) with
2u € Ky (RY) and Tyu the translation of u, i.e. Tyu(z) = u(x —y), then

M(Tyu —u)dz — 0 as |y| =0
RN

2.3- Musielak-Orlicz function
Let © be an open set in R and let ¢ be a real-valued function defined on Q x R
and satisfying the following conditions

a) ¢(x,.) is an N-function for all x € Q.

b) ¢(.,t) is a measurable function for all ¢ > 0.
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A function ¢ which satisfies the conditions a) and b) is called Musielak-Orlicz
function.

In this section we define Lebesgue spaces with variable exponents, LP().
They differ classical LP spaces in that the exponent p is not constant but a function
from © to [1, +]
We define P(€2) to be the set of all measurable function p : Q@ — (1, +00)
p € P(Q) are called variable exponents on €.
We define p_ = essinf,cop(z) and pt = esssup,cq p(z).Ifp™ < +oo,then we can
p a bounded variable exponent .

For a Musielak-Orlicz function ¢ we put ¢, (t) = ¢(z,t) and we associate its
nonnegative reciprocal function o !, with respect to ¢ that is

o, ez, 1) = oz, 0, (1) = t.

The Musielak-Orlicz function ¢ is said to satisfy the As-condition if for some & > 0
and a non negative function A integrable in ), we have

o(z,2t) < ko(x,t) + h(z) for all x € Q and ¢t > 0. (2.1)

When (2.1) holds only for ¢t > ¢y > 0, then ¢ is said to satisfy A near infinity.

Let ¢ and v be two Musielak-Orlicz functions, we say that ¢ dominate v, and
we write 7 < ¢, near infinity (resp. globally) if there exist two positive constants
c and tg such that for almost all z € Q

v(z,t) < @(x,ct) for all t > tg, (resp. for allt > 0ie. tg=0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity), and
we write 7 << ¢, if for every positive constant ¢ we have

lim <sup 'y(z,ct)> =0, (resp. tlim <sup ’y(z,ct)> =0).

t—0 e QD(.’L',t) 0\ zeQ QD(.’L',t)

2.4~ Musielak-Orlicz spaces
We define the functional

poa(tt) = / o, [u(z))dz

where u : 2 — R is a Lebesgue measurable function.
The set

K,(Q) = {u 0 —R /p%g(u) < +oo}
is called the generalized Orlicz class.

The Musielak-Orlicz space (or the generalized Orlicz spaces) L, (f2) is the vector
space generated by K, (), that is, L,({) is the smallest linear space containing
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the set K, ().
Equivalently

L,(Q) = {u Q—R /p%Q(%) < 400, for some A > 0}.

If p € P(Q) ,the spaces LPL) fit into the framework of Musielak-Olicz spaces ,then
we have:

Lp(')(Q) — {u Q- R/ (|_§|)p(z)d$ < +00, for some A > O}
Q

The Musielak-Orlicz function complementary to ¢ in the sense of Young with
respect to the variable t, is defined by

¢ (z,8) = sup {st —p(z,t)}.

We define in the space L, () the following norm

lullo.cr = inf {)\ > 0//990(:5, @)dw < 1}.

Let E,(Q2) denote the closure in L, (f2) of the space of function u, which
are bounded on §2 and have bounded support in €2, it is a separable space and
(Bpr (@) = Ly (Q).(see [15]

We say that a sequence of functions u, € L,(€2) is modular convergent to u €
L, () if there exists a constant A > 0 such that

. Up — U
lim p%Q(T) =0.

n—oo

For any fixed nonnegative integer m we define
W™L,(Q) = {u € L,(Q) :V|a| <m, D € Lw(Q)}.

and
W™ME,(Q) = {u € E,(Q) :V]a] <m, D e EW(Q)}.

where a = (ay, ..., a,) with nonnegative integers o, |a| = |a1|+ ...+ |an| and D%
denote the distributional derivatives. The space W™ L (f2) is called the Musielak-
Orlicz-Sobolev space.

Let

Pyalu) = Z P02 (Dau) and [lul|gq = inf {)\ >0: ﬁw79(§) < 1}

la|<m
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for u € W™ L,(f2), these functionals are a convex modular and a norm on W™ L (12),
respectively, and the pair (Wme(Q), I |\$Q) is a Banach space(see [15]) if ¢ sat-
isfies the following condition :

there exist a constant ¢ > 0 such that insf2 o(x,1) >c. (2.2)
e

The space W™ L, () will always be identified to a subspace of the product
H|a\§m L,(Q2) =1IL,, this subspace is o(IIL,, IIE+) closed.
We denote by D(2) the space of infinitely smooth functions with compact support
in Q and by D(Q) the restriction of D(R™) on €.
Let Wi L, (§2) be the o(IIL,, IIE,+) closure of D(§2) in W™ L,(£2).
Let W™E, () the space of functions u such that v and its distribution derivatives
up to order m lie to E,(2), and W{"E,(2) is the (norm) closure of D(f2) in
W™ L, (82).
The following spaces of distributions will also be used :

