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abstract: We consider Bäcklund transformations for hyperbolic linear Wein-
garten surfaces in Euclidean 3-space. The composition of these transformations is
obtained in the Permutability Theorem that generates a 4-parameter family of sur-
faces of the same type. The analytic interpretation of the geometric results is given
in terms of solutions of the sine-Gordon equation. Since a Ribaucour transformation
of a hyperbolic linear Weingarten surface also gives a 4-parameter family of such
surfaces, one has the following natural question. Are these two methods equiva-
lent, as it occurs with surfaces of constant positive Gaussian curvature or constant
mean curvature? In this paper, we obtain necessary and sufficient conditions for the
surfaces given by the two procedures to be congruent.
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1. Introduction

A surface M contained in the Euclidean space R
3 whose mean and Gaussian cur-

vatures, H and K, satisfy a relation of the form α + 2βH + γK = 0, α, β, γ ∈ R,
is called a linear Weingarten surface. The development of the theory of these sur-
faces started in the early 19 hundreds. More recent results obtained by several
authors can be found in [1], [8], [10], [15]- [17]. If the linear Weingarten surface
satisfies β2 − αγ < 0, then it is said to be hyperbolic. In this case, without loss
of generality, we may assume that α = 1. Moreover, if β = 0, and γ = 1 then M
is a pseudo-spherical surface, i.e., K = −1, and there is a well known theory on
Bäcklund transformations for pseudo-spherical surfaces studied by Bäcklund [2,3]
and on composition of such transformations called Permutability theorem obtained
by Bianchi [4] .

In this paper, we study an extension of the concept of pseudo-spherical line
congruence, called a hyperbolic linear Weingarten congruence. Namely, we consider
a diffeomorphism between surfaces M and M ′ such that at corresponding points
p ∈ M and p′ ∈ M ′, the straight line determined by these points has a constant
angle φ with the normal Np and a constant angle ρ with the normal N ′

p′ . Moreover,
we assume that the segment pp′ has constant length r and Np has a constant
angle θ with N ′

p′ . Then M and M ′ are hyperbolic linear Weingarten surfaces

satisfying, respectively, 1 + 2βH + γK = 0 and 1 + 2β′H ′ + γ′K ′ = 0, where
β2 − γ = (β′)2 − γ′ < 0. We observe that whenever φ = ρ = π/2, then the theory
coincides with the classical results for pseudo-spherical surfaces.

The Integrability Theorem shows that given such a surface M there exists a
3-parameter family of surfaces M ′, satisfying 1 + 2β′H ′ + γ′K ′ = 0, associated to
M by a hyperbolic linear Weingarten congruence. The surfaces M ′ are said to be
associated to M by a Bäcklund transformation for hyperbolic linear Weingarten
surfaces.

The Permutability theorem shows that the composition of such transformations
is commutative when one chooses the parameters apropriately. In this case, starting
with a hyperbolic linear Weingarten surface M satisfying 1 + 2βH + γK = 0, one
gets a 4-parameter family of surfacesM∗, satisfying 1+2βH∗+γK∗ = 0, with the
same constants β, γ of the surface M .

Another transformation, called Ribaucour transformation, also relates linear
Weingarten surfaces in space forms (see [8], [20]). Ribaucour transformations for
hypersurfaces, parametrized by lines of curvature, and for surfaces with constant
Gaussian or mean curvatures (including minimal surfaces) were classically studied
by Bianchi [5]. More recent applications of this transformation can be found for
example in [6]- [9], [14], [20] and [21]. In [8], Corro-Ferreira-Tenenblat proved that
starting with a linear Weingarten surface M in R

3, satisfying α + 2βH + γK =
0, with β2 − αγ 6= 0, then appropriate Ribaucour transformations provide a 4-
parameter family of surfaces M̃ satisfying α + 2βH̃ + γK̃ = 0. In particular, this
holds for hyperbolic linear Weingarten surfaces.

Therefore, starting with a hyperbolic linear Weingaten surface M in R
3, sat-

isfying 1 + 2βH + γK = 0, one gets a 4-parameter family of hyperbolic linear
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Weingarten surfaces with the same constants β, γ, either by the composition of
Bäcklund transformations or by Ribaucour transformations. Hence, it is natural to
ask if these two methods are equivalent, i.e., if the surfaces obtained by these two
methods are congruent. In this paper, we will show that in general the families ob-
tained by these procedures are distinct, in contrast with what happens in the case of
constant positive Gaussian curvature (see for example Tenenblat [18]) and surfaces
of nonzero constant mean curvature (Jeromin-Pedit [12]). In the particular case
K = −1, necessary and sufficient conditions were established by Goulart-Tenenblat
[11], for a composition of Bäcklund transformations to be congruent to a Ribaucour
transformation.

The analytic interpretation of the above geometric results are given in terms of
the sine-Gordon equation. A hyperbolic linear Weingarten surface, parametrized
by lines of curvature and satisfying 1 + 2βH + γK = 0 is determined by its first
fundamental form ds2 = γ(cos2 ψ2 dx

2
1 + sin2 ψ2 dx

2
2), where ψ satisfies the sine-

Gordon equation ψx1x1
− ψx2x2

= sin(ψ + Cβγ) and Cβγ is a constant defined
in terms of β and γ. In particular, when β = 0 and γ = 1 i.e., K = −1, then
C01 = 0. Although Hilbert theorem says that there are no complete surfaces with
K = −1 in R

3, there are many complete hyperbolic linear Weingarten surfaces in
the Euclidean 3-space (see [8], [16]).

The analytic interpretation of the Bäcklund transformation gives an integrable
system of equations, in terms of ψ and 2 parameters, whose solutions ψ′ give new
solutions of the sine-Gordon equation. By considering ψ′ and ψ′′ two distinct
such solutions, the analytic permutability theorem gives a superposition formula
that provides an algebraic expression for new solutions ψ∗, which depend on 4
parameters. Moreover, the Ribaucour transformation gives an integrable linear
system in terms of ψ and a constant CR, whose solutions ψ̃ depend also in 4-
parameters and satisfy the sine-Gordon equation. The solutions ψ∗ and ψ̃ obtained
by these procedures are distinct.

The paper is organized as follows: In Section 2, we introduce the hyperbolic lin-
ear Weingarten congruence and we prove Bäcklund Theorem for hyperbolic linear
Weingaten surfaces, the Geometric Integrability Theorem and the Geometric Per-
mutability Theorem. In Section 3, considering the correspondence between such
surfaces and solutions of the sine-Gordon equation, we prove the Analytic Inte-
grability Theorem and we state the Analytic Permutability Theorem, whose proof
is given in the Appendix. In Section 4, we start recalling some results on Ribau-
cour transformation. Then we obtain necessary and sufficient conditions for the
hyperbolic linear Weingarten surfaces, obtained by the composition of Bäcklund
transformations, to be congruent to those obtained by Ribaucour transformations.
These conditions are given in terms of the first fundamental forms i.e., in terms of
the corresponding solutions of the sine-Gordon equation.

2. Bäcklund transformations for hyperbolic linear Weingarten surfaces
in R

3 - Geometric Theory

In this section, we introduce the concept of hyperbolic linear Weingarten congru-
ence and we study a Bäcklund transformation for hyperbolic linear Weingarten
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surfaces in R
3. Moreover, we also prove the integrability and the permutability

theorems for these transformations.

2.1. Bäcklund Theorem for hyperbolic linear Weingarten surfaces

Definition 2.1. We say that M ⊂ R3 is a Weingarten surface if there exists
a differentiable function relating the mean and Gaussian curvatures H and K of
M . A surface M is said to be linear Weingarten if H and K satisfy a linear
relation, i.e., there exist real constants α, β, γ such that α + 2βH + γK = 0.
Moreover M is hyperbolic, if β2 − αγ < 0, elliptic, if β2 − αγ > 0 and tubular, if
β2 − αγ = 0.

Remark 2.2. If M is a hiperbolic linear Weingarten surface satisfying α+2βH+
γK = 0 then, without loss of generality, we can assume that α = 1 and γ > 0.

Definition 2.3. Let l :M −→M ′ be a diffeomorphism between surfaces M,M ′ ⊂
R

3. For each p ∈ M and p′ = l(p) ∈ M ′ with p′ 6= p, denote by v = v(p) the
unit vector in the direction of the straight line passing through p and p′. Let Np
(resp. N ′

p′) be the unit vector normal to M (resp. M ′) in p (resp. p′). We say
that l is a hyperbolic linear Weingarten congruence with constants (r, θ, φ, ρ), where
r > 0, 0 < θ < π, 0 < φ, ρ ≤ π

2 , if the distance between p and p′ is constant equal
to r, the angle between Np and N ′

p′ is θ, the angle between Np and v is φ and the
angle between N ′

p′ and (−v) is equal to ρ.

Remark 2.4. When φ = ρ = π/2, then the direction of the line congruence is
tangent to both surfaces M and M ′ and it reduces to the so called pseudo-spherical
line congruence of surfaces in R

3.

The following theorem justifies the definition of a hyperbolic linear Weingarten
congruence, for a diffeomorphism l as in Definition 2.3. Moreover, it reduces to the
classical Bäcklund Theorem between pseudo-spherical surfaces when φ = ρ = π/2.

