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ABSTRACT: We consider Bécklund transformations for hyperbolic linear Wein-
garten surfaces in Euclidean 3-space. The composition of these transformations is
obtained in the Permutability Theorem that generates a 4-parameter family of sur-
faces of the same type. The analytic interpretation of the geometric results is given
in terms of solutions of the sine-Gordon equation. Since a Ribaucour transformation
of a hyperbolic linear Weingarten surface also gives a 4-parameter family of such
surfaces, one has the following natural question. Are these two methods equiva-
lent, as it occurs with surfaces of constant positive Gaussian curvature or constant
mean curvature? In this paper, we obtain necessary and sufficient conditions for the
surfaces given by the two procedures to be congruent.
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10 C. GOULART

1. Introduction

A surface M contained in the Euclidean space R? whose mean and Gaussian cur-
vatures, H and K, satisfy a relation of the form o +26H +~vK =0, «, 3,7 € R,
is called a linear Weingarten surface. The development of the theory of these sur-
faces started in the early 19 hundreds. More recent results obtained by several
authors can be found in [1], [8], [10], [15]-[17]. If the linear Weingarten surface
satisfies % — ay < 0, then it is said to be hyperbolic. In this case, without loss
of generality, we may assume that o = 1. Moreover, if # =0, and v = 1 then M
is a pseudo-spherical surface, i.e., K = —1, and there is a well known theory on
Bécklund transformations for pseudo-spherical surfaces studied by Béacklund [2,3]
and on composition of such transformations called Permutability theorem obtained
by Bianchi [4] .

In this paper, we study an extension of the concept of pseudo-spherical line
congruence, called a hyperbolic linear Weingarten congruence. Namely, we consider
a diffeomorphism between surfaces M and M’ such that at corresponding points
p € M and p’ € M’, the straight line determined by these points has a constant
angle ¢ with the normal N, and a constant angle p with the normal Nzlv" Moreover,
we assume that the segment pp’ has constant length r and N, has a constant
angle 6 with N/,. Then M and M’ are hyperbolic linear Weingarten surfaces
satisfying, respectively, 1 + 28H + K = 0 and 1+ 28'H' + v K’ = 0, where
B% —~ = (B)? -~ < 0. We observe that whenever ¢ = p = 7/2, then the theory
coincides with the classical results for pseudo-spherical surfaces.

The Integrability Theorem shows that given such a surface M there exists a
3-parameter family of surfaces M’, satisfying 1 + 23 H' + v’ K’ = 0, associated to
M by a hyperbolic linear Weingarten congruence. The surfaces M’ are said to be
associated to M by a Backlund transformation for hyperbolic linear Weingarten
surfaces.

The Permutability theorem shows that the composition of such transformations
is commutative when one chooses the parameters apropriately. In this case, starting
with a hyperbolic linear Weingarten surface M satisfying 1 + 28H + vK = 0, one
gets a 4-parameter family of surfaces M*, satisfying 1 +20H* +~vK* = 0, with the
same constants (3,7 of the surface M.

Another transformation, called Ribaucour transformation, also relates linear
Weingarten surfaces in space forms (see [8], [20]). Ribaucour transformations for
hypersurfaces, parametrized by lines of curvature, and for surfaces with constant
Gaussian or mean curvatures (including minimal surfaces) were classically studied
by Bianchi [5]. More recent applications of this transformation can be found for
example in [6]-]9], [14], [20] and [21]. In [8], Corro-Ferreira-Tenenblat proved that
starting with a linear Weingarten surface M in R3, satisfying o + 28H + yK =
0, with g — ay # 0, then appropriate Ribaucour transformations provide a 4-
parameter family of surfaces M satisfying o + 28H + vK = 0. In particular, this
holds for hyperbolic linear Weingarten surfaces.

Therefore, starting with a hyperbolic linear Weingaten surface M in R?, sat-
isfying 1 + 28H + vK = 0, one gets a 4-parameter family of hyperbolic linear
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Weingarten surfaces with the same constants (3, -y, either by the composition of
Bécklund transformations or by Ribaucour transformations. Hence, it is natural to
ask if these two methods are equivalent, i.e., if the surfaces obtained by these two
methods are congruent. In this paper, we will show that in general the families ob-
tained by these procedures are distinct, in contrast with what happens in the case of
constant positive Gaussian curvature (see for example Tenenblat [18]) and surfaces
of nonzero constant mean curvature (Jeromin-Pedit [12]). In the particular case
K = —1, necessary and sufficient conditions were established by Goulart-Tenenblat
[11], for a composition of Bécklund transformations to be congruent to a Ribaucour
transformation.

The analytic interpretation of the above geometric results are given in terms of
the sine-Gordon equation. A hyperbolic linear Weingarten surface, parametrized
by lines of curvature and satisfying 1 + 28H + vK = 0 is determined by its first
fundamental form ds? = 7(cos? ¥da? + sin® ¥da3), where 1 satisfies the sine-
Gordon equation ¢, ., — ¥,,,, = sin(¢ + Cg,) and Cs, is a constant defined
in terms of 8 and . In particular, when § = 0 and v = 1 i.e., K = —1, then
Co1 = 0. Although Hilbert theorem says that there are no complete surfaces with
K = —1 in R3, there are many complete hyperbolic linear Weingarten surfaces in
the Euclidean 3-space (see [8], [16]).

The analytic interpretation of the Backlund transformation gives an integrable
system of equations, in terms of ¢ and 2 parameters, whose solutions ¢’ give new
solutions of the sine-Gordon equation. By considering 1" and 9" two distinct
such solutions, the analytic permutability theorem gives a superposition formula
that provides an algebraic expression for new solutions v*, which depend on 4
parameters. Moreover, the Ribaucour transformation gives an integrable linear
system in terms of ¢ and a constant C'r, whose solutions 7:/) depend also in 4-
parameters and satisfy the sine-Gordon equation. The solutions 1™ and 171 obtained
by these procedures are distinct.

The paper is organized as follows: In Section 2, we introduce the hyperbolic lin-
ear Weingarten congruence and we prove Bécklund Theorem for hyperbolic linear
Weingaten surfaces, the Geometric Integrability Theorem and the Geometric Per-
mutability Theorem. In Section 3, considering the correspondence between such
surfaces and solutions of the sine-Gordon equation, we prove the Analytic Inte-
grability Theorem and we state the Analytic Permutability Theorem, whose proof
is given in the Appendix. In Section 4, we start recalling some results on Ribau-
cour transformation. Then we obtain necessary and sufficient conditions for the
hyperbolic linear Weingarten surfaces, obtained by the composition of Backlund
transformations, to be congruent to those obtained by Ribaucour transformations.
These conditions are given in terms of the first fundamental forms i.e., in terms of
the corresponding solutions of the sine-Gordon equation.

2. Backlund transformations for hyperbolic linear Weingarten surfaces
in R? - Geometric Theory

In this section, we introduce the concept of hyperbolic linear Weingarten congru-
ence and we study a Bécklund transformation for hyperbolic linear Weingarten
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surfaces in R3. Moreover, we also prove the integrability and the permutability
theorems for these transformations.

2.1. Backlund Theorem for hyperbolic linear Weingarten surfaces

Definition 2.1. We say that M C R? is a Weingarten surface if there exists
a differentiable function relating the mean and Gaussian curvatures H and K of
M. A surface M is said to be linear Weingarten if H and K satisfy a linear
relation, i.e., there exist real constants o, B, 7 such that o + 26H + vK = 0.
]\/.goreover M is hyperbolic, if 5% — ay < 0, elliptic, if B* —ary > 0 and tubular, if
8% —ay=0.

Remark 2.2. If M is a hiperbolic linear Weingarten surface satisfying a+28H +
~vK = 0 then, without loss of generality, we can assume that « =1 and v > 0.

Definition 2.3. Letl: M — M’ be a diffeomorphism between surfaces M, M’ C
R3. For each p € M and p’ = I(p) € M’ with p' # p, denote by v = v(p) the
unit vector in the direction of the straight line passing through p and p’. Let N,
(resp. N, ) be the unit vector normal to M (resp. M') in p (resp. p'). We say
that 1 is a hyperbolic linear Weingarten congruence with constants (r,0, ¢, p), where
r>0,0<0<m 0<¢,p< T, if the distance between p and p' is constant equal
to r, the angle between N, and N}',, s 0, the angle between N, and v is ¢ and the
angle between N, and (—v) is equal to p.

Remark 2.4. When ¢ = p = /2, then the direction of the line congruence is
tangent to both surfaces M and M’ and it reduces to the so called pseudo-spherical
line congruence of surfaces in R3.

The following theorem justifies the definition of a hyperbolic linear Weingarten
congruence, for a diffeomorphism [ as in Definition 2.3. Moreover, it reduces to the
classical Backlund Theorem between pseudo-spherical surfaces when ¢ = p = 7/2.