WL, (Q) = {f eD'(Q); f= Y (=)D fy with fo € Ly (Q)}.
la|<m

and

W "E,. () = {f eD'(Q); f= Y (-)D*f, with fo € EW(Q)}.
laf<m

We say that a sequence of functions u,, € W™L,(f2) is modular convergent to
u € W™L,(Q) if there exists a constant k£ > 0 such that

Up — U

For a Musielak-Orlicz function ¢, the following inequality is called the Young in-
equality:

ts < o(z,t) + " (x,5), Vt,s>0,z€. (2.3)

For a Musielak-Orlicz function ¢, let u € L,(Q) and v € L-(£2), then we have
the Holder inequality

< 2|lullg0lvller 0 (2.4)

‘ /Q w(@)o(x)ds

Let us define:
E?(Q) = {f € L,(Q): / oz, A f)dz < 400,V > 0}
Q

Remark 2.2. [7] The set E¥ is a closed subset of L.
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Definition 2.3. A Musielak-Orlicz function o is called locally integrable on § if:
Jo (@, txg)de < 400, for all t > 0 and all measurable set E C Q with mes(E) <
+00.

Theorem 2.4. [7] Let ¢ be a Musielak-Orlicz function locally integrable and let S
be the set of simple functions then EHHV’ = E?(Q).

Remark 2.5. If Q) is of finite measure and ¢ a Musielak-Orlicz function locally
integrable then

B#(Q) = B,(Q)

Indeed: let f be a bounded function with compact support in € then:
YA >0,/ (@ Al f)de < [g, ¢ 9@ Al flloc)dz < +o0, thus f € E¥(Q)
So E,(Q) C E¥(Q2) ( Remark 2.2).

Since mes(2) < +oo then S C E,(2) (S be the set of simple functions)
= 5 C E,(Q)
According to the theorem 2.1, we have £¥ C E,. So,

E?(Q) = E,(Q)
We put: Cy(2)={the continuous function with compact support contained in 2}

Corollary 2.6. If Q) is of finite measure and p is a Musielak-Orlicz function
satisfies the condition:

there existe M an N — function suchthat o(x,t) < M(t) Ve e Q,Vt>0 (2.5)

then
Co(Q2) = E,(Q)

Indeed: Firsty by (2.5) ,we get:
Let t > 0,for allK measurable set,with mes(K) < +00,

/ oz, tx g )dr < / M(t)dx =t -mes(K) < 400
Q K

So ¢ locally integrable ,then E,(Q) = E¥(Q) = S, let u € E,(2) and let € > 0,
Js € S such that ||u — s||, < 5. Since mes(Q) < 400, then mes(Supp s) < 400,
we may also assume that s(z) = 0, for all z € Q°. Applying Lusin’s Theorem, we
obtain a function ¢ € Cy(f2) such that :

|o(x)] < ||s|l  for all z € Q

and
mes{z € Q, ¢(z) # s(2)} < ——
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Then

4|5 0o
/ o, sl
e {(2€9Q,5(2)£b(2)} <

4[sllo
/ arclsl
{zeQ,s(x)#d(x)} €

A

Ydr < 1

Consequently [|s — ||, < 5. It follows that

lu—¢l, <e.
In the papier we assume that ¢* satisfies the condition:

there exists N an N — function such that ¢*(z,t) < N(t) Ve e QVi>0
(2.6)
Generalized Holder’s inequality:
A function v locally integrable on © with mes(€Q) < 400, belong to L, iff there
exists ¢ > 0 such that

| / vedz]| < cllé]

2.5- We define the Newtonian Py(.) on RY — {0} by

o0 forall &€ Cy(Q) (2.7)

llig v =1
Pr(e) = Py(al) = § led i v
where Ky = (2 — N)oy and oy is the measure of ¥ = {O’ = (01,02, .....,0N) €
RN:|o| = (62 + 02+ ...+ 0%)% = 1}.
The function Py(.) which is locally integrable, is the elementary solution of the
Poisson equation

APN =0 on RN
where § is the Dirac measure. It’s easy to prove that :

6PN X, .
— = (1< <N
Ox;  onlx|V (l=isN)
and
For N =1, P(x) and %;z) lie L7 (R), for 1 < p < o0;
For N =2, Py(z) € LY (R?) (resp. 61;2—96(;”) € Lioe(R?)), for all p < oo (resp. p < 2);
For N > 3, Py(z) € LT (RY) (resp. 9Pn(@) ¢ pp (RNY)), for all p < 5 (resp.

ox; loc
N
P < w7)

Definition 2.7. [6] Let f be a distribution on RN with compact support. The
distribution P.N(f) = Py * f is called the Newtonian potential of f.

In particular, Py is the Newtonian potential of § and each distribution u with
compact support is the Newtonian potential of its Laplacian.
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3. Regularity of the solution and its first derivatives
Lemma 3.1. Let Q be an open of RN and let ¢ be a Musielak-Orlicz function.
If u, — u (mod) in L,(Q2) then
Up - f = u-f in LYQ)  for all f € Ly(9Q).