Theorem 2.5. (Bäcklund Theorem for hyperbolic linear Weingarten sur-
faces) Let M and M ′ be two surfaces imersed in R

3. Suppose there exists a hy-
perbolic linear Weingarten congruence l : M −→ M ′ with constant (r, θ, φ, ρ) as
in Definition 2.3. For any p ∈ M and p′ = l(p) ∈ M ′, suppose that the normal
vectors Np and N ′

p′ and the vector v = v(p) are not coplanar. Then M and M ′ are
hyperbolic linear Weingarten surfaces. More precisely, the Gaussian curvature K
(resp. K ′) and mean curvature H (resp. H ′) of M (resp. M ′) satisfy the relation
1 + 2βH + γK = 0 (resp. 1 + 2β′H ′ + γ′K ′ = 0), where

β =
−r(cosφ+ cos ρ cos θ)

sin2 θ
, γ =

r2 sin2 ρ

sin2 θ
, (2.1)

β′ =
−r(cos ρ+ cosφ cos θ)

sin2 θ
, γ′ =

r2 sin2 φ

sin2 θ
. (2.2)

Moreover, we have that (β′)2 − γ′ = β2 − γ < 0.
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Proof: Let {e1, e2, e3} and {e′1, e′2, e′3} be orthonormal frames adapted to M and
M ′, respectively such that, for every p ∈M , e3(p) = Np, e

′
3(p

′) = N ′
p′ and the sets

{v, e1, e3} and {v, e′1, e′3} are linearly dependent. If X is a local parametization of
M in p then

X ′ = X + r sinφe1 + r cosφe3 (2.3)

is a local parametization of M ′ in p′.
We consider aij , 1 ≤ i, j ≤ 3 satisfying e′i =

∑3
j=1 aijej . Since l :M →M ′ is a

hyperbolic linear Weingarten congruence with constants (r, θ, φ, ρ) it follows that

a31 =
− cosρ− cosφ cos θ

sinφ
, a32 = −

√

sin2 θ − a231,

a33 = cos θ, a11 =
− sinφ− a31 cos ρ

sin ρ
,

a12 =
−a32 cos ρ

sin ρ
, a13 =

− cosφ− cos θ cos ρ

sin ρ
,

a21 =
−a32 cosφ

sin ρ
, a22 =

a31 cosφ− cos θ sinφ

sin ρ
,

a23 =
a32 sinφ

sin ρ
.

(2.4)

Let ω1, ω2, ω12, ω13, ω23 (resp. ω′
1, ω

′
2, ω

′
12, ω

′
13, ω

′
23) be the dual and the conec-

tion forms associated to the orthonormal frame {e1, e2, e3} (resp. {e′1, e′2, e′3}).
Differentiating (2.3) and using the structure equations, we have



















a11ω
′
1 + a21ω

′
2 = ω1 − r cosφω13,

a12ω
′
1 + a22ω

′
2 = ω2 + r sinφω12 − r cosφω23,

a13ω
′
1 + a23ω

′
2 = r sinφω13.

(2.5)

Since the vectors e′3, e3, v are not coplanar then a32 6= 0. Using (2.4), we obtain

ω′
1 =

(−a23
a32

)

ω1, ω′
2 =

1

a32
{a13ω1 + r sin ρω13}.

Therefore, it follows from the second equation of (2.5) that

ω12 = c1ω1 + c2ω2 + c3ω13 + c4ω23, (2.6)

where

c1 =

( −a31
ra32 sinφ

)

, c2 =

( −1

r sinφ

)

,

c3 =

(

a22 sin ρ

a32 sinφ

)

, c4 =

(

cosφ

sinφ

)

.

(2.7)

Differentiating (2.6) it follows from the structure equations, the definition of
mean and Gaussian curvatures and the Gauss equation that

dω12 = [(c21 + c22) + 2(c1c3 + c2c4)H + (c23 + c24)K](ω1 ∧ ω2).
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On the other hand, we kwon that dω12 = −K(ω1 ∧ ω2). Therefore, the mean and
Gaussian curvature of M satisfy

(c21 + c22) + 2(c1c3 + c2c4)H + (c23 + c24 + 1)K = 0. (2.8)

The constants c1, c2, c3, c4 defined in (2.7) imply that

c21 + c22 =
sin2 θ

r2a232 sin
2 φ

, c23 + c24 + 1 =
r2 sin2 ρ

r2a232 sin
2 φ

c1c3 + c2c4 =
−r(cosφ+ cos ρ cos θ)

r2a232 sin
2 φ

.

(2.9)

In other words, M is a linear Weingarten surface satisfying 1 + 2βH + γK =
0, where β and γ are given by (2.1). Interchanging φ and ρ in the previous
computations, we obtain that M ′ is also a linear Weingarten surface satisfying
1 + 2β′H ′ + γ′K ′ = 0, where β′ and γ′ are given by (2.2). Moreover, using the
constants a31 and a32 defined by (2.4), we have

(β′)2 − γ′ = β2 − γ = −r
2 sin2 φa232
sin4 θ

< 0. (2.10)

Hence, M and M ′ are hyperbolic linear Weingarten surfaces. ✷

Remark 2.6. The Equation (2.6) is called Bäcklund transformation for hyper-
bolic linear Weingarten surfaces in R

3 and it is denoted by BT (r, θ, φ, ρ), where
r, θ, φ, ρ are the constants introduced in Definition 2.3.

We conclude this section by establishing some notation and some identities that
will be used throughout this paper.

Remark 2.7. Given real numbers β, γ such that γ−β2 > 0, we consider constants
r > 0, 0 < θ < π and 0 < φ, ρ ≤ π

2 satisfying (2.1).We denote by b1, b2, b3 the
real constants

b1 =
−(cos ρ+ cosφ cos θ)

sinφ
, b2 = −

√

sin2 θ − b21,

b3 =
b1 cosφ− sinφ cos θ

sin ρ
.

(2.11)

We observe that the hypothesis γ − β2 > 0 ensures that

sin2 θ − b21 = sin2 θ − (cos ρ+ cosφ cos θ)2

sin2 φ
> 0. (2.12)

Thus, the constants c1, c2, c3, c4 given by (2.7) are written in the form

c1 =
−b1

rb2 sinφ
, c2 =

−1

r sinφ
, c3 =

b3 sin ρ

b2 sinφ
, c4 =

cosφ

sinφ
. (2.13)
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Analogous to (2.9), we have that

c21 + c22 =
sin2 θ

r2 sin2 φb22
, c23 + c24 =

r2 sin2 ρ

r2 sin2 φb22
− 1

c1c3 + c2c4 =
−r(cosφ+ cos ρ cos θ)

r2 sin2 φb22
,

(2.14)

We can also prove that

−c21 + c22 =
sin2 θ − 2b21
r2 sin2 φb22

,

−c1c3 + c2c4 =
(2b21 − sin2 θ) cosφ− b1 sinφ cos θ

r sin2 φb22
,

−c23 + c24 =
(sin2 θ − 2b21)cos

2φ+ 2b1 sinφ cosφ cos θ − cos2θ sin2 φ

sin2 φb22
,

−c1c2 =
−b1

r2 sin2 φb2
,

c1c4 + c2c3 =
−2b1 cosφ+ sinφ cos θ

r sin2 φb2
,

−c3c4 =
−b1cos2φ+ sinφ cosφ cos θ

sin2 φb2
.

(2.15)

and

(β′)2 − γ′ = β2 − γ = −r
2 sin2 φb22
sin4 θ

, (2.16)

γ + 2βr cosφ+ r2 cos2 φ =
r2 sin2 φ(1− b21)

sin2 θ
, (2.17)

β + r cosφ =
r cos θ sinφb1

sin2 θ
. (2.18)

where β′, γ′ and b1, b2 are given by (2.2) and (2.11), respectively.

2.2. The Geometric Integrability Theorem

The Geometric Integrability Theorem, that we prove below, shows that given a
hyperbolic linear Weingarten surface M satisfying (2.6) there exists a family of
surfaces M ′ associated to M by a hyperbolic linear Weingarten congruence.

Theorem 2.8. (Geometric Integrability Theorem) Let M ⊂ R
3 be a hyper-

bolic linear Weingarten surface with Gaussian curvature K and mean curvature H
satisfying 1 + 2βH + γK = 0. We consider real numbers r > 0, 0 < θ < π and
0 < φ, ρ ≤ π

2 satisfying (2.1). Let p0 ∈ M and let v0 ∈ R
3 be a unit vector whose

angle with Np0 (normal to M at p0) is φ. Suppose that vT0 , the tangential com-
ponent of v0, is not a principal direction. Then there exists a linear Weingarten
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surface M ′ ⊂ R
3 with Gaussian curvature K ′ and mean curvature H ′, satisfying

1+2β′H ′+γ′K ′ = 0, where β′, γ′ satisfy (2.2) and a hyperbolic linear Weingarten
congruence l with constants (r, θ, φ, ρ) between neighborhoods of p0 in M and l(p0)
in M ′, such that the straight line connecting p0 to l(p0) is in the direction of v0.

Proof: Since M is a hyperbolic linear Weingarten surface satisfying 1 + 2βH +
γK = 0 then, taking real numbers r > 0, 0 < θ < π e 0 < φ, ρ ≤ π

2 such that (2.1)
is verified, we have

sin2 θ −
(

cos ρ+ cosφ cos θ

sinφ

)2

=
sin4 θ

r2 sin2 φ
(γ − β2) > 0. (2.19)

Thus, we can consider the real constants b1, b2, b3 and c1, c2, c3, c4 defined by
(2.11) and (2.13), respectively. The idea is to apply Frobenius theorem to construct
an orthonormal frame {e1, e2, e3} adapted to M , defined in a neighborhood of p0,
whose dual and connection forms satisfy

ω12 = c1ω1 + c2ω2 + c3ω13 + c4ω23, (2.20)

such that e1(p0) =
vT0

| vT0 | . Let ℑ be the ideal generated by the 1-form

ζ = ω12 − c1ω1 − c2ω2 − c3ω13 − c4ω23.

Differentiating and using the structure equations we have

dζ = dω12 − c1dω1 − c2dω2 − c3dω13 − c4dω23 = −Kω1 ∧ ω2 + ω12 ∧ µ,

where µ = −c1ω2 + c2ω1 − c3ω23 + c4ω13. Substituting ω12 = ζ + c1ω1 + c2ω2 +
c3ω13 + c4ω23 and using (2.14) we obtain

dζ = ζ ∧ µ− 1

r2b22 sin
2 φ

[

sin2 θ − 2r(cosφ+ cos ρ cos θ)H + (r2 sin2 ρ)K
]

ω1 ∧ ω2.

By hypothesis, the constants r, θ, φ, ρ satisfy (2.1) and M is a hyperbolic linear
Weingarten surface such that 1 + 2βH + γK = 0. Thus, dζ = ζ ∧ µ, i.e., ℑ is
closed under exterior differentiation. By Frobenius theorem, the equation ζ = 0 is
integrable. Therefore, there exists an adapted frame {e1, e2, e3} such that (2.20)

holds in a neighborhood of p0, with initial condition e1(p0) =
vT0

| vT0 | . Since the angle
between v0 and Np0 = e3(p0) is equal to φ and the unit vectors e3(p0), e1(p0) and
v0 are coplanar then v0 = sinφe1(p0) + cosφe3(p0). Define, in this neighborhood,
the vector function

v = sinφe1 + cosφe3.