Theorem 2.5. (Biacklund Theorem for hyperbolic linear Weingarten sur-
faces) Let M and M' be two surfaces imersed in R®. Suppose there exists a hy-
perbolic linear Weingarten congruence | : M — M’ with constant (r,0,¢,p) as
in Definition 2.3. For any p € M and p' = l(p) € M’, suppose that the normal
vectors N, and N/, and the vector v = v(p) are not coplanar. Then M and M’ are
hyperbolic linear Weingarten surfaces. More precisely, the Gaussian curvature K
(resp. K') and mean curvature H (resp. H') of M (resp. M') satisfy the relation
1+28H +~vK =0 (resp. 1+28'H' +~'K' =0), where

—r(cos ¢ + cos pcosb) 2 sin? p
(T [T 2
—r(cosp+ cos@cosb) r? sin? ¢
F= sin? 0 ’ = sin?@ 22)

Moreover, we have that (8')? —~' = > —~ < 0.
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Proof: Let {e1,e2,e3} and {e], e}, 5} be orthonormal frames adapted to M and
M, respectively such that, for every p € M, e3(p) = Ny, e3(p’) = N;, and the sets
{v,e1,e3} and {v, €], e5} are linearly dependent. If X is a local parametization of
M in p then

X' = X + rsinge; + rcos ¢es (2.3)
is a local parametization of M’ in p’.
We consider a;;, 1 <1i,j < 3 satisfying e, = Z?Zl a;jej. Sincel: M — M’ is a
hyperbolic linear Weingarten congruence with constants (r, 6, ¢, p) it follows that

B —cosp — cos ¢ cos b 2o — a2
azy = - , az2 = sin a3y,
sin ¢

—sin¢@ — agy cosp

ass = cosf, aj; = sinp ,
_ —asacosp ~ —cos¢ —cosfcosp
aja = —_—, a1z = . ’ (24)
sin p sin p
—@32 COS @ a31 cos ¢ — cos B sin ¢
a1 = — Q22 = - )
sin p sin p
a32Sin¢
a3 = ————.
sin p

Let w1, wa, w12, w13, was (resp. wh,wh, w!s, w)s,whs) be the dual and the conec-
tion forms associated to the orthonormal frame {ej,eq,e3} (resp. {e},eh, e5}).
Differentiating (2.3) and using the structure equations, we have

anwi +agwy = Wi — 7T Cosdwis,
! ! :

a1ow) + agewh = wa + rsingwis — 7 COS pwag, (2.5)
! ! :

aj3w] + assws, = rsindwis.

Since the vectors ef, e3, v are not coplanar then ass # 0. Using (2.4), we obtain

—ag3 1 .

i !

wy = ( ) w1, wy = —{ay3wy + 7sin pwiz}.
a32 as2

Therefore, it follows from the second equation of (2.5) that

W12 = C1W1 + Cowo + C3W13 + CqWo3, (26)
where
_ —agy _ -1
“a = (7’(132 sin(b) ' @ = (rsin(b) ' 5
_ (axnsinp _ [cos¢ (2.7)
“= (aggsin(b) ' “= (singb) '

Differentiating (2.6) it follows from the structure equations, the definition of
mean and Gaussian curvatures and the Gauss equation that

dwiz = [( +c3) +2(cics + coca) H + (3 + c§) K] (w1 Aws).
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On the other hand, we kwon that dwis = —K (w1 A wz). Therefore, the mean and
Gaussian curvature of M satisfy

(¢34 c2) 4+ 2(cie3 + caca)H + (3 +c2 + 1)K = 0. (2.8)

The constants ¢y, 2, ¢3, ¢4 defined in (2.7) imply that

-2 2 . 2
sin“ 6 r®sin” p
2 2 _ 2 2 _
at+a=—5—s5, cz+ci+1= PR
r2az, sin® ¢ r2a3, sin” ¢ (2.9)
—r(cos ¢ + cos pcosb)
c1C3 + CaCqy = .

2,2 qin2
r2a5, sin® ¢

In other words, M is a linear Weingarten surface satisfying 1 + 26H + vK =
0, where 8 and « are given by (2.1). Interchanging ¢ and p in the previous
computations, we obtain that M’ is also a linear Weingarten surface satisfying
1+ 28'H' ++'K' = 0, where 8 and 7/ are given by (2.2). Moreover, using the
constants as; and ass defined by (2.4), we have

2 sin” a2,

(B) = =B 7=~ <0. (2.10)

sin 0

Hence, M and M’ are hyperbolic linear Weingarten surfaces. O

Remark 2.6. The Equation (2.6) is called Bécklund transformation for hyper-
bolic linear Weingarten surfaces in R and it is denoted by BT(r,0,¢,p), where
r, 0, ¢, p are the constants introduced in Definition 2.3.

We conclude this section by establishing some notation and some identities that
will be used throughout this paper.

Remark 2.7. Given real numbers 3, such that v — 6% > 0, we consider constants
r>0,0<0<7mand0 < ¢, p < T satisfying (2.1).We denote by by, by, bz the
real constants

by = f(coser.cosgbcost?), by — /sin297b%,
sin ¢

2.11
b _ bycos¢ —singcost ( )
8 sin p ’
We observe that the hypothesis v — 3° > 0 ensures that
0 2
sin? 0 — b7 — sin? — (CSPH COS@COsOT (2.12)
sin” ¢
Thus, the constants c1, c2, c3, c4 given by (2.7) are written in the form
—b -1 bs si
. 1 _ bgsinp c4_cos¢ (2.13)

_ Co —= ——— Caq = == .
rby sin ¢’ 27 rsing’ 7 bysing’ sin ¢
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Analogous to (2.9), we have that

-2 2 . 2
9 o sin”0 9, 2 risin"p
ates 2 sin? b3’ A= 72 sin? $b2 ! 914
N —r(cos ¢ + cos pcosf) (2.14)
c1e3 + cocy = ,
1ot 72 sin® b3
We can also prove that
-2 2
6 —2b
=7
PUTT p2gin? gbl
N (203 — sin? ) cos ¢ — by sin ¢ cos §
—c1e3 + cacy = ,
Tt rsin? ¢b3
2 2 (sin? @ — 2b3)cos?p + 2by sin ¢ cos ¢ cos § — cos?f sin® ¢
-G Cy = .2 9 )
) S111 ¢b2 (215)
—b1
—Cc1eg = ————,
12T 2 gin? oba
n —2by cos ¢ + sin ¢ cos 0
c1C4 + cocs3 = ,
1 278 7 sin? Pba
—bycos?¢ + sin ¢ cos ¢ cos §
—C3C4 = ) .
sin® ¢bs
and
22 172
b
(B)—n = f2mny = TSN b (2.16)
sin”™ 6
2 2 2
1-0
v 4 2Br cos ¢ + 1% cos® ¢ %ﬁl), (2.17)
sin” 0
0 sin ¢b
B4+rcosgp = Lsmm_ (2.18)

sin? 6
where B,y and by, by are given by (2.2) and (2.11), respectively.
2.2. The Geometric Integrability Theorem

The Geometric Integrability Theorem, that we prove below, shows that given a
hyperbolic linear Weingarten surface M satisfying (2.6) there exists a family of
surfaces M’ associated to M by a hyperbolic linear Weingarten congruence.

Theorem 2.8. (Geometric Integrability Theorem) Let M C R? be a hyper-
bolic linear Weingarten surface with Gaussian curvature K and mean curvature H
satisfying 1 + 26H +~vK = 0. We consider real numbers r > 0, 0 < 0 < 7 and
0 < ¢,p < 5 satisfying (2.1). Let po € M and let vy € R3 be a unit vector whose
angle with Np, (normal to M at po) is ¢. Suppose that vl the tangential com-
ponent of vy, is not a principal direction. Then there exists a linear Weingarten
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surface M' C R? with Gaussian curvature K' and mean curvature H', satisfying
1+28'H' +~'K' =0, where 8',~" satisfy (2.2) and a hyperbolic linear Weingarten
congruence | with constants (r,0, ¢, p) between neighborhoods of py in M and l(po)
in M', such that the straight line connecting po to l(po) is in the direction of vg.

Proof: Since M is a hyperbolic linear Weingarten surface satisfying 1 + 26H +
7K = 0 then, taking real numbers 7 > 0,0 <60 <7 e 0 < ¢,p < 7 such that (2.1)
is verified, we have

0\>  sin'f
sin? g <cosp+cos¢cos > _ _sin (v — 3% > 0. (2.19)

sin ¢

Thus, we can consider the real constants by, bo,b3 and c1, ca2, c3, ¢4 defined by
(2.11) and (2.13), respectively. The idea is to apply Frobenius theorem to construct
an orthonormal frame {ej, e2, e3} adapted to M, defined in a neighborhood of py,
whose dual and connection forms satisfy

W12 = C1W1 + Cow2 + C3w13 + C4w23, (2.20)
o7
such that e1(pg) = |v—%|' Let S be the ideal generated by the 1-form
0

( =wiz — C1W1 — Cowa — C3W13 — C4W23.
Differentiating and using the structure equations we have
dC = dwlg — cldwl - CQdCLJQ - 03dw13 - C4d¢d23 = 7le A wo + W12 A M,

where 1 = —ciwso + cowy — c3we3 + cqwisz. Substituting wis = ( + cqwy + cows +
c3w13 + c4was and using (2.14) we obtain

dC=CNAp— [sin2 0 — 2r(cos ¢ + cos pcos O) H + (r? sin? p)K] w1 Aws.