Proof. Let f € L+ (), then there exists a constant A; > 0 such that

e

o @ ) € pio)
1

also, there exists a constant A\ > 0 such that

. 2ty — u)

Pz, =——=) — 0 in LY(Q) as n — 400
2

which implies that there exists a subsequence (uy, ) such that

2(unk — u)

" )—0

o(z,
as ni — +00, (i.e up, — u a.e in Q as ny — +00) and

2(Up, —u

ol =) <
2

a.e in Q for some hy(z) € L'(Q).

On the other hand, using the convexity of ¢ we get

2(tp,, — u) 1 2u
p(z, f) + 5%0(@7 N
<

Un,,

p(z, 3 ) <

2

)

shi(@) + (@, B).

| =

S

for A > Ao such that o(z,

) € LY(Q) we have p(z, “3£)
We put h(z) = 1[hi(z) + ¢

z,2%)] then

>

= &
—
8
-~

<A (@, h(x)) -

|/ ()]
A

By virtue of Lebesgue theorem we get

= Up,, -

< i)+t L e i)

Up, - [ —>u-f in LYQ).

Finally, we conclude the result for the original sequence (u,) by a standard con-
tradiction argument. In fact: If we assume that u,- f does not converge to v - f in
LY (Q) (i.e) there exists § > 0 such that for all m, there exists n,, > m such that
[tn,, - f—u- flli > J, then we can extract a subsequence (uy,) such that

||Unm~f7u-f||1>5, VYm > 0
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on the other hand, we have

2(tn,, — u))

N — 0in LY(Q) as m — 4o0.
2

p(z,
Similarly, we can extract a subsequence of u,,  (still denoted by u,,, ) such that
Up,, - f—u-fin LY() as m — +oo i.e. there exists mg > 0 such that Vm > my
we have |[uy,, - f —u- f|l1 < (contradiction). O

Definition 3.2. Let ¢ be a Musielak-Orlicz function defined on Q x RT, we say
that ¢ satisfies the locally constant condition if for almost every x € €, I, (
Neighborhood of x) such that p(z,t) = p(x,t), Yz € ¥, and Vt > 0.

Definition 3.3. Let ¢ be a Musielak-Orlicz function defined on Q@ x RY. We say
that ¢ satisfies the conditions (x) (resp (xx)) if there is a function ¢, defined on
R x RY such that: o(z,t) = o (||z]|,t), Vo € Q and Vt > 0. (resp condition (x)
and Va1, xe € Q such that ||x1|| < [|z2] = ¢1(|lz1]l,t) = o1 (||22|l, ), VE >0 ).

Lemma 3.4. Let ¢ be a Musielak-Orlicz function and let g € LfPOC(RN)

1- If f is a Radon measure on RN with compact support, ¢ satisfies the condition
(%) and g is radiale, decreasing with respect to ||z||, then the convolution g f is
a function which lies in Lg’c(RN).

2- If f € Ly~ (RN with compact support and o satisfying the locally constant
condition then g * f is continuous.

Proof. 1)- Let ro > 0 such that suppf C B(0,70). We denote by u the variation of
f, using the Lebesgue decomposition theorem or theorem of Rdon-Nikodym

we can write f = ¢ -y, where ¢ is a Borel function taking the values +1 or —1.
Let r > 0, we have

/B(O,r)

ges@las = [ ([ o vaw]e

< [ ] Jolo-pewliut)
B(0,r) RN

ubini

el /_ du(y)/ g(z)‘dw
B(0,r0) B(y,r)

< /_ dpu(y))( /_
B(0,r0) B(0,r+7r0)

Taking ¢ a continuous function on RY with a support in B(0,7), we have

<g*f,§>

A

g(m)‘dm) < 400

/ g% F(@)€(x)dz
B(0,r)

B /B(O,T) (/RN g9(x —y)df (y))&(x)dx
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then
<oefex] = f / (2~ 9)=()|dnw)) |e@)]da
B
Fubznz
/_ ww [ ot )Je@)o
B(Oro B(0,r)
g\r —y
< | du(y)(/ o(z, M)dfc
B(0,r0) B(0,r) gl 0, B(0,r+710)
+/ €@ )d:z:)
B(Or) Hnga ,B(0,r)
glx
- f / onlllo +yll, =2y
B(0,r0) B(— yr) || |<,D,B(O,r+r0)
+/ €@ )d:z:)
B(Or) Hnga ,B(0,r)
g\xr
< /_ / or(lz+yl, LDy,
B(0,r0) Z+ H ||<p B(0,r+rg)
g
+/ orlllo +yll, =2 g
Z— || |<10,B(07‘+7‘0)
+/ €@ )d:z:)
B(Or) Hnga ,B(0,r)
lg(z)]
< f D[ el o Sy
B(0, 7‘0) B(0,r+70) ”gHzp,B(O,r-l-ro)
/ €@ )dz)
(OT) Hﬁ”w ,B(0,r)
< 3 / d H H B ’ 3.1
( B(0,0) u(y)) g ©,B(0,r+7r0) ¢ »*,B(0,r) (3.1)
where
€= HgHLp,E(O,TJrTo) 5‘ ©*,B(0,r)
and

Z* = B(~y.r)(Wlz +yll < |2}, 27 = Bl=y,r) [ Wllz +yl > ll=]}.