By hypothesis, e1(p0) is not a principal direction hence we can assume, by continu-
ity, that e1 is not a principal direction on an open subset V of this neighborhood.
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We consider V parametrized by X : U ⊂ R2 −→ V ⊂ M ⊂ R
3 and define

X ′ : U −→ R
3 by

X ′ = X + rv = X + r sinφe1 + r cosφe3.

Differentiating and using the structure equations, we obtain dX ′ = z1ω1 + z2ω13,
where

z1 = e1 −
b1
b2
e2, z2 = −r cosφe1 +

rb3 sin ρ

b2
e2 + r sinφe3.

Since e1 is not a principal direction and r sinφ 6= 0 we conclude that M ′ =
X ′(U) is a regular surface and z1, z2 are tangent toM

′. Moreover, e′3 = b1e1+b2e2+
cos θe3 is a unit vector normal to M ′. Consequently, M ′ is related to X(U) by a
hyperbolic linear Weingarten congruence, l with constants r, θ, φ, ρ. Using Theorem
2.5, we conclude that M ′ is a hyperbolic linear Weingarten surface satisfying 1 +
2β′H ′ + γ′K ′ = 0, where β′, γ′ are given by (2.2). ✷

Observe that Theorem 2.8 shows that given a hyperbolic linear Weingarten
surfaceM in R

3 there exists a 3-parameter family of surfacesM ′ associated toM by
a hyperbolic linear Weingarten congruence. The three parameters are determined
by the unit vector v0 and the four constants (r, θ, φ, ρ) satisfying two conditions
given by (2.1).

2.3. The Geometric Permutability Theorem

In this section, we consider the composition of Bäcklund transformations for hy-
perbolic linear Weingarten surfaces in R

3. We observe that applying a Bäcklund
transformation to a surface in R

3 satisfying 1+2βH+γK = 0, we obtain new sur-
faces of the same type but with different constants β and γ. We will now consider
a composition of such transformations so that the surface obtained by this compo-
sition has the same constants as the surface we started with. This is obtained by
imposing certain conditions on the parameters and in this case, the composition is
commutative.

Let M,M ′,M ′′ be hyperbolic linear Weingarten surfaces in R
3. Suppose that

M satisfies 1 + 2βH + γK = 0 and that there are hyperbolic linear Weingarten
congruences l1 : M → M ′ and l2 : M → M ′′ with constants (r1, θ1, φ1, ρ1) and
(r2, θ2, φ2, ρ2) respectively, where ri > 0, 0 < θi < π and 0 < ρi, φi ≤ π

2 (i = 1, 2),
with θ1 6= θ2. We want to construct a hyperbolic linear Weingarten surface M∗,
with the same constants β, γ, and hyperbolic linear Weingarten congruences l∗2 :
M ′ → M∗ and l∗1 : M ′′ → M∗ with constants (r2, θ2, φ2, ρ2) and (r1, θ1, φ1, ρ1),
respectively, such that

l∗2 ◦ l1 = l∗1 ◦ l2.
The definition of the hyperbolic linear Weingarten congruences l1 and l2 to-

gether with the Bäcklund Theorem (Theorem 2.5) allows us to obtain the following
equalities from (2.1)

r2 sin ρ2 = δr1 sin ρ1,

r2(cosφ2 + cos ρ2 cos θ2) = δ2r1(cosφ1 + cos ρ1 cos θ1),
(2.21)
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where δ is the positive constant defined by

δ =
sin θ2
sin θ1

. (2.22)

Moreover, admitting the existence of the hyperbolic linear Weingarten surface
M∗ and of the hyperbolic linear Weingarten congruences l∗1 and l∗2 , as previously
described then, using again Theorem 2.5, we conclude that necessarily the following
equalities hold

r2 sinφ2 = δr1 sinφ1,

r2(cos ρ2 + cosφ2 cos θ2) = δ2r1(cos ρ1 + cosφ1 cos θ1),
(2.23)

where δ is given by (2.22). Therefore, assuming that (2.23) is satisfied and using
(2.21) we obtain

ri cos ρi =
ri cosφi(cos θ1 cos θ2 − 1) + rj cosφj sin

2 θi

cos θi − cos θj
, 1 ≤ i 6= j ≤ 2.

(2.24)
As a direct consequence of this equation we obtain

r1 cos ρ1 cos θ2 − r2 cos ρ2 cos θ1 + r2 cosφ2 − r1 cosφ1 = 0. (2.25)

Let {e1, e2, e3} and {e1, e2, e3} be orthonormal frames adapted toM and denote
by E the orthogonal 2× 2 matrix (with positive determinant) such that

ei =
2

∑

j=1

Eijej , i = 1, 2, E22 = E11, E21 = −E12. (2.26)

We consider also orthonormal frames {e′1, e′2, e′3} in M ′ and {e′′1 , e′′2 , e′′3} in M ′′ as
in Theorem 2.5, i.e., if v1 = v1(p) (resp. v2 = v2(p)) is the direction of the straight
line joining the points p ∈ M and p1 = l1(p) ∈ M ′ (resp. p2 = l2(p) ∈ M ′) then
the sets {e1, e3, v1} and {e1, e3, v2} are linearly dependent. Then,

{

v1 = sinφ1e1 + cosφ1e3,
v2 = sinφ2e1 + cosφ2e3.

(2.27)

Let a′ij and a′′ij (1 ≤ i, j ≤ 3) be such that

e′i =

3
∑

i=1

a′ijej and e′′i =

3
∑

i=1

a′′ijej , e3 = e3. (2.28)

Then using the proof of Theorem 2.5 we have that a′ij (resp. a′′ij) are given by
(2.4) taking r = r1, θ = θ1, φ = φ1 and ρ = ρ1 (resp. r = r2, θ = θ2, φ = φ2
and ρ = ρ2). Let δ be the real number given by (2.22). It follows from (2.21) and
(2.23) that

a′′13 = δa′13, a′′31 = δa′31, a′′32 = δa′32 and a′′23 = δa′23. (2.29)
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We consider E = (Eij) the orthogonal matrix, with positive determinant, de-
fined by (2.26). Since θ1 6= θ2, we observe that the function

ξ = sin θ1 sin θ2E11 + cos θ1 cos θ2 − 1 (2.30)

is strictly negative. Furthermore defining

F11 =
−(cos θ1 cos θ2 − 1)E11 − sin θ1 sin θ2

ξ
, F12 =

(cos θ1 − cos θ2)E12

ξ
, (2.31)

we have that the matrix F =

(

F11 F12

−F12 F11

)

is orthogonal, since FF t = I.

Our next theorem analyzes the composition of Bäcklund transformations for
hyperbolic linear Weingarten surfaces in R

3 satisfying 1 + 2βH + γK = 0. We
show that, imposing conditions (2.23) on the parameters, this composition is com-
mutative and it provides a surface of the same type with the same constants β, γ.

Theorem 2.9. (Geometric Permutability Theorem) Let M,M ′,M ′′ be hy-
perbolic linear Weingarten surfaces in R

3. Suppose thatM satisfies 1+2βH+γK =
0 and that there are hyperbolic linear Weingarten congruences l1 : M → M ′ and
l2 : M → M ′′ as in Theorem 2.8, with constants (r1, θ1, φ1, ρ1) and (r2, θ2, φ2, ρ2)
respectively, with θ1 6= θ2, satisfying (2.1) and ( 2.23). Given p ∈M , p1 = l1(p) ∈
M ′ and p2 = l2(p) ∈ M ′′, we denote by Np, N

′
p1

and N ′′
p2

the unit vectors nor-
mal to M at p, to M ′ at p1 and to M ′′ at p2, respectively and v1 = v1(p) (resp.
v2 = v2(p)) the unit vector in the direction of the line connecting p to p1 (resp. p2).
We suppose that {Np, N ′

p1
, v1} and {Np, N ′′

p2
, v2} are sets of linearly independent

vectors. Then there exists a regular surface M∗ ⊂ R
3 and hyperbolic linear Wein-

garten congruences l∗2 :M ′ →M∗ and l∗1 :M ′′ →M∗ with constants (r2, θ2, ρ2, φ2)
and (r1, θ1, ρ1, φ1) respectively, such that

l∗2 ◦ l1 = l∗1 ◦ l2.

Moreover, the Gaussian curvature K∗ and the mean curvature H∗ of M∗ satisfy
1 + 2βH∗ + γK∗ = 0.

Proof: Let X be a local parametrization of M in a neighborhood of p. Since
l1 : M → M ′ and l2 : M → M ′′ are hyperbolic linear Weingarten congruences,
we have that X1 = l1(X) = X + r1v1 and X2 = l2(X) = X + r2v2 are local
parametrizations of M ′ and M ′′ at p1 and p2, respectively. By hypothesis, ri >
0, 0 < θi < π, 0 < φi, ρi ≤ π

2 (i = 1, 2) are such that (2.1) is satisfied, i.e.,

β =
−ri(cosφi + cos ρi cos θi)

sin2 θi
, γ =

r2i sin
2 ρi

sin2 θi
, i = 1, 2. (2.32)

Observe that finding hyperbolic linear Weingarten congruences l∗1 and l∗2 as
required by the theorem is equivalent to obtaining unit vector fields u1, u2 satisfying

r1v1 + r2u1 = r2v2 + r1u2. (2.33)
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We consider new orthonormal frames {e′1, e′2, e′3} adapted to M ′ and {e′′1 , e′′2 , e′′3}
adapted to M ′′ given by

e′i = Fije
′
j , e′′i = Fije

′′
j , with F22 = F11 and F21 = −F12. (2.34)

Define the vector fields
{

u1 = sin ρ2e
′
1 + cos ρ2e

′
3,

u2 = sin ρ1e
′′
1 + cos ρ1e

′′
3 .

(2.35)

The idea is to show that these vectors u1, u2 satisfy equation (2.33). Initially,
using (2.27), we observe that

r1v1 = r1 sinφ1e1 + r1 cosφ1e3.

Similarly, using (2.34), (2.35), (2.28), (2.21) and the constant δ given by (2.22), we
have

r2u1 = [δr1 sin ρ1a
′
11F11 + δr1 sin ρ1a

′
21F12 + r2 cos ρ2a

′
31]e1+

+[δr1 sin ρ1a
′
12F11 + δr1 sin ρ1a

′
22F12 + r2 cos ρ2a

′
32]e2+

+[δr1 sin ρ1a
′
13F11 + δr1 sin ρ1a

′
23F12 + r2 cos ρ2a

′
33]e3.