72b3 sin” ¢

By hypothesis, the constants r,6, ¢, p satisfy (2.1) and M is a hyperbolic linear

Weingarten surface such that 1+ 28H + vK = 0. Thus, d¢ = ( A pu, ie., §is

closed under exterior differentiation. By Frobenius theorem, the equation { = 0 is

integrable. Therefore, there exists an adapted frame {e1, ez, e3} such that (2.20)
T

holds in a neighborhood of pg, with initial condition e; (pg) = %. Since the angle
Yo

between vy and N,, = e3(po) is equal to ¢ and the unit vectors es(po), e1(po) and

vg are coplanar then vy = sin ¢eq(pg) + cos ¢es(pp). Define, in this neighborhood,

the vector function

v = sin ¢ej + cos pes.

By hypothesis, e;(po) is not a principal direction hence we can assume, by continu-
ity, that e; is not a principal direction on an open subset V' of this neighborhood.
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We consider V' parametrized by X : U ¢ R? — V € M C R? and define
X':U—R?by

X' = X +rv= X +rsinge; + r cos pes.

Differentiating and using the structure equations, we obtain dX’ = zyw1 + 2ow13,

where b b i
—162, Zg = —TCOs peq + [0 5P
ba ba

Since e; is not a principal direction and rsin¢ # 0 we conclude that M’ =
X'(U) is aregular surface and z1, 23 are tangent to M’. Moreover, e§ = bie;+bgea+
cosfeg is a unit vector normal to M’. Consequently, M’ is related to X (U) by a
hyperbolic linear Weingarten congruence, [ with constants r, 8, ¢, p. Using Theorem
2.5, we conclude that M’ is a hyperbolic linear Weingarten surface satisfying 1 +
28'H' +~'K' =0, where 3,7/ are given by (2.2). O

z1 =e1 — €2 + rsin ¢es.

Observe that Theorem 2.8 shows that given a hyperbolic linear Weingarten
surface M in R? there exists a 3-parameter family of surfaces M’ associated to M by
a hyperbolic linear Weingarten congruence. The three parameters are determined
by the unit vector vg and the four constants (r,0,$, p) satisfying two conditions
given by (2.1).

2.3. The Geometric Permutability Theorem

In this section, we consider the composition of Backlund transformations for hy-
perbolic linear Weingarten surfaces in R3. We observe that applying a Bécklund
transformation to a surface in R? satisfying 1 +28H +~K = 0, we obtain new sur-
faces of the same type but with different constants 5 and v. We will now consider
a composition of such transformations so that the surface obtained by this compo-
sition has the same constants as the surface we started with. This is obtained by
imposing certain conditions on the parameters and in this case, the composition is
commutative.

Let M, M’, M" be hyperbolic linear Weingarten surfaces in R3. Suppose that
M satisfies 1 + 28H + vK = 0 and that there are hyperbolic linear Weingarten
congruences Iy : M — M’ and Iy : M — M" with constants (71,61, ¢, p;) and
(12,02, ¢g, po) respectively, where r; > 0,0 < 0; <mand 0 < p;,¢; <5 (i =1,2),
with 61 # 05. We want to construct a hyperbolic linear Weingarten surface M*,
with the same constants 3,~, and hyperbolic linear Weingarten congruences [3 :
M'" — M* and I : M" — M* with constants (rq, 02, ¢, ps) and (71,601, d1, p1),
respectively, such that

l;Oll :lfolg.

The definition of the hyperbolic linear Weingarten congruences l; and ls to-
gether with the Biacklund Theorem (Theorem 2.5) allows us to obtain the following
equalities from (2.1)

ro8in py = Jrysinpy,

T9(COS Py + COS py cosfz) = §°r1(cos ¢y + cos py cos b)), (2.21)
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where § is the positive constant defined by

5 = Sinbe (2.22)

sin 91 ’

Moreover, admitting the existence of the hyperbolic linear Weingarten surface
M* and of the hyperbolic linear Weingarten congruences ] and 3, as previously
described then, using again Theorem 2.5, we conclude that necessarily the following
equalities hold

79 8in ¢qy = Jrising,, (2.23)
19(COS py + COS Py cOsBy) = %11 (cos p; + cos ¢y cos ), '
where ¢ is given by (2.22). Therefore, assuming that (2.23) is satisfied and using

(2.21) we obtain

r; cos ¢;(cos 0y cosOy — 1) 4 1 cos sin? 6,
ricosp, = Oulcostucosts — 1) tricosdy 0y Ljcn
cost; — cosb;
(2.24)

As a direct consequence of this equation we obtain
71 COS pq €OS B2 — 13 COS py €Os 01 + 1o cos ¢, — 11 cos gy = 0. (2.25)
Let {e1, e2,e3} and {€1, €2, es} be orthonormal frames adapted to M and denote
by E the orthogonal 2 x 2 matrix (with positive determinant) such that

2
€, = ZEijej, 1= 1,2, E22 = Ell, E21 = 7E12' (226)
j=1

We consider also orthonormal frames {¢}, e}, e5} in M’ and {e, e}, e4} in M" as
in Theorem 2.5, i.e., if v1 = v1(p) (resp. va = v2(p)) is the direction of the straight
line joining the points p € M and p; = l1(p) € M’ (resp. ps = la(p) € M’) then
the sets {e1, es,v1} and {€7, e3,v2} are linearly dependent. Then,

v1 = sin¢;e; + cospes,
{ vo = sin¢yeq + cos Pyes. (2:27)
Let aj; and aj; (1 <4,5 < 3) be such that
3 3
e = Z aje; and €] =) ajie;, @ =es. (2.28)
i=1 i=1

Then using the proof of Theorem 2.5 we have that a}; (resp. a};) are given by
(2.4) taking r =11, 0 = 01, ¢ = ¢y and p = py (resp. ©r =1ra, 0 = O3, ¢ = ¢y
and p = p,). Let § be the real number given by (2.22). It follows from (2.21) and
(2.23) that

" / " / " / " /
ayy = 0ays, azy = dag, agy = Oazy and ags = dasz. (2.29)
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We consider E = (E;;) the orthogonal matrix, with positive determinant, de-
fined by (2.26). Since 01 # 62, we observe that the function

& =sinfqsinfsF11 + cosfy cosfy — 1 (2.30)

is strictly negative. Furthermore defining

— 0 0y —1)E;; —sinf sin 6 0, — 0:)E
Py (cos 01 cos Oy )F11 — sin 6 sin 2, Frp— (cos By — coss) 12, (231)
§ i3
. F11 F12 . . t
we have that the matrix F' = is orthogonal, since F'F" = 1.
—F12 Iy

Our next theorem analyzes the composition of Bécklund transformations for
hyperbolic linear Weingarten surfaces in R? satisfying 1 + 28H +~vK = 0. We
show that, imposing conditions (2.23) on the parameters, this composition is com-
mutative and it provides a surface of the same type with the same constants 3, .

Theorem 2.9. (Geometric Permutability Theorem) Let M, M’ M" be hy-
perbolic linear Weingarten surfaces in R®. Suppose that M satisfies 1+28H+~vK =
0 and that there are hyperbolic linear Weingarten congruences ly : M — M’ and
lo: M — M" as in Theorem 2.8, with constants (r1,01,dy,p;) and (ra, 02, s, py)
respectively, with 01 # 0, satisfying (2.1) and ( 2.23). Given p € M, p1 =l1(p) €
M’ and p2 = l2(p) € M", we denote by Ny, N, and N}, the unit vectors nor-
mal to M at p, to M’ at p1 and to M" at pa, respectively and vy = vi(p) (resp.
vy = v2(p)) the unit vector in the direction of the line connecting p to p1 (resp. p2).
We suppose that {N,, N, ,v1} and {Ny, N,,,v2} are sets of linearly independent
vectors. Then there exists a reqular surface M* C R® and hyperbolic linear Wein-
garten congruences Iy : M — M* and I3 : M" — M* with constants (12,02, py, O3)
and (11,01, py, 1) respectively, such that

l;ollzlfolg.

Moreover, the Gaussian curvature K* and the mean curvature H* of M™* satisfy
1+ 28H* +~yK* =0.

Proof: Let X be a local parametrization of M in a neighborhood of p. Since
Iy : M — M’ and ly : M — M" are hyperbolic linear Weingarten congruences,
we have that X7 = [;(X) = X + rv; and X5 = I2(X) = X + rqug are local
parametrizations of M’ and M" at p; and ps, respectively. By hypothesis, r; >
0, 0<0; <m, 0<¢;p; <T (i =1,2) are such that (2.1) is satisfied, i.e.,

5= —r;(cos ¢, '+2COS p; COS 91')’ v = rfL;sz’ i=1,2. (2.32)
sin® 0; sin” 0;

Observe that finding hyperbolic linear Weingarten congruences [5 and [ as
required by the theorem is equivalent to obtaining unit vector fields u;, us satisfying

r1v1 + rauy = rovz + riUs. (2.33)
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We consider new orthonormal frames {€,e,,e5} adapted to M’ and {e7,e7, e}

adapted to M" given by
él- = F; ‘6’- é;/ = Fije;-', with F22 = F11 and F21 = —Flg. (234)
Define the vector fields

up = Sin py€; + cos pyeh,
{ LTSI T eospey (2.35)
U2 = SInp;€] + CoSpie3.

The idea is to show that these vectors uy,us satisfy equation (2.33). Initially,
using (2.27), we observe that

riv1 = 7rising;e; + 71 coso es.