Hence by using (2.7), we deduce that g * f € LI°(RY). 2)- We will study the

continuity of g * f at a1, let 79 > 0 such that suppf C B(0, 7o)
For R =1 + |z1| + 1, we have

5 f (1) = 55+ (@) s/B(OR) @+ a2 —a1) = S5 @)1 f @y - a)|de

g
<L T GR)) = el — )
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(a.e zo € B(x1,1))
In order to facilitate the proof, we can assume that ¢ is locally constant all over
on B(0, R) (otherwise we take B(0, R) \ A, with mes(A) = 0). So, Vy € B(0, R),
3 ry, > 0, such that ¢(z,t) = ¢(y,t), Vz € B(y,ry) and ¥ ¢ > 0, then we have
B(0,R) C Uyeﬁ(o,R) B(y,ry).
Since F(O, R) is compact then there exists y1,y2,...,yn and 71,ra,...1, such that:

n

B(0,R) | B(yi, r4)

i=1

(we denote r; instead of 7y, ).
We put: M;(t) = ¢(y;,t) (it is an N-function), then Vi € {1,....,n}, I\; > 0 such

that
/ M2 e = s 9@ 4 < oo,
B(yi,ri) Ai B(yi,ri) i

Taking A" = max;e(1,.. n} As we have 5% € Ky, (B(yi,ri)), Vi € {1,....,n} and
Fto.m 90 Ta () @) — =@z < S0y fy Mil[Tor—aa(5)(@) -
7 (@))dx

Hence by Lemma 2.1 we have

g g
Ty oy () (@) — L (2))dz — 0
Lo 8 Ees G — S @de — 0 as a2

since f(x1 —.) € Ly« (B(0, R)), then by Lemma 3.1, we get

g g
Tor—ao(=5) (@) — = (@)||f(z1 — 2)|de — 0 as xz2 — w1,
L T 5500 = 5 @I =) 2

(i.e) Ve > 0, 3n > 0 such that |z1 — z2| <n = |55 * f(71) — 55 * f(22)| < 55=
then Ve > 0, 3n > 0 such that |1 — x2| <np = |g* f(z1) — g * f(x2)] < e. O

Example 3.5. Let Q) = U?:l Q; such that Q; are disjoint opens and let M; be an
N-function Vi € {1,2,..,n}. Then the Musielak-Orlicz function defined by o(x,t) =
S Mi(t)xq, () is locally constant.

Definition 3.6. Let  be a Musielak-Orlicz function defined on QxR by p(x,t) =
o1 (||z]], t) such that ¢, defined on RT x R+. We say that ¢ satisfies the property

(1) (resp (P2)) if

Remark 3.7. (P,) = (Py)
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Indeed: we put r = (%)ﬁ, then t = TN%Z and dt = —ﬁ,ﬁ% dr. We have

1
1
_ N-1
dt = (N—Q)/O r @1(T,m)d?‘

and

1
1
_ N-—1
dt = (N - 1)/0 r Sol(ra m)dra

since 0 < r < 1 then (2)¥=2 < (1)¥=1. On the other hand, since ¢, is nonde-
creasing for the second variable then

1 1
1 1

/ N (r, — 5 )dr < / Nl (r, ——)dr

0 r 0 r

So

1

/+oo wl((%)N]:727t) N -2 /+°° o1 ((5)1,1)

dt < —Ldt.

N “N-1 R

~

—

+
2

Theorem 3.8. Let Q be an open subset of RY (N > 3), f be a distribution on
Q and u the solution of the equation (1.1). We assume that the Musielak-Orlicz
function ¢ is satisfied the following condition:

1f D CQ isanopenboundedthen, / oz, 1)dr < 400 (3.2)
D

1)- Assume that @ satisfies the condition (xx).

a)- If ord(f) =0, then u € Lf;’c(Q) (resp g—;‘i € Lg’c(ﬂ)) if ¢ satisfying (Py) (resp.
if ¢ satisfying (Py)).

b)- If ord(f) = 1, then u € LI?°(Q) if ¢ satisfying (Ps).

2)- Assume that ¢ satisfies the locally constant condition

((i.e) a.e x € Q T, (Neighborhood of x) such that ¢(z,t) = @(x,t) = My(t)
Vz € ,,Vt > 0)

c)-If f € prof(ﬂ) and f+oo Mo(t)_ gt < oo then u is continuous.

N
1 ANz

d)- If f € Lf:f(ﬂ) and f1+oo ﬁ’ﬁ dt < +00 then u is continuously differentiable.
t N—-1

Proof. Given an open € such that Q; C Q and o € D(Q) such that ¢ = 1 on

;. Consider the functions Fy = of and F; = A(ou) — Fy. Let up and u; be

the Newtonian potential of Fy and F} respectively. We have ug = Py * Fy and

u; = Py x F1 = Py * (A(ou)) — Py * Fy, then

o+ u1 = Py x (A(pu)) = u on Q.