Moreover, it follows from (2.26), (2.27) and (2.22), that

r2v2 = δr1 sinφ1E11e1 + δr1 sinφ1E12e2 + r2 cosφ2e3.

Finally, using the relations (2.26), (2.27), (2.34), (2.35) and δ given by (2.22), we
obtain

r1u2 = [r1 sin ρ1(a
′′

11E11 − a′′12E12)F11 + r1 sin ρ1(a
′′

21E11 − a′′22E12)F12+

+δr1 cos ρ1(a
′

31E11 − a′32E12)]e1+

+[r1 sin ρ1(a
′′

11E12 + a′′12E11)F11 + r1 sin ρ1(a
′′

21E12 + a′′22E11)F12+

+δr1 cos ρ1(a
′

31E12 + a′32E11)]e2+

+[δr1 sin ρ1a
′

13F11 + δr1 sin ρ1a
′

23F12 + r1 cos ρ1a
′′

33]e3.

Therefore, equation (2.33) is equivalent to the following linear system


















































r1 sin ρ1 [(δa
′
11 − (a′′11E11 + a′′12E21))F11 + (δa′21 − (a′′21E11 + a′′22E21))F12] =

δr1 cos ρ1(a
′
31E11 + a′32E21) + δr1 sinφ1E11 − r1 sinφ1 − r2 cos ρ2a

′
31,

r1 sin ρ1 [(δa
′
12 − (a′′11E12 + a′′12E22))F11 + (δa′22 − (a′′21E12 + a′′22E22))F12] =

δr1 cos ρ1(a
′
31E12 + a′32E22) + δr1 sinφ1E12 − r2 cos ρ2a

′
32,

r1 cos ρ1a
′′
33 − r1 cosφ1 + r2 cosφ2 − r2 cos ρ2a

′
33 = 0,

(2.36)
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where δ is given by (2.22), E11 and E12 are given by (2.26) and the real numbers
a′ij and a

′′
ij defined by (2.28) are given by (2.4), taking r = rk, θ = θk, φ = φk and

ρ = ρk, k = 1, 2 respectively.
We observe that, as a consequence of (2.4), a′33 = cos θ1 and a′′33 = cos θ2.

Then using (2.25) we conclude that the third equation of the linear system (2.36)
is satisfied. Substituting the expressions of F11 and F12 given by (2.31) and using
equations (2.21)-(2.28), (2.4) and (2.30), we conclude that the first and the second
equations of this linear system are also satisfied.

We consider the surface M∗ parametrized by X∗ = X + r1v1 + r2u1. It follows
from Theorem 2.5 and (2.32) that the surface M∗ satisfies 1+2βH∗+γK∗ = 0. ✷

Remark 2.10. If M ⊂ R
3 is a hyperbolic linear Weingarten surface, such that

1 + 2βH + γK = 0, then Theorem 2.9 shows that the composition of Bäcklund
transformations provides a 4-parameter family of surfacesM∗ satisfying 1+2βH∗+
γK∗ = 0. The four parameters are determined by the two unit vectors vi, i = 1, 2
and the 8 constants (ri, θi, φi, ρi) satisfying a total of 6 equations, namely (2.32)
and (2.23).

3. Analytic interpretation of Bäcklund transformation

In this section we will present an analytic interpretation of the Geometric Inte-
grability Theorem (Theorem 2.8) and of the Geometric Permutability Theorem
(Theorem 2.9) given in the previous section. We start recalling that given a hy-
perbolic linear Weingarten surface in R

3 satisfying 1 + 2βH + γK = 0, then
D = γ − β2 > 0 and there exists a solution ψ of the sine-Gordon equation

ψx1x1
− ψx2x2

= sin(ψ + Cβγ), (3.1)

where Cβγ is a real constant defined by

sinCβγ =
2ε2β

√
D

γ
, cosCβγ =

γ − 2β2

γ
, ε22 = 1. (3.2)

Conversely, given a solution ψ of equation (3.1), where Cβγ is a real constant
defined by (3.2), there exists a hyperbolic linear Weingarten surface in R

3 satisfying
1 + 2βH + γK = 0, parametrized by lines of curvature, whose first and second
fundamental forms are given by I = g21dx

2
1+g

2
2dx

2
2 and II = −λ1g21dx21−λ2g22dx22,

where

g1 =
√
γ cos

ψ

2
, g2 =

√
γ sin

ψ

2
, (3.3)

λ1 =
−1

g1

[

S1 cos
ψ

2
+ S2 sin

ψ

2

]

, λ2 =
−1

g2

[

−S2 cos
ψ

2
+ S1 sin

ψ

2

]

, (3.4)

with

S1 =
−β√
γ

and S2 = ε1

√
D√
γ
, ε21 = 1, ε1ε2 = −1. (3.5)

For more details, see Tenenblat [19].
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Let ψ be a solution of the sine-Gordon equation (3.1), where Cβγ is a real
constant defined by (3.2). We consider the hyperbolic linear Weingarten surface
M ⊂ R

3 satisfying 1+2βH+γK = 0. Let r > 0, 0 < θ < π and 0 < φ, ρ ≤ π
2 be real

numbers satisfying (2.1) and (2.12). Using the Geometric Integrability Theorem,
we can construct an orthonormal frame {e1, e2, e3} tangent to M , locally defined,
with dual forms ω1, ω2 and connection forms ω12, ω13, ω23 associated to this frame
satisfying the Bäcklund transformation (2.6), where c1, c2, c3 and c4 are given
by (2.13). Moreover, the correspondence between hyperbolic linear Weingarten
surfaces and solutions of the sine-Gordon equation allows us to conclude that the
Bäcklund transformation (2.6) is equivalent to the system of partial differential
equations























































ψ′
x1

+ ψx2
= 2S3 cos

ψ

2
cos

ψ′

2
− 2S4 cos

ψ

2
sin

ψ′

2
+

+2S5 sin
ψ

2
cos

ψ′

2
− 2S6 sin

ψ

2
sin

ψ′

2
,

ψ′
x2

+ ψx1
= 2S3 sin

ψ

2
sin

ψ′

2
+ 2S4 sin

ψ

2
cos

ψ′

2
+

−2S5 cos
ψ

2
sin

ψ′

2
− 2S6 cos

ψ

2
cos

ψ′

2
,

(3.6)

where

S3 = c1
√
γ + c3S1, S4 = c2

√
γ + c4S1, S5 = c3S2, S6 = c4S2, (3.7)

and c1, c2, c3, c4 are given by (2.13). Using these real numbers we define the fol-
lowing constants

S7 = −S2
3 − S2

4 + S2
5 + S2

6 , S8 = S3S5 + S4S6, (3.8)

S′
7 = −S2

3 + S2
4 − S2

5 + S2
6 , S′

8 = −S3S4 − S5S6. (3.9)

Remark 3.1. (A particular case) Observe that (3.6) reduces to the classical
analytic Bäcklund transformation for the sine-Gordon equation, when φ = ρ = π/2.
In fact, in this case, β = 0, γ = r2/ sin2 θ, Cβγ = 0, b1 = 0, b2 = − sin θ, b3 =
− cos θ, c1 = c4 = 0, c2 = −1/r, c3 = cos θ/ sin θ, ǫ1 = 1, ǫ2 = −1, S1 = S3 =
S6 = 0, S2 = 1, S4 = −1/ sin θ, S5 = cos θ/ sin θ. Moreover, ψ is a solution of the
sine-Gordon equation

ψx1x1
− ψx2x2

= sinψ (3.10)

and (3.6) reduces to the classical result, namely







ψ′
x1

+ ψx2
= 2cscθ cos ψ2 sin ψ′

2 + 2cotθ sin ψ
2 cos ψ

′

2 ,

ψ′
x2

+ ψx1
= −2cscθ sin ψ

2 cos ψ
′

2 − 2cotθ cos ψ2 sin ψ′

2 ,
(3.11)
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3.1. Analytic Interpretation of the Integrability Theorem

We will prove that the system of partial differential equations (3.6) is integrable
and that each of its solutions ψ′ satisfies the sine-Gordon equation

ψ′
x1x1

− ψ′
x2x2

= sin(ψ′ + Cβ′γ′), (3.12)

where β′, γ′ are given by (2.2) and Cβ′γ′ is a real constant defined by

sinCβ′γ′ =
2β′

√
D

γ′
, cosCβ′γ′ =

γ′ − 2(β′)2

γ′
, (3.13)

with D := γ − β2. Initially, we will prove the following lemma

Lemma 3.2. Given real numbers β, γ such that γ − β2 > 0, we consider the real
constant Cβγ defined by (3.2). Let S1, S2 be the constants given by (3.5). We
choose real numbers r > 0, 0 < θ < π and 0 < φ, ρ ≤ π

2 satisfying (2.1). Consider
the real numbers b1, b2, b3 given by (2.11), c1, c2, c3, c4 by (2.13), β′ and γ′ by (2.2)
and S3, S4, S5, S6 by (3.7). Let S7, S8 (resp. S′

7, S
′
8) be the constants given by

(3.8) (resp. (3.9)). Then

S7 = − cosCβγ , S8 =
− sinCβγ

2
, (3.14)

cosCβ′γ′ =
sin2 θ − 2b21

sin2 θ
, sinCβ′γ′ =

−2b1b2

sin2 θ
, (3.15)

S′
7 = cosCβ′γ′ , S′

8 =
sinCβ′γ′

2
, (3.16)

where Cβ′γ′ is the constant defined by (3.13).

Proof: Substituting (3.7) into (3.8), we get

S7 = −(c21 + c22)γ − (c23 + c24)(S
2
1 − S2

2)− 2
√
γS1(c1c3 + c2c4),

S8 =
√
γS2(c1c3 + c2c4) + (c23 + c24)S1S2,

where S1 and S2 are given by (3.5). Using the identities (2.14), the values of β and
γ given by (2.1), the real constants S1 and S2 defined in (3.5) and the definition of
the Cβγ given by (3.2), we obtain

S7 =
− sin2 θ

r2 sin2 φb22

[

γ + 2β
√
γS1 + γ(S2

1 − S2
2)
]

+ (S2
1 − S2

2) =
2β2 − γ

γ

= − cosCβγ ,

S8 =
sin2 θ

r2 sin2 φb22
[β
√
γS2 + γS1S2]− S1S2 = −ε2

β
√
D

γ
=

− sinCβγ
2

.
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Let b1 and b2 be the constants defined by (2.11). Since D = γ−β2 then using (2.2)
and (2.16) we have

√
D =

−r sinφb2
sin2 θ

and β′ =
r sinφb1

sin2 θ
.