Similarly, using (2.34), (2.35), (2.28), (2.21) and the constant ¢ given by (2.22), we
have

rou; = [drysinpaly Fii + O0rysinpyaby Fia + 12 cos pyahy|er+
+[07r sin pyaly Fi1 + 071 sin pgaby Fro + 12 COS pyats|ea+
+[0ry sin pyal3 P11 + 0y sin pyabs Fia 4 12 cos pyass)es.
Moreover, it follows from (2.26), (2.27) and (2.22), that
rove = 071 sin ¢y Fii1e1 + 07y sin ¢y Fiaes + r2 cos pyes.

Finally, using the relations (2.26), (2.27), (2.34), (2.35) and ¢ given by (2.22), we
obtain

riuz = [risinp(afy B — afaBi2) Fin + risin py (a5 En — ag3 Er2) Fia+
+6r1 cos py (a1 E11 — asyE12)]e1+
+lrisinpy (af1 Er2 + afa Bva) Fiy + 11 sinpy (a51 B12 + a2 Bri) Fio+
+671 cos p; (asy Fr2 + asy Er1)]ea+
+[0r1 sin p,als Fi1 + dr1sin pyabs Fia + 71 cos pyafs|es.
Therefore, equation (2.33) is equivalent to the following linear system
risinpy [(6ayy — (afy Ei1 + afyE2n)) Fin + (day, — (a3, B + aga o)) Fia] =

I I : : I
0r1 cos pq(ahy Er1 + aboFa1) 4 01 sin ¢y E11 — 11 8in ¢y — 19 cos pyaky,

risinpy [(6ay — (af; Era + afyE2a)) Fi1 + (dagy — (a3, Er2 + agyBoz)) Fia] =

I I : !
011 cos pq (ahy Fra + aboFa2) 4 071 sin ¢y E1a — 12 €08 pyalbs,

T'1COS pyags — 1 COS Py + 73 COS g — T2 COS pyass = 0,
(2.36)
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where ¢ is given by (2.22), F1; and Fj5 are given by (2.26) and the real numbers
a;; and aj; defined by (2.28) are given by (2.4), taking r = ry, 0 = 0, ¢ = ¢, and
p = pi, k = 1,2 respectively.

We observe that, as a consequence of (2.4), a43 = cosf; and a%s = cosbs.
Then using (2.25) we conclude that the third equation of the linear system (2.36)
is satisfied. Substituting the expressions of Fy; and Fia given by (2.31) and using
equations (2.21)-(2.28), (2.4) and (2.30), we conclude that the first and the second
equations of this linear system are also satisfied.

We consider the surface M* parametrized by X* = X + r1vy + rouq. It follows

from Theorem 2.5 and (2.32) that the surface M* satisfies 1 +2H* +~yK* = 0. O

Remark 2.10. If M C R3? is a hyperbolic linear Weingarten surface, such that
14 28H +vK = 0, then Theorem 2.9 shows that the composition of Bdcklund
transformations provides a 4-parameter family of surfaces M* satisfying 1+25H*+
vyK* = 0. The four parameters are determined by the two unit vectors v;, i1 = 1,2
and the 8 constants (r;,0;, ¢;, p;) satisfying a total of 6 equations, namely (2.32)
and (2.23).

3. Analytic interpretation of Bicklund transformation

In this section we will present an analytic interpretation of the Geometric Inte-
grability Theorem (Theorem 2.8) and of the Geometric Permutability Theorem
(Theorem 2.9) given in the previous section. We start recalling that given a hy-
perbolic linear Weingarten surface in R? satisfying 1 + 28H 4+ vK = 0, then
D =~ — 82 > 0 and there exists a solution ¢ of the sine-Gordon equation

wz1m1 - wzgmg = Sin(w + Cﬂﬁ’)’ (31)

where C, is a real constant defined by

2e28v/D —2p°
sian.Y#, cosC’g.Y:Fy 757 e3=1. (3.2)

Conversely, given a solution ¢ of equation (3.1), where Cj, is a real constant
defined by (3.2), there exists a hyperbolic linear Weingarten surface in R? satisfying
14+ 28H + vK = 0, parametrized by lines of curvature, whose first and second

fundamental forms are given by I = gda? + g5dz3 and I1 = —\;gida? — \ag3da3,
where
_ v _ Y
g1 = /7y €O Ex g2 = +/7sin Ex (3.3)
—1 —1
A\ = ; S COS% + S5 sin %] , Ay = g {—8’2 cos% + 5 sin% , (3.4)
with
-8

Sl and SQ =& y E% = 1, E1E2 = —1. (35)

SIS

val

For more details, see Tenenblat [19].
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Let ¢ be a solution of the sine-Gordon equation (3.1), where Cg, is a real
constant defined by (3.2). We consider the hyperbolic linear Weingarten surface
M C R? satisfying 14+28H+~vK = 0. Letr > 0,0 < < mand 0 < ¢, p < % bereal
numbers satisfying (2.1) and (2.12). Using the Geometric Integrability Theorem,
we can construct an orthonormal frame {e1, e, e3} tangent to M, locally defined,
with dual forms wy, we and connection forms w1, w13, wosz associated to this frame
satisfying the Bécklund transformation (2.6), where c¢1, c2, ¢z and ¢4 are given
by (2.13). Moreover, the correspondence between hyperbolic linear Weingarten
surfaces and solutions of the sine-Gordon equation allows us to conclude that the
Bécklund transformation (2.6) is equivalent to the system of partial differential
equations

!/ /
Yo, +v,, = 2S3cos % cos % — 284 cos % sin %—i—
!/ !/
4255 sin % cos % — 2856 sin % sin %,
! / (3.6)
Vo, + 1, = 2S3sin % sin % + 254 sin % cos ?—i—
!/ /
—28S5 cos % sin 5~ 2S¢ cos % cos ER

where
Ss =ciy/7+ 351,  Si=cay/7+cSi, S5 =35, Se=caS2, (3.7)

and c1,¢a,c3,¢cq are given by (2.13). Using these real numbers we define the fol-
lowing constants

Sy = —S§ - Si + Sg + Sé, Ss = 5355 + 5456, (38)
Sh=-S3+S57-S2+855,  Si=-S5358,— S55s. (3.9)

Remark 3.1. (A particular case) Observe that (3.6) reduces to the classical
analytic Backlund transformation for the sine-Gordon equation, when ¢ = p = 7 /2.
In fact, in this case, 3 = 0, v = r?/sin*#, Cpy =0, by =0, by = —sind, bz =
—cos, c1 =c4 =0, co = —1/r, c3 =cosf/sinh, e =1, o = —1, 51 =853 =
Se =0, So=1, Sy =—1/sinf, S5 =cos@/sin@. Moreover, ¥ is a solution of the
sine-Gordon equation

wzlzl - wzng = Sin?/’ (310)

and (3.6) reduces to the classical result, namely

! — Yoo W in ¥ v’
Yy, T, = 2csclcos 5 sin 5 + 2cotf sin 5 cos 5,

(3.11)

7,/1;2 +v,, = —2cscfsin % cos %/ — 2cotf cos % sin %/,
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3.1. Analytic Interpretation of the Integrability Theorem

We will prove that the system of partial differential equations (3.6) is integrable
and that each of its solutions v’ satisfies the sine-Gordon equation

1/1;111 - w/zgmg = Sin(w/ + CB'V’)) (312)

where 3, 4/ are given by (2.2) and Cpy.s is a real constant defined by

28'v/D
— cos Cgry =
v g

v —2(8)°

sin Cgryr = A (3.13)

with D :=~ — 82, Initially, we will prove the following lemma

Lemma 3.2. Given real numbers 3, v such that v — % > 0, we consider the real
constant Cg defined by (3.2). Let Si, Sa be the constants given by (3.5). We
choose real numbers v >0, 0 <0 <7 and 0 < ¢, p < T satisfying (2.1). Consider
the real numbers by, ba, bz given by (2.11), c1,c2,c3,¢4 by (2.18), B and v by (2.2)
and Sz, Sy, Ss, Se by (3.7). Let S, Sg (resp. Sh, S§) be the constants given by
(3.8) (resp. (3.9)). Then

S7 = —cos Cgy, Sg = %Cﬁ'y, (3.14)
2
cos Cgry = % sin Cgryr = %, (3.15)
S7 = cos Cgryr, S = %ﬂ, (3.16)
where Cgr.s is the constant defined by (3.13).
Proof: Substituting (3.7) into (3.8), we get
St = —(ci+3)y — (3 +c1)(ST — 53) — 271 (cies + caca),

Ss

VAS2(cies + caca) + (¢34 ¢§) 5152,

where S7 and Sy are given by (3.5). Using the identities (2.14), the values of 3 and
v given by (2.1), the real constants S; and Sy defined in (3.5) and the definition of
the Cs, given by (3.2), we obtain

—sin® ¢ 2 2 2 2 28% — 5
Sr = r2 sin® gb [7 + 28751 + (57 — 52)] + (81 — 53) = 5
= —cosCpgy,
in” D —sinC
Sy = T [By/YS2 + 75152 — 5152 = —e2 pvD — TSy

72 sin” b3 0l 2
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Let by and by be the constants defined by (2.11). Since D = v — 3% then using (2.2)
and (2.16) we have

VD = —7 sin ¢bo and 8 = 7 sin ¢by

sin? 0 sin? @
Substituting into (3.13) and using the constant v defined by (2.2), we obtain (3.15).
Finally, substituting (3.7) into (3.9) we get

SLo= (= +c3)y+2,7S1(—cies + cacs) — 3 + cF,
Sy = —cicoy — ¥S1(crcs + cac3) — c3cq.
Thus, using (2.15) and (3.5) we obtain
(sin® 0 — 2b7)(y + 27 cos ¢ + r2cos’p) + 2rby sin pcos O(3 +rcos¢)  cos*0

Sl = - )
7 r2sin? ¢b3 b3
g - —b1(y 4 2rBcos ¢ + 172cos?¢) + rsin ¢ cos (B + r cos @)
S r2 sin? Pba ’

It follows from (2.17), (2.18), (3.15) and 2.11) that
(sin? @ — 2b3)(sin? 0 — b?)