Moreover u; is harmonic on € (because Fi = 0 on 1), and so ug and v have similar
regularity (locally), then we can assume that: Q = RY and f is a distribution with
compact support and u = P - N(f).



REGULARITY OF SOLUTIONS TO THE POISSON EQUATION 185

If ord(f) <1 then f = f0+2iv:1 37’; where f(0 < k < N ) are measures with
compact support.

1-a)- Assume that Ord(f) =0 ie. f = fo. If ¢ satisfies (P;), then
loc/mN
Py € LI°(RY)

Indeed, for all real R > 0, we have

1
/ (. ko Py (2))de / (@, Ve
B(0,R) |z|<R ||

R
1
N—1

= ——)do |d

/0 T (/Etp(ra, rN*Q) 0‘) r

n 1

O’N/ erlgpl(r, —N_2)dr

0 T‘

we put t = TN% and r = R then ¢t = ﬁ and dt = fﬁ(}ldr. We have

1\ —1t=

o too ¢y (?)N72’t

/ o(z, Ky Py (x))dx = N—NQ/ Q
B(0,R) -

s dt
If R <1, then
/ oo, KnPy(o))de = = /+OO wtﬁ
B(0,R) N -2 N A+
< Naf2 /1+°° <P1(;1%Jr):1:22,t) dt < 400

If R > 1, we have

oo o ((.1)
/ — o dt
1 t1+m

RN —2

Loa(BFE) e (B0
[ s [

.
RN—2

L+ 1>

)

1 ~

RN -2 PN 1 N=—2
1

1 1
‘/’1((%) 72775) ‘101((1)1\772 1)
Wehave I, = [*, " gt N gy
RN-2

We put: r = (%)Nﬁ2 then t = = (r=0=t — +00) and dt = — 5=3dr.
So

N1

R
— N = (N — 2) TN_1S01(T, 1)d7‘
1 _ t1+N—2 1

N —2
= / o(x,1)dx < 400
B(1,R)

ON
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where B(1, R) = {x eRV/1 < |jz]| < R} then we find,

oo o (Lywt
/, ¢(z, KyPy(2))de < /ﬁ oz, 1)de + “N't/ w9 2, t)
B(0,r) B(1,R) N-2/,

< +00

by using Lemma 3.4, we are getting u = Py * f = Py * fg € proc(RN). Similarly,
if  satisfies (P2) then

0PN
axi

loc/mN .
€ L°(R™) forall 1<i<N

Indeed, for all real R > 0 we have

0PN 1
paon G @t < [ ple e
/B(O,R) O; B(0,R) 2N -1
R 1
= UN/ N (r, — 7 )dr-
0 T
Pu‘ct:TN—l,1 thenr:R:t:ﬁ,(r%O:t%—i—oo) anddt:—J\ﬁldr

R 400 l)Nl—l t
_ 1 ON (pl((t ; )
N—1 _ 7
O’N/O o (1 TNfl)dr— Nfl/ dt

N
=T tHwT
If R < 1,then
Py on [T e ()7L
d t dt
/B(O R) gp(x?o-N| axi (x)|) o= N -1 /RNII t1+NZ\11
+o00 1 L
ON 01((3)7-1,1)
< Nfl/l R dt < 400
If R>1, we get
1
0Py oN /1 901((%)’“1,15)
d dt
/ ool < B
Lo /+°° Pr((F)7T.0)
N-1J/; At R
< o(z, 1)dx
B(1,R)
1
Lo [Tal@T,

N_-1), R
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On the other hand: u:PN*fz%:PN*%_aPN*f By Lemma 3.4, we
have
Ju

locmN
oz, € Lo (R™).

b)- Assume that: ord(f) = 1 and ¢ satisfies (P2) we have

B
f= f0+z fk

and

0Py € LI°(RY), for all k € {1,...., N}

ka
and

P
uk—PN*g—SJZZ— %xN % fr, for all k € {1,....,N}.

By Lemma 3.4 uy € LfPOC(RN),Vk: € {1,...,N}. Since (P,) = (Py), then Py €
LI%(RN) = ug € LI(RN). So u =g+ Y, ur € Lig*(RN).

2)-We assume that ¢ is locally constant all over on B(0, R) (otherise,we take
B(0, R) \ Asuch that mes(A) = 0). Since B(0, R) is compact then 3 y1,y2,...,ym €

B(0,R) and r1 > 0,9 > 0,....,r,, > 0 such that:

B(0,R) C B(0,R) C | J B(yi,mi).
i=1
¢)-Since [, IMf—'(i)dt < +o0 then Py € L(RYN). Indeed, for all real R > 0 we
TN =
have

/ o(z, Ky Py (z))de < Z / M, (K Py)da
B(0,R) B(yi,ri)
lyi|+ri N1 1
= UNZ/| | T Myl(m)dT‘
i=1 " 1¥i
S e Myi(t)
s Z 1 t1+N112 dt
=17 (g1 +rpN -2
< +0o0

moreover u = Py * f then by Lemma 3.4, we conclude that u is continuous.
d)- Since [, 2L at < fo0 then 22 € LIo¢(RN), Vi € {1,2, ..., N'}. Indeed for