Substituting into (3.13) and using the constant γ′ defined by (2.2), we obtain (3.15).
Finally, substituting (3.7) into (3.9) we get

S′
7 = (−c21 + c22)γ + 2

√
γS1(−c1c3 + c2c4)− c23 + c24,

S′
8 = −c1c2γ −√

γS1(c1c4 + c2c3)− c3c4.

Thus, using (2.15) and (3.5) we obtain

S′

7 =
(sin2 θ − 2b21)(γ + 2βr cosφ+ r2cos2φ) + 2rb1 sinφ cos θ(β + r cos φ)

r2 sin2 φb22
−
cos2θ

b22
,

S′

8 =
−b1(γ + 2rβ cosφ+ r2cos2φ) + r sinφ cos θ(β + r cos φ)

r2 sin2 φb2
.

It follows from (2.17), (2.18), (3.15) and 2.11) that

S′
7 =

(sin2 θ − 2b21)(sin
2 θ − b21)

b22 sin
2 θ

= cosCβ′γ′ ,

S′
8 =

−b1(sin2 θ − b21)

b2 sin
2 θ

=
sinCβ′γ′

2
.

✷

The following theorem provides an analytic interpretation of the Geometric
Integrability Theorem (Theorem 2.8).

Theorem 3.3. (Analytic Integrability Theorem) Let ψ be a solution of the
sine-Gordon equation (3.1), where β and γ are fixed real numbers such that γ−β2 >
0 and Cβγ is the constant given by (3.2). We consider r > 0, 0 < φ, ρ ≤ π

2 and
0 < θ < π real numbers satisfying (2.1). Let Cβ′γ′ be the constant defined by
(3.13), where β′, γ′ are given by (2.2). Consider the numbers b1, b2, b3 given by
(2.11), c1, c2, c3, c4 by (2.13), S1, S2 by (3.5) and S3, S4, S5, S6 by (3.7). Then the
system of partial differential equations (3.6) is integrable. Moreover, the function
ψ′, obtained by integrating this system, provides a 3-parameter family of solutions
of the sine-Gordon equation (3.12).

Proof: Differentiating the first equation of the system (3.6) with respect to x2
and subtracting from the derivative of the second equation with respect to x1, we
obtain

ψ′

x1x2
− ψ′

x2x1
= sin(ψ +Cβγ)+

+
[

ψx1 + ψ′

x2

]

[

−S3 cos
ψ

2
sin ψ′

2
− S4 cos

ψ

2
cos ψ

′

2
− S5 sin

ψ

2
sin ψ′

2
− S6 sin

ψ

2
cos ψ

′

2

]

+

+
[

ψx2 + ψ′

x1

]

[

−S3 sin
ψ

2
cos ψ

′

2
+ S4 sin

ψ

2
sin ψ′

2
+ S5 cos

ψ

2
cos ψ

′

2
− S6 cos

ψ

2
sin ψ′

2

]

,
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where we used the fact that ψ is a solution of the sine-Gordon equation (3.1).
Thus, using (3.6) and the relations given by (3.8) and (3.14), we have

ψ′
x1x2

− ψ′
x2x1

= sin(ψ + Cβγ) + S7 sinψ + 2S8 cosψ = 0,

ie, the system (3.6) is integrable.
Similarly, differentiating the first equation of (3.6) with respect to x1 and sub-

tracting from the derivative of the second equation with respect to x2, we obtain

ψ′

x1x1
− ψ′

x2x2
=

[

ψx1 + ψ′

x2

]

[

−S3 sin
ψ

2
cos ψ

′

2
+ S4 sin

ψ

2
sin ψ′

2
+ S5 cos

ψ

2
cos ψ

′

2
− S6 cos

ψ

2
sin ψ′

2

]

+

+
[

ψx2 + ψ′

x1

]

[

−S3 cos
ψ

2
sin ψ′

2
− S4 cos

ψ

2
cos ψ

′

2
− S5 sin

ψ

2
sin ψ′

2
− S6 sin

ψ

2
cos ψ

′

2

]

,

where we used the fact that ψ is differentiable. Therefore, using (3.6) and the
relations given by (3.9) and (3.16), we have

ψ′
x1x1

− ψ′
x2x2

= S′
7 sinψ

′ + 2S′
8 cosψ

′ = sin(ψ′ + Cβ′γ′),

ie, ψ′ is a solution of the sine-Gordon equation (3.12).
The functions ψ′ obtained by integrating (3.6) depend on 3-parameters, namely

the initial condition ψ′(x01, x
0
2), and four constants (r, θ, φ, ρ) satisfying two equa-

tions given by (2.1). ✷

Definition 3.4. Let ψ be a solution of the sine-Gordon equation (3.1). We say
that a function ψ′ is associated to ψ by a Bäcklund transformation BT (r, θ, φ, ρ) if
ψ′ is a solution of the system (3.6).

3.2. Analytic Interpretation of the Permutability Theorem

Let ψ be a solution of the sine-Gordon equation (3.1), where Cβγ is the con-
stant given by (3.2) and β, γ are constants such that γ − β2 > 0. The Geometric
Permutability Theorem (Theorem 2.9) and the correspondence between hyperbolic
linear Weingarten surfaces and solutions of the sine-Gordon equation allows us to
construct a new solution ψ∗ of the sine-Gordon equation (3.1). The analytic in-
terpretation of the Permutability Theorem (Theorem 3.5) will allow us to obtain
ψ∗ algebraically. This is the content of our next result. However, the proof of this
theorem is highly technical and, therefore, it will be presented in the Appendix.

Theorem 3.5. (Analytic Permutability Theorem) Let ψ be a solution of the
sine-Gordon equation (3.1), where Cβγ is the real constant given by (3.2) and the
real numbers β, γ are such that γ − β2 > 0. We consider real numbers ri > 0, 0 <
φi, ρi ≤ π

2 and 0 < θi < π (i = 1, 2) with θ1 6= θ2, satisfying (2.1) and (2.23).
Let ψi , i = 1, 2 be solutions of equation (3.12), associated to ψ by the Bäcklund
transformations BT (ri, θi, φi, ρi), where Cβ′γ′ is the constant given by (3.13) and
β′, γ′ are given by (2.2), when r = ri, θ = θi, φ = φi and ρ = ρi. Then there
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exists a unique solution ψ∗ of the sine-Gordon equation (3.1) associated to ψi by
BT (rj , θj , ρj , φj), 1 ≤ i 6= j ≤ 2. Moreover, ψ∗ is determined algebraically by

tan

(

ψ∗ − ψ

4

)

= ε1
sin

(

θ2+θ1
2

)

sin
(

θ2−θ1
2

) tan

(

ψ1 − ψ2

4

)

, ε21 = 1. (3.17)

Observe that in Theorem 3.5 the constants β′ and γ′ defined by (2.2) are inde-
pendent of i since (2.23) is satisfied.

4. The composition of Bäcklund transformations and the Ribaucour
transformation for hyperbolic linear Weingarten surfaces in R

3

We consider a hyberbolic linear Weingarten surface in R
3 parametrized by or-

thogonal lines of curvatures X(x1, x2) satisfying 1 + 2βH + γK = 0, where β
and γ are real constants such that β2 − γ < 0. There are two methods which
provide 4-parameter families of linear Weingarten surfaces, with the same con-
stants β and γ, associated to the surface X(x1, x2). Namely, the composition of
Bäcklund transformations, as we have seen in the previous sections and the Rib-
aucour transformation. In general the surfaces obtained by these two methods are
not congruent. In fact, by starting with the pseudo-sphere, Goulart-Tenenblat [11]
proved, with an explicit example, that a composition of Bäcklund transformations
is not a Ribaucour transformation. In this section, we will determine necessary
and sufficient conditions for the hyberbolic linear Weingarten surfaces constructed
by using these two methods, to be congruent.

4.1. Ribaucour Transformation

We state the main concepts and results of the theory of Ribaucour transforma-
tions for surfaces in R

3, in particular for linear Weingarten surfaces, that will be
used in the following subsections. More details of the theory can be found in [6]
or [8].

Definition 4.1. Let M and M̃ be orientable surfaces in R
3 and let N and Ñ be

their Gauss maps. We say that M̃ is associated to M by a Ribaucour transfor-
mation if, and only if, there exists a differentiable function h defined on M and a
diffeomorphism l :M −→ M̃ such that p+h(p)N(p) = l(p)+h(p)Ñ(l(p)), ∀p ∈M ,
the subset p+ h(p)N(p), p ∈ M is a surface in R

3 and the diffeomorphism l pre-
serves lines of curvature.

We say that M and M̃ are locally associated by a Ribaucour transformation if
for all p ∈ M there exists a neighborhood of p in M that is associated to a open
subset of M̃ by a Ribaucour transformation. Similarly, we define parametrized
surfaces associated by such transformations.

The Ribaucour transformation is characterized in terms of a differential equa-
tion which must be satisfied by map h of the definition (see [6] or [8]).

Theorem 4.2. Let M be an orientable surface in R
3, without umbilic points and

let N be its Gauss map. We consider {ei}, i = 1, 2, orthonormal principal direction
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vector fields and −λi the corresponding principal curvatures, ie, dN(ei) = λiei. A
surface M̃ is locally associated to M by a Ribaucour transformation if, and only
if, there exist parametrizations X : U ⊂ R2 → M and X̃ : U ⊂ R2 → M̃ and a
differentiable function h : U → R such that 1 + hλi 6= 0,

X̃ = X + h(N − Ñ)

and Ñ is a Gauss map of M̃ given by

Ñ =
1

1 + Z2
1 + Z2

2

[

2
2

∑

i=1

Ziei + (Z2
1 + Z2

2 − 1)N

]

,

where

Zi =
dh(ei)

1 + hλi
(4.1)

and h satisfies the differential equation

dZj(ei) + Ziωij(ei)− ZiZjλi = 0, 1 ≤ i 6= j ≤ 2, (4.2)

where ωij are the connection forms associated to {ei}.