51 b2 sin? 0 = cos Gy,
o —by(sin® @ — b?) _ sinCyy
8 by sin® 0 2

d

The following theorem provides an analytic interpretation of the Geometric
Integrability Theorem (Theorem 2.8).

Theorem 3.3. (Analytic Integrability Theorem) Let ¢ be a solution of the
sine-Gordon equation (3.1), where B and vy are fized real numbers such that y—F% >
0 and Cg, is the constant given by (5.2). We consider r > 0,0 < ¢,p < T and
0 < 0 < m real numbers satisfying (2.1). Let Cg, be the constant defined by
(3.13), where B', v' are given by (2.2). Consider the numbers by, ba,bs given by
(2.11), c1,ca,c3,¢4 by (2.153), S1,S2 by (3.5) and Ss, Sy, S5, 56 by (3.7). Then the
system of partial differential equations (3.6) is integrable. Moreover, the function
', obtained by integrating this system, provides a 3-parameter family of solutions
of the sine-Gordon equation (3.12).

Proof: Differentiating the first equation of the system (3.6) with respect to o
and subtracting from the derivative of the second equation with respect to x1, we
obtain

7/’;112 - d)lzgzl = Sil’l(d) + 057)4»

+ [wzl + w;Q] [—Sg cos % sin % — S, cos % cos % — S5 sin % sin % — S sin % cos %] +

/

’ ’ ’
+ [1%2 + w;l] [—5’3 sin % cos % + S4sin % sin % + S5 cos % cos % — Sg cos % sin %} ,
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where we used the fact that ¢ is a solution of the sine-Gordon equation (3.1).
Thus, using (3.6) and the relations given by (3.8) and (3.14), we have

Ul gy — Voo, = sin( 4+ Cy) + S7sintp + 2S5 cosyp = 0,

ie, the system (3.6) is integrable.
Similarly, differentiating the first equation of (3.6) with respect to x; and sub-
tracting from the derivative of the second equation with respect to z2, we obtain

/ !
1/)1111 - wIIJQIz =

’ ’ ’
[1/)11 —&—1/);2} [—Sg sin % cos % + Sy sin%sin % + S5 cos % cos% — S cos % sin £ | +

+ [1/)12 + 1/);1] [—5’3 cos % sin %, — 5S4 cos % cos %, — S5 sin % sin %/ — S sin % cos 7] ,
where we used the fact that ¢ is differentiable. Therefore, using (3.6) and the
relations given by (3.9) and (3.16), we have

1/);1351 — 1/1;”2 =5, sint)’ + 2.5 cos W = sin(w/ + Cgryr)s

ie, ¢’ is a solution of the sine-Gordon equation (3.12).
The functions 9" obtained by integrating (3.6) depend on 3-parameters, namely
the initial condition ¢’(29,29), and four constants (r,0, ¢, p) satisfying two equa-

tions given by (2.1). O

Definition 3.4. Let ¢ be a solution of the sine-Gordon equation (3.1). We say
that a function v is associated to v by a Bicklund transformation BT'(r, 0, ¢, p) if
W' is a solution of the system (3.6).

3.2. Analytic Interpretation of the Permutability Theorem

Let ¢ be a solution of the sine-Gordon equation (3.1), where Cg, is the con-
stant given by (3.2) and f,~ are constants such that v — 82 > 0. The Geometric
Permutability Theorem (Theorem 2.9) and the correspondence between hyperbolic
linear Weingarten surfaces and solutions of the sine-Gordon equation allows us to
construct a new solution ¥* of the sine-Gordon equation (3.1). The analytic in-
terpretation of the Permutability Theorem (Theorem 3.5) will allow us to obtain
1" algebraically. This is the content of our next result. However, the proof of this
theorem is highly technical and, therefore, it will be presented in the Appendix.

Theorem 3.5. (Analytic Permutability Theorem) Let ¢ be a solution of the
sine-Gordon equation (3.1), where Cg., is the real constant given by (3.2) and the
real numbers B,y are such that v — 32 > 0. We consider real numbers r; > 0,0 <
Gy < 5 and 0 < 0; < 7 (i = 1,2) with 01 # 02, satisfying (2.1) and (2.23).
Let ¢; , i = 1,2 be solutions of equation (3.12), associated to v by the Bdacklund
transformations BT (r;,0;, ¢;, p;), where Cgry is the constant given by (3.13) and
B, " are given by (2.2), when r = r;, 0 = 0;, ¢ = ¢, and p = p;. Then there
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exists a unique solution ™ of the sine-Gordon equation (3.1) associated to 1, by
BT(rj,Gj,pj,qﬁj), 1<i# 35 <2. Moreover, 1" is determined algebraically by

* : Oo+61
tan <1/) 41/}) Elsmg 2 )tan (1/)141/}2), el =1. (3.17)

Observe that in Theorem 3.5 the constants 8’ and +' defined by (2.2) are inde-
pendent of 4 since (2.23) is satisfied.

4. The composition of Biacklund transformations and the Ribaucour
transformation for hyperbolic linear Weingarten surfaces in R3

We consider a hyberbolic linear Weingarten surface in R? parametrized by or-
thogonal lines of curvatures X (z1,x2) satisfying 1 + 26H + vK = 0, where
and ~ are real constants such that 8% —~ < 0. There are two methods which
provide 4-parameter families of linear Weingarten surfaces, with the same con-
stants § and -, associated to the surface X (z1,x2). Namely, the composition of
Béacklund transformations, as we have seen in the previous sections and the Rib-
aucour transformation. In general the surfaces obtained by these two methods are
not congruent. In fact, by starting with the pseudo-sphere, Goulart-Tenenblat [11]
proved, with an explicit example, that a composition of Backlund transformations
is not a Ribaucour transformation. In this section, we will determine necessary
and sufficient conditions for the hyberbolic linear Weingarten surfaces constructed
by using these two methods, to be congruent.

4.1. Ribaucour Transformation

We state the main concepts and results of the theory of Ribaucour transforma-
tions for surfaces in R3, in particular for linear Weingarten surfaces, that will be
used in the following subsections. More details of the theory can be found in [6]
or [8].

Definition 4.1. Let M and M be orientable surfaces in R? and let N and N be
their Gauss maps. We say that M is associated to M by a Ribaucour transfor-
mation if, and only if, there exists a differentiable function h defined on M and a
diffeomorphism | : M — M such that p+h(p)N (p) = l(p)+h(p)N((p)), Vp € M,
the subset p+ h(p)N(p), p € M is a surface in R® and the diffeomorphism | pre-
serves lines of curvature.

We say that M and M are locally associated by a Ribaucour transformation if
for all p € M there exists a neighborhood of p in M that is associated to a open
subset of M by a Ribaucour transformation. Similarly, we define parametrized
surfaces associated by such transformations.

The Ribaucour transformation is characterized in terms of a differential equa-
tion which must be satisfied by map h of the definition (see [6] or [8]).

Theorem 4.2. Let M be an orientable surface in R, without umbilic points and
let N be its Gauss map. We consider {e;}, i = 1,2, orthonormal principal direction
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vector fields and —\; the corresponding principal curvatures, ie, dN(e;) = \je;. A
surface M s locally associated to M by a Ribaucour transformation if, and only
if, there exist parametrizations X : U C R* — M and X : U C R?> — M and a
differentiable function h: U — R such that 1+ h\; # 0,

X =X+h(N-N)

and N is a Gauss map of M given by

2

N = ﬁ 2;Ziei+(Zf+Z§— 1N,
where o
€
Zi= +(hA)i (4.1)
and h satisfies the differential equation
dZ;(e;) + Ziwij(ei) — Z; Zj i = 0, 1<i#5<2, (4.2)

where w;; are the connection forms associated to {e;}.

We observe that the differential equation (4.2) is of second order and highly non
linear. The proposition below shows how the problem of obtaining the function h
can be linearized.

Proposition 4.3. If h is a nonvanishing function, defined on a simply connected

domain, which satisfies equation (4.2) then h = W where 0 and W are nonvan-

ishing functions satisfying

dQi(e;) = Qwii(es) i # 7,
s = 7 Quw, (4.3)
aw = =37 Qidw;.

Q
Conversely, if Q and W satisfy (4.3) and W(W + QX;) # 0 then h = W s a
solution of (4.2).

Observe that ;¢ = 1,2 are the covariant derivatives of Q2. Moreover, considering
Z; defined by (4.1), one can show that Z; = Q;/W (see [8]).