1 N
t +N—T
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all real R > 0 we have:

OPy m/ dPy
r,o de < M,, da
Lo el gt < 3 [ M eal G @)

1
< (——)dz
Z/ Blyirs) 7! $|N 1
|yi|+ri N1 1
= O'NZ/ ‘ T Myl(m)dr
i=1"Y1Yi
Tt M, (t
< Hyilgv)dt
i1 T b N
< 400
we have 5 o7 op
U N .
=P = Y 1,2,..,.N
alﬂi N*alﬂi 8361 *fa ZG() DRER] )

ou

then by using Lemma 3.4, we have 5* is continuous, Vi € {1.2,..N},

On the other hand:
+oo M +oo
/ ()dt<+ é/ ()dt<+oo
1

t1+N +v—=

then by Lemma 3.4 v = Py * f is continuous consequently u is continuously differ-

entiable.

Corollary 3.9. Let Q be an open subest of RN(N > 3),f be a distribution on
and u the solution of the equation (1.1). Let p € P(Q) is radial decreasing with
resp to ||z|| (i.e): There is a function v : RT — (1,+00) such that p(x) = v(||z||)

and p_ = essinfcq p(z) > 1 then:
1-if ord(f) = 0 then u € Lp(')(Q)(Tesp 66;‘ € Lfo(c))( 0)) if

] loc
+o0 t”((%)Nﬁ)

1 e dt < 400
(o)
(Tespfl #Tdt < +00)
+oo ( v )
2-if ord(f) =1 then u € Lfoc )if ] 7dt < 400

Example 3.10. We consider the Musielak-Orlicz functions defined on (RT)* x R :

N

tv—=Tt N
ng(T,t):T(m‘i‘l), 1<04<N72, N >2

gt

N
¢1(T7t):t7a(rl\f——l+1)’ 1<Oé<m, N >1
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the functions ¢ (resp. &) satisfies the property (P1) (resp. (P2) ). We put
o(z,t) = p(|z],t) and ¢(z,t) = ¢,(||z|,t) defined on Q x Rt then : ©* and
o" are locally integrable. Indeed:

oo 1 o0 N
/* a0 / B G
1 v 1 w2 o
+o0 1
<o o
1 ta—1
-1 ¢
< 2 lim
e—too | (o — 1)t ]
2 <+
= — 00
a—1
and
06 (H)v 1) oo 4w HL(g 4 1)
Yy = R
1 T 1 thwT o
+o0 1
< 2/ —dt
1t
-1 ¢
< 2 lm |————
emtoo | (v = 1)t |
< < 40
a—1
A
Let N(t) = tN;j+ then N(t) < p(x,t), for all x € Q and for all t > 0. Then,

©*(x,t) < N*(t), for allz € Q and t > 0. We have for all t > 0 and all measurable
E C Q such that mes(E) < +o0,

/Q o (x, txg(x))de < 5 N*(txp(z))dx < N*(t).mes(E) < 4oc.

Similarly, ¢~ is locally integrable.

Theorem 3.11. Let Q be an open subset of R? and ¢ be a Musielak-Orlicz function.
We assume that ¢ satisfies the condition(x)and:

If D CQ isanopenboundedthen, / oz, 1)dr < 400 (3.3)
D
+oo — At
t
I\ >0 suchthat / %(;M Dt < oo (3.4)
1

If [ is a measure on Q then, every solution u of the equation (1.1) lies in Lf;c(ﬂ);
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Proof. As in the proof of theorem 3.1, we can assume that Q = R2, supp(f) is
compact and u = P.N(f). First, we have P; € Lf;C(RQ). Indeed: for all real R > 0,

we have
27| P: r 1
/ @(m,m)da@ _ / rdr/%(r’M)dU
|z|<R A 0 b A
R
logr
= O'N/ rgpl(r,| f |)d7’
0
We put m = % then dr = —#dm, we have
2| Py ()| /+°° 1 1 [log(L)]
2P 2 Ny = o (—. e m /g
/|I|<R(10(‘T’ Y ) € ON % mggol(m’ A ) m

we put t = M% then dm = AeMdt

We get
27| P oo A ¢
/ (p(x, 7T| 2($)|)d$:)\UN/ 801(6 ) )dt
|z|<R

by log R 2t
X

We distinguish two cases.
First case: R <1.
If 188 «] = ¢ <R

e ©1 (e_ktat) dt = ! Y1 (6_)\1&) t) dt 4 e ©1 (e_Atat) dt
log R 62/\t _logR 62)\15 1 62/\t
A A

1 —At 1 —At
/ 901(6 7t)dt§/ 501(6 51)dt

_logR g2t _logR g2t
A A
Put: r = e~ * then dt = —%dr
1 —\t R
©1 (6 ) 1) _ l
/_M o dt = Y roq(r, 1)dr
A
1
= — o(x,1)dx
)\O’N B(eiA,R)
< Ho0.

