Bol. Soc. Paran. Mat. (3s.) v. 88 6 (2020): 25-32.
©SPM -ISSN-2175-1188 ON LINE ISSN-00378712 IN PRESS
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.v38i6.36898

A Covering Property with respect to Generalized Preopen Sets

Ajoy Mukharjee

ABSTRACT: In this paper, we introduce and study the notion of u-precompact
spaces on the observation that each p-preopen set of a generalized topological space
is contained in a p-open set. The p-precompactness is weaker than p-compactness
but stronger than weakly u-compactness of generalized topological spaces.
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1. Introduction

Let (X, Z) be a topological space. We find that certain subsets like semi-open
sets (Levine [10], also called -sets by Njastad [13]), pre-open sets (Mashhour et
al. [11]), semi-pre-open sets (Andrijevi¢ [1], also called S-open sets by El-Monsef
et al. [9]), a-sets (Njastad [13]) of a topological space X possess properties more
or less similar to those of open sets of X. Also topological properties generated by
sets like semi-open, pre-open etc. had impacts in developing the study of classical
objects, see e.g. [7,8,18]. On this observation, Csdszar [6] introduced and studied
~v-open sets in X. Again following the properties of v-open sets of a topological
space, Csdszar [4] introduced and studied the concept of generalized topology.

Let X be a nonempty set and p be a subcollection of the power set exp(X) of
X. pis called a generalized topology on X if () € u and the union of arbitrary
number of elements of y is again a member of y. A nonempty set X endowed
with a generalized topology p is called a generalized topological space and it is
denoted by (X, ). We write GT (resp. GTS) to denote the generalized topology
1 (resp. generalized topological space (X, 1)). An element of y is called a p-open
set of (X, ). The complement of a p-open set is called a p-closed set of (X, p).
A generalized topological space (X, u) is called strong [3] (also called p-space by
Noiri [14]) if X € u. For brevity, we retain the term p-space due to Noiri [14] to
mean the strongly generalized topological space (X, ) as well.

Henceforth, we write X to denote a GTS or u-space to be understood from the
context. For a subset A of a GTS X, the generalized closure [2] of A is denoted by
¢, (A) which is the intersection of all yi-closed sets containing A and the generalized
interior [2] of A is denoted by i, (A) which is the union of all -open sets contained
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in A. Tt can be proved that a subset A of X is p-open (resp. p-closed) if and
only if A = i,(A) (resp. A = cu(A)). Also for any subset A of X, we have
cu(A) =X —i,(X — A).

Throughout the paper, N denotes the set of natural numbers and R, the set of
real numbers.

2. p-precompact spaces

We begin by recalling some known definitions and results to use in the sequel.

Definition 2.1 (Csészér [2]). A subset A of X is called p-preopen if A C i, (cu(A))
and p-semiopen if A C ¢, (i (A)).

Definition 2.2 (Sarsak [17]). A subset A of a GTS X is called p-regularly closed
if A =cu(i,(A)). The complement of a p-reqularly closed set is called a p-reqularly
open set. So a subset A of a GTS is p-reqularly open if A =1i,(c.(A)).

Note that if G is a p-open set in X, then i,(c.(G)) is p-regularly open in X.

We see that a subset A of X is p-preopen if and only if there exists a p-open
set G such that A C G C ¢,(A). Also a subset A of X is p-semiopen if and only
there exists a p-open set G such that G C A C ¢,(G).

We write ‘p-open collection” and ‘u-preopen collection’ to mean a collection
consisting p-open sets and p-preopen sets respectively of a p-space. A cover of a
p-space X is a collection &7 of subsets of X such that J,.,, A = X. &/ is called
a p-open cover (resp. p-preopen cover) of X if o is a p-open collection (resp.
p-preopen collection) of X and covers X. The terms ‘regularly p-open collection’,
‘regularly p-open cover’ ‘p-semiopen collection’; ‘p-semiopen cover’ are apparent.

Definition 2.3 (Sarsak [16]). A p-space is called pi-compact if each p-open cover
of X has a finite subcover.

Definition 2.4 (Sarsak [17]). A p-space is called weakly p-compact (briefly, wp-
compact) if each p-open cover 4 of X has a finite subcollection 4, such that

UGE% cu(G) = X.