Next theorem shows that, by imposing an additional condition, the Ribaucour
transformation of a linear Weingarten surface, satisfying a4+25H+~vK = 0 provides
a family of surface this same type, with the same constants «, 3, 7.
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Theorem 4.4. (Corro-Ferreira-Tenenblat [8]) Let M be a surface of R?, without
umbilic points and let M be associated to M by a Ribaucour transformation, such
that the normal lines at corresponding points intersect at a distance h. Assume that

h = — s not constant along the lines of curvature and suppose that the functions
Q and W satisfy the additional condition

| VQ 2 +W? = 205 (a? + 28QW + 4 W?), (4.4)

where o, B, v, Cr # 0 are real constants. Then M is a linear Weingarten surface
satisfying o+ 26H+7K = 0 if, and only if, M satisfies a+28H +~vK = 0, where
H and K (resp H and K) are, respectively, the mean and Gaussian curvatures of
M (resp. M ).

Observe that we are denoting by Cpr the constant of the Ribaucour transfor-
mation.

Theorem 4.5. ( Corro-Ferreira-Tenenblat [8]) Let M C R? be a linear Weingarten
surface satisfying o + 20H + vK = 0, with no umbilic points. Let e;, 1 = 1,2 be
orthonormal principal direction vector fields. Let w;,w;; and w;z be the dual and
the connection forms. Then the system

aQ = Y7 Qi
dW = Z?:l inig,

(4.5)
dQ; = ijij + CR(QCYQ + 2ﬁW)wi+

—[(1 = 29CR)W — 2CRBVwss, i # j.

is integrable, for any constant Cr # 0. On a simply connected domain, any so-
lution, whose initial conditions satisfy (4.4), satisfies (4.4) identically. If M s
locally parametrized by X : U C R?> — M and Q, W is a non trivial solution of
(4.5) satisfying (4.4), then each surface of the family

- 20)

is a linear Weingarten surface, locally associated to X by a Ribaucour transforma-
tion, satisfying o + 28H +~K = 0, where H and K are the mean and Gaussian
curvatures of X.

Remark 4.6. Considering Z; given by (4.1), since Z; = Q;/W, we can rewrite
condition (4.4) as
Z? + 73 4+ 1 =2Cgr(ah® + 28h + 7). (4.7)

Remark 4.7. Let M C R? be a linear Weingarten surface satisfying o + 28H +
~vK = 0. If M is parametrized by orthogonal lines of curvature X (z1, x2), then the
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system of differential equations (4.5) can be written as follows

00

’Lin

al'i g

6(21- 1 ng . .

2 250,

9z, 7 0z, i # J,

oW = =g, (4.8)
&ri

8(21 1 agi

ki =990 2CR(a — BA) g

axi g axj J+ CR(a ﬂ )g +

+[2CrB + (1 = 2CrY)NilgiW, i # j,

where i,j = 1,2, g; = | Xy,
a real constant.

, —A; are the principal curvatures of M and Cg # 0 is

Proposition 4.8. (Lemes-Roitman-Tenenblat-Tribuzi[13]) Let M C R? be a linear
Weingarten surface satisfying o + 28H +~vK = 0. If M is associated to M by a
Ribaucour transformation as in Theorem 4.5, then the first fundamental form of
M is given by I = &% + &2, where

(v — ah?) + (2Bh? + 2vh)\;

~i:j: ()
@ ah? 1 28h + @

i=1,2, (4.9)

Q
dh=—.
an W

4.2. Necessary and sufficient conditions

Given a hyberbolic linear Weingarten surface M in R3, satisfying 1 4+ 28H +
vK = 0, one can consider the surfaces M associated to M by Ribaucour transfor-
mations as in Theorem 4.5 and the surfaces M™* associated to M by composition
of Béacklund transformations as in Theorem 2.9. We will determine necessary and
sufficient conditions for M and M* to be congruent.

Let X (x1,x2) be a parametrization by orthogonal lines of curvature of a surface
M satisfying 1 + 28H + vK = 0. Let Cgy be the real constant defined by (3.2).
We consider v a solution of the sine-Gordon equation (3.1) such that the first
and second fundamental forms of X are given by I = ¢g?dz? + g3dx3 and I =
—\1gida? — \agadr3, where

g1 = ﬁcos%, go = ﬁsin%, (4.10)

AL = . {—ﬁ—i—al%\/ﬁ} s A= L {—54—52&\/5} ; (4.11)
Y 91 Y g2

and D = — 3% (see (3.2)-(3.5)).

Remark 4.9. For later use, let us establish the following notation
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1. X(x1,22): surface associated to X (x1,22) by a Ribaucour transformation
satisfying 1 4+ 28H + vK = 0 whose normal lines, at corresponding points,
intersect at a distance h(z1,z2),

2. X*(x1,z2): surface satisfying 1+28H*+~vK* = 0, obtained from X by a com-
position of Bécklund transformation BT (r1, 01, ¢4, p1) and BT (12, 02, ¢o, ps),

where r; > 0,0 < 6; <m, 0< ¢;,p; < F (i =1,2) are real constants, with

01 # 65 such that (2.1) and (2.23) are satisfied.

3. 1, (z1,22) (1 = 1,2): solutions of the sine-Gordon equation (3.12), associated
to ¢ by Bécklund transformation BT (r;,0;, ¢;, p;), where Cg .. is the real
constant given by (3.13) and ', 4/ are given by (2.2).

4. ™ (a1, 22): solution of the sine-Gordon equation (3.1) given by (3.17).

Substituting (4.10) into (4.11) and using (4.9), we obtain that the first funda-
mental form of X is given by [ = g7dx? + gi3dx?, where

P 2e0v/D(Bh? + vh) sin% + (= (y — 28*)h? + 267k +~?) cos%
VA(h? +28h 4 ) ’

b = (—(y = 28*)h? + 2Bvh 4 ~?) sin % + 261V D(Bh? + ~vh) cos % .
V(A% +28h 4 )

We obseve that the first fundamental form of X* is given by I* = (g7)%da? +

(g3)%dx3, where g} = —+/7Y cos % and g3 = —,/7sin %* Introducing the notation

(5 o

S
2

(4.12)

we define the functions

P in ¥
— COos 5 +sIn =

0= Emtanw, A= (‘011)2—3} (4.14)
4 cos § — psin ¥

Using the Analytic Permutability Theorem (Theorem 3.5), we observe that ¢ =

tan w*;w. Therefore,

) 20 Y —l+¢® 9
g5 = ﬁ[quchSmE—i_TwQCOSE ,

9 (4.15)
g = 7 71_’_()02 8111271_‘_902 052

Considering a hyperbolic linear Weingarten surface M immersed in R3, our
next theorem establishes the necessary and sufficient conditions for a composition
of Backlund transformations and a Ribaucour transformation of M to be congruent.
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Theorem 4.10. Let M C R? be a linear hyperbolic Weingarten surface satisfying
14 28H +~vK = 0, parametrized by lines of curvature X (x1,x2). Let X*(x1,22)
be a surface associated to X by a composition of Backlund transformations as in
Theorem 2.9. Let X(zl,zg) be a hyperbolic linear Weingarten surface associated
to X by a Ribaucour transformation as in Theorem /.5, such that the normal lines
at corresponding points intersect at a distance h(xz1,x2). Then, with the notation

of Remark 4.9, X and X* are congruent if, and only if, h is one of the following
functions

- - —7 -
ﬂ+51\/5507 5751\/550*17 5751\/5/\7 ﬂJrsl\/EA*l’

where ¢ and A are given by (4.14) and D =~ — 3.

(4.16)

Proof: We observe that the first fundamental form of a linear Weingarten surface
determines its second fundamental form. Considering the notation established
in Remark 4.9, let g1, g2 and g}, g4 given by (4.12) and (4.15), respectively.
Since the fundamental forms of X* are determined by the solution ¥* of the sine-
Gordon equation (3.1) given by (3.17), then X and X* are congruent if, and only
if, g1 = g7 and g2 = £g3. Observe that the equality g, = +¢7 (i = 1,2) is a
quadratic equation for h in terms of ¢.

A straighforward computation shows that g1 = gi and g2 = g5 (resp. g1 = —¢;

- -
B+e1VDy f—eaVDp~t /)
Similarly, g1 = g7 and g2 = —g5 (resp. g1 = —g7 and g2 = g3) if, and only if,

- -
_ —————|. Therefore, h should be one of the
ﬁ—El\/DA ﬁ—i—&"l\/DA_l)
functions in (4.16). O

and go = —g5 ) if, and only if, h = resp. h =

resp. h =

As we have seen in the previous sections, (see Remark 3.1), if two surfaces are

associated by a Bécklund transformation BT (r,0, 5, 5), i.e., ¢ = p = g, then The-

orems 2.5, 2.8 and 2.9 reduce to the classical theorems of Béickluréd transformations
sin
r2
lar, r is determined by 6, since K is a fixed negative number. For this reason, in
this case, we denote the Bécklund transformation just by BT'(f). Without loss of
generality one may consider K = —1, i.e. v = 1. Moreover, since § =0, v = 1 and
€1 = 1, as an immediate consequence of the previous theorem, we get the following
corollary.

for surfaces in R3 with constant Gaussian curvature K = — < 0. In particu-

Corollary 4.11. Under the same conditions as in Theorem 4.10, if 3 = 0 and
v =1, i.e. if the surfaces X, X* and X have Gaussian curvature equal to -1, then

X and X* are congruent if, and only if, h is one of the following functions

1
- —A -
(P’ (10) or A’
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where ¢ and A are given by (4.14).