where B(e ™, R) = {:E eRV/e™ <lzf| < R}

So

2 “+oo — At t
/ o(x, —7T|P2(ac)|)dx < / o(x,1)dx + )\UN/ %dt < +00.
|z|<R A B(e*,R) 1 e



REGULARITY OF SOLUTIONS TO THE POISSON EQUATION 191

If :fbgTR > 1 we have

27| P Hoo A
/ So(x, 7T| 2($)|)d$ — )\UN/ 801(6 ) )dt
2| <R A L

Second case: R > 1 we have

2 P “+o0 — A\t t +oo — At t
/ Sﬁ(z, 7T| 2(1')|)d1' _ )\o_N/ 901(6 ’ )dt S )\O—N/ 901(6 ’ )dt
|z|<R 0

by 7@ 62/\15 62/\15
+o0 —\t 1 —t +oo — At
#1 (6 7t) _ 901(6 7t) ¥1 (6 ) t)
/0 e2Xt dt = o e2Xt dt + 1 e2At dt
1 -t 1 —At
t 1
/ @1(62/“ ’ )dt _ / @1(62/“’ )dt
0 € 0 €
Put: r = e then dt = — )}T dr
1 —\t 1
901(6 ) 1) 1 /
T dt = = 1)d
/0 eQAt A N T@l(ra ) T
1
= oo o(z, 1)dx
ON JB(e=*1)
< —4o00.

We get

—At )

2 teo t
/ o(z, —7T|P2(:E)|)d:c < / o(z, 1)dx + )\JN/ (pl(eTt’dt < +o00.
lz|<R A B(e—*,1) 1 €

So we conclude by the Lemma 3.4. O

Corollary 3.12. let Q be open subset of R? and p € P(Q) is radial decreasing with
resp to ||z| (i.e): There is a function w : RT — (1, +00) such that p(x) = w(||z||)
we assume that p satisfies the conditions:

p— = ess inf p(z) > 1

zEeQ
pT = esssupp(z) < +oo
zeQ
+o0 tw(efkt)

if [ is measure on Q Then every solution u of the equation (1.1) lies in Lfo(é)(Q)
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4. Maximal regularity of the radiale solution
Denote by B(0, Ry) an open ball of RY with radius Ry > 0, which is equal to
RY for Ry = +00

Theorem 4.1. Let ¢ be a Musielak-Orlicz function satisfying the locally constant
condition and f € L,(B(0, Ry)). Then every radiale solution u of the equation

Au=f inB(0,Ryp) (4.1)
satisfies

0%u
axic’)xj

€ Lg°(B(0, Ro) —{0})
If in addition @(x,|f(x)|)log |x| is integrable then

0%u
8zi8zj

€ LY°(B(0, Ro))

The proof uses the following Lemma.

Lemma 4.2. [6] Let f be a radial and integrable function on RY with compact
support. The Newtonian potential P.N(f) is continuously differentiable on RN —{0}
and

PN ()@ = Pu(o) [

B(0,|=|)

F(y)dy + / Pu(9)f (4)dy

RN—B(0,|])

VPN(a) = /B oy T

The second derivatives of P.N(f) are locally integrable on RN — {0} and

O?P.N(f) xx; 05 wiry, N /
owaw; P! O N T LR o o T

Proof. Let By be an open ball such that By C B(0, Ry)) and let ¢ be a radial
smooth function with compact support in B(0, Ry) such that ¢ = 1 on B;. We
consider the function fo = of, f1 = A(ou) — fo. We have

P.N(fo)+ P.N(f1)=Pn*xA(ou)=u on B

Since P.N(f1) is harmonic on By, then P.N(fp) and u have the same regularity on
By, so we can assume that f is radial with compact support and u = P.N(f).
Let 0 < R < Ry and ¢ > 0, we shall show that

0%u
8zi8zj

€ L,(B(e, R))
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where B(e, R) = {ac eRV e<|z| <R
It follows directly from Lemma 4.1 that

0%u ca N
g @l <@+ 2 [ il
Gxiaxj 0’N|.T|N B(0,|z|)
67;]‘ TiTj
where ¢; = |5+ — | <1

By virtue of convexity of p(z,.) we have

1 ou
—|=——)dx < I I
/B(a,R) ol 2>‘|a$ia$j Ndw < 1o + Iz

where Iy = [y gy o, H2)de and o = [ gy 0(#, 7950w [0 10y S dy)der

We have I; < 400 (because f € L,(B(0, Ry))). It’s sufficient to show that I < co.
We have

|z N
/ dy:JN/ TNfldr:JWN|:c|N:> —dy=1.
B(O,Je)) 0 B(o,Jal) TN |7]

By Jensen’s inequality

I

IN

N
[oanf o Wl
BeR)  JBO)) ON|T] A

C2 |f(y)|
= dz/ v P )Xy <2 Y
/B(E,R) Bo.R) 17N A Il <lel

We assume that ¢ is locally constant all over on B(0, Ry) (otherwise, we take
B(0,Ro) \ A such that mes(A) = 0), then: Vo € B(0, Rg), 3r, > 0 such that
o(z,t) = p(x,t), Vz € B(x,ry).