We observe that the differential equation (4.2) is of second order and highly non
linear. The proposition below shows how the problem of obtaining the function h
can be linearized.

Proposition 4.3. If h is a nonvanishing function, defined on a simply connected

domain, which satisfies equation (4.2) then h =
Ω

W
, where Ω and W are nonvan-

ishing functions satisfying

dΩi(ej) = Ωjωij(ej), i 6= j,

dΩ =
∑2

i=1 Ωiωi,

dW = −
∑2
i=1 Ωiλiωi.

(4.3)

Conversely, if Ω and W satisfy (4.3) and W (W + Ωλi) 6= 0 then h =
Ω

W
is a

solution of (4.2).

Observe that Ωi i = 1, 2 are the covariant derivatives of Ω. Moreover, considering
Zi defined by (4.1), one can show that Zi = Ωi/W (see [8]).

Next theorem shows that, by imposing an additional condition, the Ribaucour
transformation of a linear Weingarten surface, satisfying α+2βH+γK = 0 provides
a family of surface this same type, with the same constants α, β, γ.



28 C. Goulart

Theorem 4.4. (Corro-Ferreira-Tenenblat [8]) Let M be a surface of R3, without
umbilic points and let M̃ be associated to M by a Ribaucour transformation, such
that the normal lines at corresponding points intersect at a distance h. Assume that

h =
Ω

W
is not constant along the lines of curvature and suppose that the functions

Ω and W satisfy the additional condition

| ∇Ω |2 +W 2 = 2CR(αΩ
2 + 2βΩW + γW 2), (4.4)

where α, β, γ, CR 6= 0 are real constants. Then M̃ is a linear Weingarten surface
satisfying α+2βH̃+ γK̃ = 0 if, and only if, M satisfies α+2βH+ γK = 0, where
H and K (resp. H̃ and K̃) are, respectively, the mean and Gaussian curvatures of
M (resp. M̃).

Observe that we are denoting by CR the constant of the Ribaucour transfor-
mation.

Theorem 4.5. ( Corro-Ferreira-Tenenblat [8]) LetM ⊂ R3 be a linear Weingarten
surface satisfying α + 2βH + γK = 0, with no umbilic points. Let ei, i = 1, 2 be
orthonormal principal direction vector fields. Let ωi, ωij and ωi3 be the dual and
the connection forms. Then the system

dΩ =
∑2

i=1 Ωiωi,

dW =
∑2

i=1 Ωiωi3,

dΩi = Ωjωij + CR(2αΩ+ 2βW )ωi+

−[(1− 2γCR)W − 2CRβΩ]ωi3, i 6= j.

(4.5)

is integrable, for any constant CR 6= 0. On a simply connected domain, any so-
lution, whose initial conditions satisfy (4.4), satisfies (4.4) identically. If M is
locally parametrized by X : U ⊂ R2 → M and Ω, W is a non trivial solution of
(4.5) satisfying (4.4), then each surface of the family

X̃ = X − 2Ω

|∇Ω|2 +W 2
(∇Ω−WN) (4.6)

is a linear Weingarten surface, locally associated to X by a Ribaucour transforma-
tion, satisfying α + 2βH̃ + γK̃ = 0, where H̃ and K̃ are the mean and Gaussian
curvatures of X̃.

Remark 4.6. Considering Zi given by (4.1), since Zi = Ωi/W , we can rewrite
condition (4.4) as

Z2
1 + Z2

2 + 1 = 2CR(αh
2 + 2βh+ γ). (4.7)

Remark 4.7. Let M ⊂ R
3 be a linear Weingarten surface satisfying α + 2βH +

γK = 0. If M is parametrized by orthogonal lines of curvature X(x1, x2), then the
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system of differential equations (4.5) can be written as follows

∂Ω

∂xi
= giΩi,

∂Ωi
∂xj

=
1

gi

∂gj
∂xi

Ωj , i 6= j,

∂W

∂xi
= −λigiΩi,

∂Ωi
∂xi

= − 1

gj

∂gi
∂xj

Ωj + 2CR(α− βλi)giΩ+

+[2CRβ + (1− 2CRγ)λi]giW, i 6= j,

(4.8)

where i, j = 1, 2, gi = |Xxi
|, −λi are the principal curvatures of M and CR 6= 0 is

a real constant.

Proposition 4.8. (Lemes-Roitman-Tenenblat-Tribuzi[13]) LetM ⊂ R
3 be a linear

Weingarten surface satisfying α + 2βH + γK = 0. If M̃ is associated to M by a
Ribaucour transformation as in Theorem 4.5, then the first fundamental form of
M̃ is given by Ĩ = ω̃2

1 + ω̃2
2, where

ω̃i = ± (γ − αh2) + (2βh2 + 2γh)λi
αh2 + 2βh+ γ

ωi, i = 1, 2, (4.9)

and h =
Ω

W
.

4.2. Necessary and sufficient conditions

Given a hyberbolic linear Weingarten surface M in R
3, satisfying 1 + 2βH +

γK = 0, one can consider the surfaces M̃ associated to M by Ribaucour transfor-
mations as in Theorem 4.5 and the surfaces M∗ associated to M by composition
of Bäcklund transformations as in Theorem 2.9. We will determine necessary and
sufficient conditions for M̃ and M∗ to be congruent.

Let X(x1, x2) be a parametrization by orthogonal lines of curvature of a surface
M satisfying 1 + 2βH + γK = 0. Let Cβγ be the real constant defined by (3.2).
We consider ψ a solution of the sine-Gordon equation (3.1) such that the first
and second fundamental forms of X are given by I = g21dx

2
1 + g22dx

2
2 and II =

−λ1g21dx21 − λ2g
2
2dx

2
2, where

g1 =
√
γ cos

ψ

2
, g2 =

√
γ sin

ψ

2
, (4.10)

λ1 = − 1

γ

[

−β + ε1
g2
g1

√
D

]

, λ2 = − 1

γ

[

−β + ε2
g1
g2

√
D

]

, (4.11)

and D = γ − β2 (see (3.2)-(3.5)).

Remark 4.9. For later use, let us establish the following notation
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1. X̃(x1, x2): surface associated to X(x1, x2) by a Ribaucour transformation
satisfying 1 + 2βH̃ + γK̃ = 0 whose normal lines, at corresponding points,
intersect at a distance h(x1, x2),

2. X∗(x1, x2): surface satisfying 1+2βH∗+γK∗ = 0, obtained fromX by a com-
position of Bäcklund transformation BT (r1, θ1, φ1, ρ1) and BT (r2, θ2, φ2, ρ2),
where ri > 0, 0 < θi < π, 0 < φi, ρi <

π
2 (i = 1, 2) are real constants, with

θ1 6= θ2 such that (2.1) and (2.23) are satisfied.

3. ψi(x1, x2) (i = 1, 2): solutions of the sine-Gordon equation (3.12), associated
to ψ by Bäcklund transformation BT (ri, θi, φi, ρi), where Cβ′γ′ is the real
constant given by (3.13) and β′, γ′ are given by (2.2).

4. ψ∗(x1, x2): solution of the sine-Gordon equation (3.1) given by (3.17).

Substituting (4.10) into (4.11) and using (4.9), we obtain that the first funda-
mental form of X̃ is given by Ĩ = g̃21dx

2
1 + g̃22dx

2
1, where

g̃1 =
2ε2

√
D(βh2 + γh) sin ψ

2 + (−(γ − 2β2)h2 + 2βγh+ γ2) cos ψ2√
γ(h2 + 2βh+ γ)

,

g̃2 =
(−(γ − 2β2)h2 + 2βγh+ γ2) sin ψ

2 + 2ε1
√
D(βh2 + γh) cos ψ2√

γ(h2 + 2βh+ γ)
.

(4.12)

We obseve that the first fundamental form of X∗ is given by I∗ = (g∗1)
2dx21 +

(g∗2)
2dx22, where g

∗
1 = −√

γ cos ψ
∗

2 and g∗2 = −√
γ sin ψ∗

2 . Introducing the notation

η =

sin

(

θ2 + θ1
2

)

sin

(

θ2 − θ1
2

) , (4.13)

we define the functions

ϕ = ε1η tan
ψ1 − ψ2

4
, Λ =

ϕ cos ψ2 + sin ψ
2

cos ψ2 − ϕ sin ψ
2

. (4.14)

Using the Analytic Permutability Theorem (Theorem 3.5), we observe that ϕ =

tan ψ∗−ψ
4 . Therefore,

g∗1 =
√
γ

[

2ϕ

1 + ϕ2
sin

ψ

2
+

−1 + ϕ2

1 + ϕ2
cos

ψ

2

]

,

g∗2 =
√
γ

[−1 + ϕ2

1 + ϕ2
sin

ψ

2
− 2ϕ

1 + ϕ2
cos

ψ

2

]

.

(4.15)

Considering a hyperbolic linear Weingarten surface M immersed in R
3, our

next theorem establishes the necessary and sufficient conditions for a composition
of Bäcklund transformations and a Ribaucour transformation ofM to be congruent.
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Theorem 4.10. Let M ⊂ R
3 be a linear hyperbolic Weingarten surface satisfying

1 + 2βH + γK = 0, parametrized by lines of curvature X(x1, x2). Let X∗(x1, x2)
be a surface associated to X by a composition of Bäcklund transformations as in
Theorem 2.9. Let X̃(x1, x2) be a hyperbolic linear Weingarten surface associated
to X by a Ribaucour transformation as in Theorem 4.5, such that the normal lines
at corresponding points intersect at a distance h(x1, x2). Then, with the notation
of Remark 4.9, X̃ and X∗ are congruent if, and only if, h is one of the following
functions

−γ
β + ε1

√
Dϕ

,
−γ

β − ε1
√
Dϕ−1

,
−γ

β − ε1
√
DΛ

,
−γ

β + ε1
√
DΛ−1

, (4.16)

where ϕ and Λ are given by (4.14) and D = γ − β2.

Proof: We observe that the first fundamental form of a linear Weingarten surface
determines its second fundamental form. Considering the notation established
in Remark 4.9, let g̃1, g̃2 and g∗1 , g

∗
2 given by (4.12) and (4.15), respectively.