5. Appendix

We now prove the analytic version of the permutability theorem (Theorem 3.5),
for the Backlund transformations BT (74, 0;, ¢;, p;), @ = 1,2.

Remark 5.1. Given a solution 1 of the sine-Gordon equation (5.1), where Cg,
is the constant defined by (3.2) and B3, v are real numbers such that v — 6% >0,
we choose real numbers r; > 0, 0 < 0; < 7 and 0 < p;, ¢, < 5 (i = 1,2) and
01 # 05 satisfying (2.1), (2.12), (2.21) and (2.23). For eachi = 1,2, taking r = r;,
0=0; ¢=0¢, and p = p; we define bj;, 1 < j <3 given by (2.11), the constants
cki, 1 < k < 4 defined by (2.13) and the constants Sp;, 4 < n < 8 given by (3.7)
and (3.8). Moreover, we define the constants B', ~' defined by (2.2) which are
independent of i since (2.23) is satisfied.

In order to achieve our goal, we need to prove some lemmas. We define the real
numbers Ly (1 < ¢ < 6) below,

Ly = 531542 + 532541 + S51562 + S52561,
Ly = 531532 — S41542 + S51552 — S6152,
Ls = 531541 + 532512 + S51561 + 552562, 51
Ly = 53?2 - 532 - SZl + Sgl = 53?1 - 531 - 522 + S§2, oy
Ls = —53152 + S32561 — S11552 + S12551,
Le = —S531552 + S32551 + Sa1562 — Sa2561-
and the functions my (1 < s < 8) as

my = Ssoc08 wl — Sg2 sin Lt — S51 cos % + Sg1 sin %,

mo = S39C08 w— — Sy9sin w— — S31 cos Y2 2 + G, sin %,

mg = Sio cos 4L + S'39 sin 1/11 — S41 cos % — S318in %,

my = —Sg2COS % — Sko sin % + Sg1 cos % + S51 sin %,

ms = Sk cos wl — Sg1 sin wl — Ska cOs wz + Sga sin 1/’22 (5:2)

mg = S31C08 w— — Sy sin w— — S39 cos ¥z + S0 sin %

m7; = Sp cos 4L+ S'31 sin 1/11 — S0 Cos 1/12 — S398in %

mg = —Sg1cos % — Sx1 sin % + Sga cos % + Sgo sin %
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Lemma 5.2. Let v be a solution of the sine-Gordon equation (3.1) and letr;, 0;, ¢;,
pi,ﬁ/,v’, i = 1,2 be real numbers as described in Remark 5.1. Let Cg and
Ly (1 <£<6) be the real constants given by (3.13) and (5.1), respectively. Then

cosficosfs — 1] . cos By cosfy — 1
Li =|—————|sinCgy, Ly =|—————|cosCygy,
! |: sin 91 sin 92 By 2 sin 91 sin 92 By
Lg = —sin Cﬁ/,y/, L4 = — COS Cﬁ/,y/,
cos ) — cos by cos 0 — cos by
Ly =—¢1|————| cosCgr Lg =¢1 |————— | sinCgzrnr.
> { sin 01 sin 05 A 6 ! sin 61 sin 05 Al

Proof: Substituting the constants Sp;, 3 < n < 6, i = 1,2 given by (3.7) and
Remark 5.1 in (5.1) and using (2.21), (2.23) and (3.5), we obtain

2 1
L1 = 5011021’7 — B | cricaz + ca1c32 + 5(011041 + ca1631) | + c31¢42 + c32€41,
1, 5 2 1 1
L, = g( 11 —cn)y+B|—cn e+ 5631 + c21 | ca2 + 541 + c31¢32 — C41Ca2,

where § is given by (2.22). It follows from the expressions given by (2.13) for the
constants ci;, 1 <k <4, i =1,2, defined in Remark 5.1, that

o} sin? G103, L1 = biibar (7 + 2Br2 cos ¢y + 13082y )+
+b11ba1 (7 + 2811 cos ¢y + 17 cos dy )+
7b11b21(7’1 COSs d)l — T2 COS ¢2)2+

—ry sin ¢ by [cos 01 (5 + 12 cos ¢g) + cos b2 (B + 11 cos dy)] .

orisin® ¢ b3 Ly = 5(2b3, —sin®01)[y + 2Br cos ¢, + ricos?p, |+
+3 (263, —sin® 01)[y + 2Bra cos ¢, + r3cos>Py]+
—2(2b2, — sin® 01) (71 cos ¢y — 72 oS Py) %+
—ry sin ¢y b11[cos 01 (8 + r2 cos ¢y) + cos O(5 + 1 cos d; )]+
—l—r% sin? ¢4 cos 01 cos Os.
We observe from (2.24) that
71 8in ¢y b11(cos By — cosfy) = (1 cos ¢y — 73 cos ¢y) sin® 0y, (5.3)

where bj;, 1 < j

j < 3 are given by (2.11) and Remark 5.1. Hence, using the
identities (2.17), (2.1

8), (2.22), (2.23) we can write

I — 2(1 — cos 01 cos 02)b11b21 I — (sin2 01 — 2b2,)(cos 01 cosfy — 1)
e sin3 91 sin 92 ’ T '

sin3 91 sin 92
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As a direct consequence of (3.15) we obtain

I — {cos@l cosfy — 1

0 0y —1
] sin Clyr Ly— {cos 1 cos By

} cos Cgryr.

sin 01 sin 6, sin 04 sin 65

The identities
Lg = —sin Cﬂ/,y/, L4 = — COS CB’V’

follow directly from Lemma 3.2, Remark 5.1 and the real constants S,;, S/, n=

7,8, i = 1,2 defined in (3.7) and (3.8). Finally, in order, to prove the last two
equalities, we use the relations (2.22), (3.5), (3.7) and Remark 5.1 to obtain from
(5.1) that

1 1

Ls = &VD [011 <C42 + 5041> + €21 <632 + 5031)] )
1 1

Le = evVD [011 (Csz + 5031) — Ca1 <C42 + 5041)] ;

where § is given by (2.22) and D = v — %, Using the expressions given by (2.13)
for the constants ci;, 1 <k <4, ¢ = 1,2 defined in Remark 5.1, we can write
or2sin® ¢ b3, Ls = e1v/D[—2b11bo1 (71 COS ¢y — T3 COS Py )+
+71 8in ¢y ba1 (cos 61 — cosbs)],
or2sin® ¢ b3, L = e1v/D][(r1cosp, — o cos ¢y (sin® 0y — 2b3, )+
+71 8in ¢, b11(cos 1 — cosbs)].

It follows from the expressions of 8 and v given by (2.1) and of ba1, given in (2.11)
and Remark 5.1 that v/ Dsin?6; = —ry sin @1b21. Tt follows from (5.3) that

—e1(cosfy — cos 92)(sin2 01 — 20b3,) —2e1b11b21(cos 01 — cos 02)
Ls = ; Le = . 4 .
dsin” 04

§sin® 04
Therefore, using (2.22) and (3.15) we obtain

cosf; — cos by cos 1 — cos by

sin 91 sin 92

L5 = —€1 |: :| COS Cﬁ/,y/, L6 =£&1 |: :| sin Cﬁ/,y/.

sin 91 sin 92
O
Lemma 5.3. Let v, ¢, 1y be the function described in Remark 4.9. We consider

Ly, 1 < k < 3 the real constants defined in (5.1) and ms, 1 < s < 8 the functions
given by (5.2). If

' = mimg—moms,

7ANY

mams — Moy, Ag m4me — MomMms, (54)

Ag = mimy —msms, Ay = mimg—mams,
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then
r = |Li— Lscos (wl_%)- cos (wlng)Jr
[Lz — Ly cos (%;%)} sin (%;%) ,
N = —Lg — L cos (wl_%)- cos (wlng) + (5.5)
Ly — Lo cos (wl_wz)- sin (wl';p?) ,
Ny = —Lssin (wlg%) sin (%;%) + Lgsin (@) cos (%) .

Moreover, N3 = —Ng and Ny = /\q.

Proof: Using (5.1), (5.2) and (5.4) a straightforward computation shows that

L Ly
r = —73((:051#1 + costpy) — 7(511&1/11 + siny)+

+1L1 cos (w +¢2) + Lo sin( 1;%) ,

L L
Ar = —(costhy +cosghp) — X (siney + singy)+

+ L3 cos (w1+w2) + Ly sin (w1+w2) ,
L Le , . .
Ny = 75(0051#1 —cost)y) + ;(smwl — sin,).

Applying some trigonometric identities, we obtain (5.5). Analogously, we prove
that Ag = _AQ and A4 = Al. O

With the aid of the lemmas above, we will obtain the analytic interpretation of
the permutability theorem for linear Weingarten hyperbolic surfaces in R3.