Since B(0, R) is compact then 3 y1,y2,....,yn € B(0, R) and 71,73,...,r,, such that
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Denote by r; = r,, and put M;(t) = ¢(y;,t) then

1/ (W)
b / / M;i (5= )Xy )< |21
Z B(e,R) B(yi,ri) N B(0,Ro) A ly|<|z|

ubini 1
B(yi,ri) (N B(0,Ro) A max(e,|y|)<|z|<R ||

|f(v)l
= 3 M; ) log dy
i:zl /B(yiaTi) N B(0,Rop) ( A (maX(Ea |y|))
|f(y)]
= ¢ (Y, log dy
/?1B<yi,mm3(o,Ro> ( A ) (maX(E, Iyl))
|f ()] R
= ¢ o(y, ) log )dy
/B(O,RO) ( A (max(€,|y|)

< +o0o

Now, assume that ¢(z, |f(z)|) log(|x|) is integrable on B(0, Ry):
Similarly, Let 0 < R < Ry

1 9 | / (@)
T, | )dr < - T, dr + I
/B ol <5 [ e v,

1 ci N
where [ = 3 fB(O,R) dep(z, 7o fB(O,\m\) l (,\y)‘>dy

1 |f(@)] 1 caN If(y)]
I 5[ e T e g [ dwpe, T [ g
2 /Bo,Rr) A 2 /Bo,Rr) onlzlV Jeo,a) A

IN

N L /()]
2 JB(o,R) B(0,R) |z|NV A\ ly|<|z|
5 1 W)
: hr / / M; (=) X|y|<|2| Y
Z B(0.R) (yi,r:) N B(0,Ro) |z [NV A ly|<|z|
fubi 11+C—QZ/ Mi(M)dy/ i
2 i—1 Y B(yi,ri) N B(0,Ro) A yl<lzl<R BR i
C. n R
= I + — Mz(M)log(—)dy
2 A
i=1 Y B(yi,ri) N B(0,Ro) Yl
fly R
7, B(yi,ri) N B(0,Ro) |
! / If( ) / O on( B
T2 pla, = )de + 5 p(y, ——) log(—)dy
2 B(0,R) 2 B(0,Ro) A |y|
< 400



—_

10.

11.

12.
13.
14.
15.
16.

REGULARITY OF SOLUTIONS TO THE POISSON EQUATION 195

References

. R. Adams, Sobolev spaces, Acad.press (1975).

M.L. Ahmed Oubeid, A.Benkirane and M. Sidi El vally, Strongly nonlinear parabolic problems
in Musielak-Orlicz-Sobolev spaces, to appear in Bol. Soc. Parana. Mat.

E. Azroul, A. Benkirane, M. Tienari: On the regularity of solution to the poisson equation
in Orlicz-spaces,Bull.Belg.Math.soc .(2000)

A. Benkirane, Potentiel de Riesz et problemes elliptiques dans les espaces d’Orlicz, thése de
Doctorat, Université libre de Bruxelles,(1988).

A. Benkirane and J. P. Gossez, An approximation theorem in higher Orlicz-Sobolev spaces
and application, Studia Math. 92(1989), pp. 231-255.

R. Dautray et J. L. Lions, Analyse Mathématique et calcul numérique, volume 2, Masson
(1987).

L. Diening, P. Harjulehto, P. Hastd, M. Ruzicka, Lebesgue and Sobolev Spaces With Variable
Exponents, Lecture Notes in Mathematics (2017).

- Elias and M. Stein” Singular Integrals and Differentiability Properties of Functions” Prince-
ton University press

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equation of second order, Springer
Verlag (1983).

J. P. Gossez, Some appoximation properties in Orlicz-Sobolov spaces, studia Math. 74(1982)
pp. 17-24.

J. P. gossez, Non linear elliptic boundary value problems for equation with rapidly (or slowly)
increasing coefficients, Trans. Amer. Math. Soc. 190(1974) pp. 163-205.

Grter and Wildman, Manuscripa Math 37(1982), pp. 303-342.

M. Krasnosel’skii and Ya. Rutickii, Convex functions and Orlicz spaces, Noord-hoof, (1961).
A. Kufner, O. John and S. Fucik, Function spaces, Academia, (1977).

J. Musielak: Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034, (1983).

M. Tienari, A degree theory for a class of mappings of monotone type in Orlicz-Sobolev
spaces, Ann. acad. Scientiarum Fennice Helsinki(1994).

A. Benkirane,

S. Dewval,

M. Ait Khellou ,

Laboratory LAMA, Department of Mathematics,
Faculty of Sciences Dhar El Mahraz,

University Sidi Mohammed Ben Abdellah,

P.O. Box 1796 Atlas, Fez 30000, Morocco.
E-mail address: abd.benkirane@gmail.com
E-mail address: sidideval@gmail.com

E-mail address: maitkhellou@gmail.com



	 Introduction
	 Preliminary 
	Regularity of the solution and its first derivatives 
	Maximal regularity of the radiale solution