Since the fundamental forms of X∗ are determined by the solution ψ∗ of the sine-
Gordon equation (3.1) given by (3.17), then X̃ and X∗ are congruent if, and only
if, g̃1 = ±g∗1 and g̃2 = ±g∗2 . Observe that the equality g̃i = ±g∗i (i = 1, 2) is a
quadratic equation for h in terms of ϕ.

A straighforward computation shows that g̃1 = g∗1 and g̃2 = g∗2 (resp. g̃1 = −g∗1
and g̃2 = −g∗2 ) if, and only if, h =

−γ
β + ε1

√
Dϕ

(

resp. h =
−γ

β − ε1
√
Dϕ−1

)

.

Similarly, g̃1 = g∗1 and g̃2 = −g∗2 (resp. g̃1 = −g∗1 and g̃2 = g∗2) if, and only if,

h =
−γ

β − ε1
√
DΛ

(

resp. h =
−γ

β + ε1
√
DΛ−1

)

. Therefore, h should be one of the

functions in (4.16). ✷

As we have seen in the previous sections, (see Remark 3.1), if two surfaces are

associated by a Bäcklund transformation BT (r, θ, π2 ,
π
2 ), i.e., φ = ρ =

π

2
, then The-

orems 2.5, 2.8 and 2.9 reduce to the classical theorems of Bäcklund transformations

for surfaces in R
3 with constant Gaussian curvature K = − sin θ

r2
< 0. In particu-

lar, r is determined by θ, since K is a fixed negative number. For this reason, in
this case, we denote the Bäcklund transformation just by BT (θ). Without loss of
generality one may consider K = −1, i.e. γ = 1. Moreover, since β = 0, γ = 1 and
ǫ1 = 1, as an immediate consequence of the previous theorem, we get the following
corollary.

Corollary 4.11. Under the same conditions as in Theorem 4.10, if β = 0 and
γ = 1, i.e. if the surfaces X, X∗ and X̃ have Gaussian curvature equal to -1, then
X̃ and X∗ are congruent if, and only if, h is one of the following functions

− 1

ϕ
, ϕ, −Λ or

1

Λ
,
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where ϕ and Λ are given by (4.14).

5. Appendix

We now prove the analytic version of the permutability theorem (Theorem 3.5),
for the Bäcklund transformations BT (ri, θi, φi, ρi), i = 1, 2.

Remark 5.1. Given a solution ψ of the sine-Gordon equation (3.1), where Cβγ
is the constant defined by (3.2) and β, γ are real numbers such that γ − β2 > 0,
we choose real numbers ri > 0, 0 < θi < π and 0 < ρi, φi ≤ π

2 (i = 1, 2) and
θ1 6= θ2 satisfying (2.1), (2.12), (2.21) and (2.23). For each i = 1, 2, taking r = ri,
θ = θi, φ = φi and ρ = ρi we define bji, 1 ≤ j ≤ 3 given by (2.11), the constants
cki, 1 ≤ k ≤ 4 defined by (2.13) and the constants Sni, 4 ≤ n ≤ 8 given by (3.7)
and (3.8). Moreover, we define the constants β′, γ′ defined by (2.2) which are
independent of i since (2.23) is satisfied.

In order to achieve our goal, we need to prove some lemmas. We define the real
numbers Lℓ (1 ≤ ℓ ≤ 6) below,

L1 = S31S42 + S32S41 + S51S62 + S52S61,

L2 = S31S32 − S41S42 + S51S52 − S61S62,

L3 = S31S41 + S32S42 + S51S61 + S52S62,

L4 = S2
32 − S2

62 − S2
41 + S2

51 = S2
31 − S2

61 − S2
42 + S2

52,

L5 = −S31S62 + S32S61 − S41S52 + S42S51,

L6 = −S31S52 + S32S51 + S41S62 − S42S61.

(5.1)

and the functions ms (1 ≤ s ≤ 8) as

m1 = S52 cos
ψ

1

2 − S62 sin
ψ

1

2 − S51 cos
ψ

2

2 + S61 sin
ψ

2

2 ,

m2 = S32 cos
ψ

1

2 − S42 sin
ψ

1

2 − S31 cos
ψ

2

2 + S41 sin
ψ

2

2 ,

m3 = S42 cos
ψ

1

2 + S32 sin
ψ

1

2 − S41 cos
ψ

2

2 − S31 sin
ψ

2

2 ,

m4 = −S62 cos
ψ

1

2 − S52 sin
ψ

1

2 + S61 cos
ψ

2

2 + S51 sin
ψ

2

2 ,

m5 = S51 cos
ψ

1

2 − S61 sin
ψ

1

2 − S52 cos
ψ

2

2 + S62 sin
ψ

2

2 ,

m6 = S31 cos
ψ

1

2 − S41 sin
ψ

1

2 − S32 cos
ψ

2

2 + S42 sin
ψ

2

2 ,

m7 = S41 cos
ψ

1

2 + S31 sin
ψ

1

2 − S42 cos
ψ

2

2 − S32 sin
ψ

2

2 ,

m8 = −S61 cos
ψ

1

2 − S51 sin
ψ

1

2 + S62 cos
ψ

2

2 + S52 sin
ψ

2

2 .

(5.2)
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Lemma 5.2. Let ψ be a solution of the sine-Gordon equation (3.1) and let ri, θi, φi,
ρi, β

′, γ′, i = 1, 2 be real numbers as described in Remark 5.1. Let Cβ′γ′ and
Lℓ (1 ≤ ℓ ≤ 6) be the real constants given by (3.13) and (5.1), respectively. Then

L1 =

[

cos θ1 cos θ2 − 1

sin θ1 sin θ2

]

sinCβ′γ′ , L2 =

[

cos θ1 cos θ2 − 1

sin θ1 sin θ2

]

cosCβ′γ′ ,

L3 = − sinCβ′γ′ , L4 = − cosCβ′γ′ ,

L5 = −ε1
[

cos θ1 − cos θ2
sin θ1 sin θ2

]

cosCβ′γ′ , L6 = ε1

[

cos θ1 − cos θ2
sin θ1 sin θ2

]

sinCβ′γ′ .

Proof: Substituting the constants Sni, 3 ≤ n ≤ 6, i = 1, 2 given by (3.7) and
Remark 5.1 in (5.1) and using (2.21), (2.23) and (3.5), we obtain

L1 =
2

δ
c11c21γ − β

(

c11c42 + c21c32 +
1

δ
(c11c41 + c21c31)

)

+ c31c42 + c32c41,

L2 =
1

δ
(c211 − c

2
21)γ + β

[

−c11

(

c32 +
1

δ
c31

)

+ c21

(

c42 +
1

δ
c41

)]

+ c31c32 − c41c42,

where δ is given by (2.22). It follows from the expressions given by (2.13) for the
constants cki, 1 ≤ k ≤ 4, i = 1, 2, defined in Remark 5.1, that

δr21 sin
2 φ1b

2
21L1 = b11b21(γ + 2βr2 cosφ2 + r22cos

2φ2)+

+b11b21(γ + 2βr1 cosφ1 + r21cos
2φ1)+

−b11b21(r1 cosφ1 − r2 cosφ2)
2+

−r1 sinφ1b21 [cos θ1(β + r2 cosφ2) + cos θ2(β + r1 cosφ1)] .

δr21 sin
2 φ1b

2
21L2 = 1

2 (2b
2
11 − sin2 θ1)[γ + 2βr1 cosφ1 + r21cos

2φ1]+

+ 1
2 (2b

2
11 − sin2 θ1)[γ + 2βr2 cosφ2 + r22cos

2φ2]+

− 1
2 (2b

2
11 − sin2 θ1)(r1 cosφ1 − r2 cosφ2)

2+

−r1 sinφ1b11[cos θ1(β + r2 cosφ2) + cos θ2(β + r1 cosφ1)]+

+r21 sin
2 φ1 cos θ1 cos θ2.

We observe from (2.24) that

r1 sinφ1b11(cos θ1 − cos θ2) = (r1 cosφ1 − r2 cosφ2) sin
2 θ1, (5.3)

where bjj , 1 ≤ j ≤ 3 are given by (2.11) and Remark 5.1. Hence, using the
identities (2.17), (2.18), (2.22), (2.23) we can write

L1 =
2(1− cos θ1 cos θ2)b11b21

sin3 θ1 sin θ2
, L2 =

(sin2 θ1 − 2b211)(cos θ1 cos θ2 − 1)

sin3 θ1 sin θ2
.
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As a direct consequence of (3.15) we obtain

L1 =

[

cos θ1 cos θ2 − 1

sin θ1 sin θ2

]

sinCβ′γ′ , L2 =

[

cos θ1 cos θ2 − 1

sin θ1 sin θ2

]

cosCβ′γ′ .

The identities
L3 = − sinCβ′γ′ , L4 = − cosCβ′γ′

follow directly from Lemma 3.2, Remark 5.1 and the real constants Sni, S
′
ni, n =

7, 8, i = 1, 2 defined in (3.7) and (3.8). Finally, in order, to prove the last two
equalities, we use the relations (2.22), (3.5), (3.7) and Remark 5.1 to obtain from
(5.1) that

L5 = ε1
√
D

[

c11

(

−c42 +
1

δ
c41

)

+ c21

(

−c32 +
1

δ
c31

)]

,

L6 = ε1
√
D

[

c11

(

−c32 +
1

δ
c31

)

− c21

(

−c42 +
1

δ
c41

)]

,

where δ is given by (2.22) and D = γ − β2. Using the expressions given by (2.13)
for the constants cki, 1 ≤ k ≤ 4, i = 1, 2 defined in Remark 5.1, we can write

δr21 sin
2 φ1b

2
21L5 = ε1

√
D[−2b11b21(r1 cosφ1 − r2 cosφ2)+

+r1 sinφ1b21(cos θ1 − cos θ2)],

δr21 sin
2 φ1b

2
21L6 = ε1

√
D[(r1 cosφ1 − r2 cosφ2)(sin

2 θ1 − 2b211)+

+r1 sinφ1b11(cos θ1 − cos θ2)].

It follows from the expressions of β and γ given by (2.1) and of b21, given in (2.11)
and Remark 5.1 that

√
D sin2 θ1 = −r1 sinφ1b21. It follows from (5.3) that

L5 =
−ε1(cos θ1 − cos θ2)(sin

2 θ1 − 2b211)

δ sin4 θ1
, L6 =

−2ε1b11b21(cos θ1 − cos θ2)

δ sin4 θ1
.