Proof of Theorem 3.5: By hypothesis, ,, ¢ = 1,2, are associated to 1 by
Bécklund transformations BT (r;, 0, ¢;, p;). Then its follows from (3.6) that

1/11@1 +1,, = 2S31cos g’ cos ﬁ — 2541 cos % sin %—i—
428551 sin % cos 1/11 — 2561 sin % sin h

(5.6)
1/11112 +1,, = 2S3isin g’ sin & + 2541 sm cos %1 +
—25751 cos % gin h — 2541 COS 5 COS %

2 2
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1/12@1 +1,, = 2S33cos g’ cos ﬁ — 2S5 cos g’ %—i—
428552 sin 5 cos wz — 2569 sin % sin ﬁ

(5.7)
1/’2,12 +1,, = 2S3zsin g’ sin %2 + 28545 sm cos %—i—
—28555 cos g’ sin ﬁ 2562 cos ’é’ cos %

where Sp;, 3 < n <6, i = 1,2 are the constants defined by (3.7) taking r =
1,0 = 0,0 = ¢;,p = p;.

We want to determine a solution ¢ of the sine-Gordon equation (3.1) such that
Y, (i = 1,2) is associated to 1" by a Bicklund transformation BT(r;,0;,¢;,p;),
1 <i# j < 2. Without loss of generality, we can change v* by ¥* + 27. So, we
want to determine a function 1* that satisfies the following differential equations

Yy 4, + Y, = —2S33c0s 7’”2 cos wl + 25,9 cos 11}2 sin ——|—
—28S59 sin % cos 1/11 + 2562 sin % sin %,
(5.8)
Y1y + Y., = —2S3sin 11)2 sin ¢1 — 2549 sin % %—i—
42559 cos % sin & + 2S5¢2 cos 1/’2 cos 11)2 ,
Vo + 0y, = —2S831c08 %* cos wz + 2541 cos 1/’2 sin %qL
—2S51 sin 11}2 cos % + 2561 sin % sin %,
) . (5.9)
Yy 4y + Y, = —2S3sin % sin % — 28,7 sin % cos %+
+2S551 cos w; sin %2 + 25641 cos w; cos %

We suppose that 1" exits. Subtracting the first equation of (5.8) (resp. 5.9)
from the first equation of (5.6) (resp. (5.7)) we obtain two expressions for ¢, —,, .
Similarly, subtracting the second equation of (5.8) (resp. 5.9) from the second
equation of (5.6) (resp. (5.7)) we obtain two expressions for ¢, — 1, . Equating
the expressions obtained in each case, we conclude that )" must satisfy the matrix
equation

l mi mo sin % me ] sin 15
m3 m4 % 0s %

mg C

where mg, 1 < s <8 are given by (5.2). Using (5.4), its follows that

sin %—* 1 AN Ny sin 329
cos % Ay VAN cos %
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where the functions T and A, 1 < k < 4, are given by (5.4). Now, using Lemmas

5.2 and 5.3 we have

[cos(&l —02) — 1+ (cos(61 + 02) — 1) tan? (@

)] sin (% + ngr)

37

F = )
[1 + tan? (%sz )] sin @1 sin 62
[— (cos(B1 — 62) — 1) + (cos(61 + 02) — 1) tan? (%;%)] sin (%;% + CM)
N =
[1 + tan? %)] sin 64 sin A2
R i : Pt
A 2e1(cos by — cos b2) tan ( = 2) sm( 12 CBW’)

[1 + tan? (

cos(0y +62) —1

21542 | sin 0y sin 0

cos 01 — cos by

We ob that ————— = d ———MW—— = — h i
e observe tha cos(01 —0a) — 1 an cos(01 —0a) — 1 1, where 7 is
given by (4.13). Therefore,
Al 1— 772 tan2 (11)1;11’2) A2 —251771]811 (11’1;%%)
— = and — = .
I 1+n2tan2 (11)1;1112) I 1+n2tan2 (11)1;1112)
Substituting these expressions into (5.10), we obtain
1 —ntan ( ) 25177tan 4%)
sin 3[’2—* B 1+ n? tan? ( 1 ) 1 + 7?2 tan? wlz% sin }22
cos % 72517]'5&11 (¢1*¢2) 1— 772 tan ¢1*¢2 cos %
2 (Y% -
1+n2tan ( L 2) 1+ n2 tan? ( 1 )
On the other hand, writing 1/’_ = ¥ 5 —¥ + %, we have
[ v =y ety
1 — tan? ( 1 ) 2tan ( T )
sin g || e (UF) 14 tan? (5 sin ¥
COS% *2&111(1/} 1 w) 1 *taHQ ¥ 4_1/} COS%
1 + tan? (_w;w) 1+ tan? (—Wﬁ)

Equating the right hand side of the last
determined by the algebraic relation

tan (¢*4—¢

where 7 is given by (4.13).

last equalities, we conclude that ™ is

) _ eyntan (wl : wz) ,

Conversely, we can show that the function ¢* defined by this relation satisfies

equations (5.8) and (5.9).

)



38

C. GOULART

Acknowledgments

The author is very grateful to the anonymous referees for the reading of this

paper and for their constructive comments and suggestions that have greatly con-
tributed to its improvement. The author would also like to thank the editors and
reviewers of this journal.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

References

. Aledo, J.A. and Espinar, J.M. Hyperbolic linear Weingarten surfaces in R3, Bull. Brazilian

Math. Soc. 38 (2007), 291-300.

Backlund. A. V., Einiges tiber Curve and Flichentransformationen, Lunds Universitets Ar-
sskrift 10 (1875).

Bécklund. A. V., Concerning surfaces with constant negative curvature transled by
E.M.Coddington, New Era Printing Co., Lancaster pa, 1905.

Bianchi, L., Sopra le deformazioni isogonali delle superficie a curvatura constante in geome-
tria elliptica ed iperbolica, Annali de Matem. 3, (1899), 185-298.

Bianchi, L., Lezioni di Geometria Differenciale, Bologna Nicola Zanichelli Ed., 1927.

Corro, A. V., Ferreira, W. and Tenenblat, K., On Ribaucour transformation for hypersurfaces,
Mat. Contemp. 17 (1999), 137-160.

Corro, A. V., Ferreira, W. and Tenenblat, K., Minimal surfaces obtained by Ribaucour trans-
formation, Geom. Dedicata 96 (2003), 117-150.

Corro, A. V., Ferreira, W. and Tenenblat, K., Ribaucour transformation for constant mean
curvature and linear Weingarten surfaces, Pac. J. Math. 212 (2003), 265-296.

Corro, A.V., Martinez, A. and Tenenblat, K., Ribaucour transformations for flat surfaces in
the hyperbolic 3-space, J. Math. Anal, Appl. 412 (2014), 720-743.

Gélvez, J.A., Martinez A. and Miladn F., Linear Weingarten surfaces in R, Monatsh. Math.
138 (2003), 133-144.

Goulart, C., Tenenblat, K. On Bdcklund and Ribaucour transformations for surfaces with
constant negative curvature, Geom. Dedicata, 181 (2015), 83-102.

Hertrich-Jeromin, U. and Pedit, F., Remarks on the Darbouzx transform of isothermic sur-
faces, Doc. Math. 2 (1997), 313-333.

Lemes, M. V., Roitman, P., Tenenblat, K. and Tribuzy, R., Lawson correspondence and
Ribaucour transformation, Trans. Amer. Math. Soc. 364 (2012), 6229-6258.

Lemes, M. V. and Tenenblat, K., On Ribaucour transformation and minimal surfaces, Mat.
Contemp. 29 (2005), 13-40.

Lépez, R., Rotational linear Weingarten surfaces of hyperbolic type, Israel J. Math. 167
(2008), 283-302.

Lépez, R., Linear Weingarten surfaces in Euclidean and hyperbolic space, Matem. Contemp.
35 (2008), 95-113.

Rosenberg, H. and S& Earp, R., The geometry of properly embedded special surfaces in R3,
e.g., surfaces satisfying aH + bK = 1 where a and b are positive, Duke Math. J. 73 (1994),
291-306.

Tenenblat, K., Transformacoes de superficies e aplicagoes, IMPA, Rio de Janeiro, 1981.
Tenenblat, K., Transformations of manifolds and applications to differential equations, Ad-

dison Wesley Longman, Pitman Monographs and Surveys in Pure and Applied Mathematics
93, 1998.



ON BACKLUND AND RIBAUCOUR TRANSFORMATIONS 39

20. Tenenblat, K. and Wang, Q., On Ribaucour transformation for hypersurfaces in spaces forms,
Ann. of Global An. and Geom. 29, (2006), 157-185.

21. Tenenblat, K. and Wang, Q., New constant mean curvature surfaces in the hyperbolic space,
Ilinois J. Math. 53, (2009), 135-161.

Claudiano Goulart,

Departamento de Ciéncias Ezxatas,
Universidade Estadual de Feira de Santana,
CEP 44036-900 - Feira de Santana - BA,
Brazil.

E-mail address: goulart.fsa@gmail.com



	Introduction
	Bäcklund transformations for hyperbolic linear Weingarten surfaces in R3 - Geometric Theory
	Bäcklund Theorem for hyperbolic linear Weingarten surfaces
	The Geometric Integrability Theorem
	The Geometric Permutability Theorem

	Analytic interpretation of Bäcklund transformation
	Analytic Interpretation of the Integrability Theorem
	Analytic Interpretation of the Permutability Theorem

	The composition of Bäcklund transformations and the Ribaucour transformation for hyperbolic linear Weingarten surfaces in R3
	Ribaucour Transformation
	Necessary and sufficient conditions

	Appendix