Therefore, using (2.22) and (3.15) we obtain

L5 = −ε1
[

cos θ1 − cos θ2
sin θ1 sin θ2

]

cosCβ′γ′ , L6 = ε1

[

cos θ1 − cos θ2
sin θ1 sin θ2

]

sinCβ′γ′ .

✷

Lemma 5.3. Let ψ, ψ1, ψ2 be the function described in Remark 4.9. We consider
Lk, 1 ≤ k ≤ 3 the real constants defined in (5.1) and ms, 1 ≤ s ≤ 8 the functions
given by (5.2). If

Γ = m1m4 −m2m3,

△1 = m4m5 −m2m7, △2 = m4m6 −m2m8,

△3 = m1m7 −m3m5, △4 = m1m8 −m3m5,

(5.4)
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then

Γ =
[

L1 − L3 cos
(

ψ
1
−ψ

2

2

)]

cos
(

ψ
1
+ψ

2

2

)

+

[

L2 − L4 cos
(

ψ
1
−ψ

2

2

)]

sin
(

ψ
1
+ψ

2

2

)

,

△1 =
[

L3 − L1 cos
(

ψ
1
−ψ

2

2

)]

cos
(

ψ
1
+ψ

2

2

)

+

[

L4 − L2 cos
(

ψ
1
−ψ

2

2

)]

sin
(

ψ
1
+ψ

2

2

)

,

△2 = −L5 sin
(

ψ
1
−ψ

2

2

)

sin
(

ψ
1
+ψ

2

2

)

+ L6 sin
(

ψ
1
−ψ

2

2

)

cos
(

ψ
1
+ψ

2

2

)

.

(5.5)

Moreover, △3 = −△2 and △4 = △1.

Proof: Using (5.1), (5.2) and (5.4) a straightforward computation shows that

Γ = −L3

2
(cosψ1 + cosψ2)−

L4

2
(sinψ1 + sinψ2)+

+L1 cos
(

ψ
1
+ψ

2

2

)

+ L2 sin
(

ψ
1
+ψ

2

2

)

,

△1 = −L1

2
(cosψ1 + cosψ2)−

L2

2
(sinψ1 + sinψ2)+

+L3 cos
(

ψ
1
+ψ

2

2

)

+ L4 sin
(

ψ
1
+ψ

2

2

)

,

△2 =
L5

2
(cosψ1 − cosψ2) +

L6

2
(sinψ1 − sinψ2).

Applying some trigonometric identities, we obtain (5.5). Analogously, we prove
that △3 = −△2 and △4 = △1. ✷

With the aid of the lemmas above, we will obtain the analytic interpretation of
the permutability theorem for linear Weingarten hyperbolic surfaces in R

3.

Proof of Theorem 3.5: By hypothesis, ψi, i = 1, 2, are associated to ψ by
Bäcklund transformations BT (ri, θi, φi, ρi). Then its follows from (3.6) that



































ψ1,x1
+ ψx2

= 2S31 cos
ψ
2 cos ψ1

2 − 2S41 cos
ψ
2 sin ψ

1

2 +

+2S51 sin
ψ
2 cos ψ1

2 − 2S61 sin
ψ
2 sin ψ

1

2 ,

ψ1,x2
+ ψx1

= 2S31 sin
ψ
2 sin ψ

1

2 + 2S41 sin
ψ
2 cos ψ1

2 +

−2S51 cos
ψ
2 sin ψ

1

2 − 2S61 cos
ψ
2 cos ψ1

2 ,

(5.6)
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

































ψ2,x1
+ ψx2

= 2S32 cos
ψ
2 cos ψ2

2 − 2S42 cos
ψ
2 sin ψ

2

2 +

+2S52 sin
ψ
2 cos ψ2

2 − 2S62 sin
ψ
2 sin ψ

2

2 ,

ψ2,x2
+ ψx1

= 2S32 sin
ψ
2 sin

ψ
2

2 + 2S42 sin
ψ
2 cos

ψ
2

2 +

−2S52 cos
ψ
2 sin

ψ
2

2 − 2S62 cos
ψ
2 cos

ψ
2

2 ,

(5.7)

where Sni, 3 ≤ n ≤ 6, i = 1, 2 are the constants defined by (3.7) taking r =

ri, θ = θi, φ = φi, ρ = ρi.
We want to determine a solution ψ∗ of the sine-Gordon equation (3.1) such that

ψi (i = 1, 2) is associated to ψ∗ by a Bäcklund transformation BT (rj , θj , φj , ρj),
1 ≤ i 6= j ≤ 2. Without loss of generality, we can change ψ∗ by ψ∗ + 2π. So, we
want to determine a function ψ∗ that satisfies the following differential equations



































ψ1,x1
+ ψ∗

x2
= −2S32 cos

ψ∗

2 cos ψ1

2 + 2S42 cos
ψ∗

2 sin ψ
1

2 +

−2S52 sin
ψ∗

2 cos ψ1

2 + 2S62 sin
ψ∗

2 sin ψ
1

2 ,

ψ1,x2
+ ψ∗

x1
= −2S32 sin

ψ∗
2 sin ψ

1

2 − 2S42 sin
ψ∗
2 cos ψ1

2 +

+2S52 cos
ψ∗
2 sin ψ

1

2 + 2S62 cos
ψ∗
2 cos ψ1

2 ,

(5.8)



































ψ2,x1
+ ψ∗

x2
= −2S31 cos

ψ∗

2 cos ψ2

2 + 2S41 cos
ψ∗

2 sin ψ
2

2 +

−2S51 sin
ψ∗

2 cos ψ2

2 + 2S61 sin
ψ∗

2 sin ψ
2

2 ,

ψ2,x2
+ ψ∗

x1
= −2S31 sin

ψ∗

2 sin ψ
2

2 − 2S41 sin
ψ∗

2 cos ψ2

2 +

+2S51 cos
ψ∗

2 sin ψ
2

2 + 2S61 cos
ψ∗

2 cos ψ2

2 .

(5.9)

We suppose that ψ∗ exits. Subtracting the first equation of (5.8) (resp. 5.9)
from the first equation of (5.6) (resp. (5.7)) we obtain two expressions for ψ∗

x2
−ψx2

.
Similarly, subtracting the second equation of (5.8) (resp. 5.9) from the second
equation of (5.6) (resp. (5.7)) we obtain two expressions for ψ∗

x1
− ψx1

. Equating
the expressions obtained in each case, we conclude that ψ∗ must satisfy the matrix
equation

[

m1 m2

m3 m4

]





sin ψ∗
2

cos ψ∗2



 = −
[

m5 m6

m7 m8

]





sin ψ
2

cos ψ2



 ,

where ms, 1 ≤ s ≤ 8 are given by (5.2). Using (5.4), its follows that





sin ψ∗
2

cos ψ∗2



 =
−1

Γ

[ △1 △2

−△2 △1

]





sin ψ
2

cos ψ2



 , (5.10)
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where the functions Γ and △k, 1 ≤ k ≤ 4, are given by (5.4). Now, using Lemmas
5.2 and 5.3 we have

Γ =

[

cos(θ1 − θ2)− 1 + (cos(θ1 + θ2)− 1) tan2

(

ψ1−ψ2

4

)]

sin
(

ψ1+ψ2

2
+ Cβ′γ′

)

[

1 + tan2

(

ψ1−ψ2

4

)]

sin θ1 sin θ2
,

△1 =

[

− (cos(θ1 − θ2)− 1) + (cos(θ1 + θ2)− 1) tan2

(

ψ1−ψ2

4

)]

sin
(

ψ1+ψ2

2
+Cβ′γ′

)

[

1 + tan2

(

ψ1−ψ2

4

)]

sin θ1 sin θ2
,

△2 =
2ε1(cos θ1 − cos θ2) tan

(

ψ1−ψ2

4

)

sin
(

ψ1+ψ2

2
+ Cβ′γ′

)

[

1 + tan2

(

ψ1−ψ2

4

)]

sin θ1 sin θ2
.

We observe that
cos(θ1 + θ2)− 1

cos(θ1 − θ2)− 1
= η2 and

cos θ1 − cos θ2
cos(θ1 − θ2)− 1

= −η, where η is

given by (4.13). Therefore,

△1

Γ
= −





1− η2 tan2
(

ψ
1
−ψ

2

4

)

1 + η2 tan2
(

ψ
1
−ψ

2

4

)



 and
△2

Γ
=

−2ε1η tan
(

ψ
1
−ψ

2

4

)

1 + η2 tan2
(

ψ
1
−ψ

2

4

) .

Substituting these expressions into (5.10), we obtain





sin ψ∗
2

cos ψ∗2



 =



















1− η2 tan2
(

ψ
1
−ψ

2

4

)

1 + η2 tan2
(

ψ
1
−ψ

2

4

)

2ε1η tan
(

ψ
1
−ψ

2

4

)

1 + η2 tan2
(

ψ
1
−ψ

2

4

)

−2ε1η tan
(

ψ
1
−ψ

2

4

)

1 + η2 tan2
(

ψ
1
−ψ

2

4

)

1− η2 tan2
(

ψ
1
−ψ

2

4

)

1 + η2 tan2
(

ψ
1
−ψ

2

4

)























sin ψ
2

cos ψ2



 .

On the other hand, writing
ψ∗

2
=
ψ∗ − ψ

2
+
ψ

2
, we have





sin ψ∗
2

cos ψ∗2



 =



















1− tan2
(

ψ∗−ψ
4

)

1 + tan2
(

ψ∗−ψ
4

)

2 tan
(

ψ∗−ψ
4

)

1 + tan2
(

ψ∗−ψ
4

)

−2 tan
(

ψ∗−ψ
4

)

1 + tan2
(

ψ∗−ψ
4

)

1− tan2
(

ψ∗−ψ
4

)

1 + tan2
(

ψ∗−ψ
4

)























sin ψ
2

cos ψ2



 .

Equating the right hand side of the last last equalities, we conclude that ψ∗ is
determined by the algebraic relation

tan

(

ψ∗ − ψ

4

)

= ε1η tan

(

ψ1 − ψ2

4

)

,

where η is given by (4.13).
Conversely, we can show that the function ψ∗ defined by this relation satisfies

equations (5.8) and (5.9).
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