Definition 2.5 (Sarsak [15]). A p-space is called p-S-closed if each p-semiopen
cover 4 of X has a finite subcollection 4, such that Jgeq, cu(G) = X.

We now introduce the following.

Definition 2.6. Let . be a p-preopen collection of X. For each A € &, there
exists a p-open set U such that AC U C ¢, (A). We define ={U|Ae S, AC
U Ccu(A)}. Then % is said to be a ‘u-open super collection” of .57 .

It follows that there always exists a p-open super collection of a p-preopen
collection of a u-space X. We also see that % is a cover of X if .% is a cover of X.
In this case, % is said to be a p-open super cover of the u-preopen cover ..

Definition 2.7. A u-space X is said to be p-precompact if each p-preopen cover
of X has a finite p-open super cover.
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If % is a finite pu-open super cover of a u-preopen cover . of a p-precompact
space X, then for each U € 7, there exists a u-preopen set A € .% such that
A CU Ceu(A). Thus we have a finite subcollection {A | U € %, A C U C Cl(A)}
of . corresponding to % .

It is easy to see that a u-compact space is a pu-precompact space and a p-
precompact space is a weakly p-compact space but reverse implication relations
are not true.

Example 2.8. On R, we define p = {0, R} U{(—o0,n) |n € N}U{[l,00)}. The
p-space (R, p) is p-precompact but not a p-compact space.

Lemma 2.9. If A is p-preopen in X, then i,(cu(A)) is p-regularly open in X.

Proof: Since A is a p-preopen set in X, there exists a p-open set G such that
A C G C ¢,(A) which implies that ¢, (A4) = ¢,(G). Thus we have i,(c,(A4)) =
iu(cu(G)). Since i, (c,(GQ)) is p-regularly open, i,(c,(A)) is p-regularly open in X.

a

Example 2.10 (cf. Example 1 [12]). We define u = {0, (—o0,b), (—o0, b]} where
be R. So (X,u)isa GTS. We put A = (—o00,a), a € R and a > b. We see that
iu(cu(A)) = (—o0,b] and i,(cu((—o00,b])) = (—o0,b]. It means that i,(c,(A)) is
p-regqularly open in (X, p). As A ¢ i,(cu(A)), A is not p-preopen in X.

So we conclude that the converse of Lemma 2.9 need not be true in general.

Theorem 2.11. A p-space X is p-precompact if and only if each p-preopen cover
< of X has a finite p-regularly open super cover {i,(c,(A)) | A€ T} where T is
a finite subcollection of ..

Proof: By p-precompactness of X, we obtain a finite p-open super cover ¢ of ..
For each G € ¢, there exists A € . such that A C G C ¢, (A) which implies that
ACG Ciy(eu(A) Ceu(A). Weput 7 ={Aec S |Ge¥9 ACGCcu(Ad)}. It
means that .7 is a finite subcollection of .. & being a cover of X, {i,(c.(A)) |
A € T} is also a cover of X. By Lemma 2.9, i,(c,(B)) is regularly open for each
B € 7. So Z is a finite subcollection of . such that {i,(c,(B)) | B € J} is a
p-regularly open super cover of the p-preopen cover . of X.

Conversely, since i,(c,(A)) is p-open and A C i,(cu(A)) C ¢, (A) for each
A e T, {ig(cu(A)) | A € T} is a finite p-open super cover of .. So X is
p-precompact. O

Theorem 2.12. In a p-space X, the following statements are equivalent.
1. X is p-precompact.

2. Each p-preopen cover </ of X has a finite subcollection & such that {i,
(cu(B)) | B € B} covers X.

3. If & is a collection of p-preclosed sets of X such that (\pcoE =0, then there
exists a finite subcollection .7 of & such that (\pe g#i.(cu(F)) = 0.
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Proof: (a) = (b): Follows from Theorem 2.11.

(b) = (¢): Let & = {E, | « € A} be a collection of u-preclosed sets such
that (N caPa = 0. It means that {X — E, | @ € A} is a p-preopen cover of X.
By (b), we find a finite subcollection {X — E,, | ax € Ak € {1,2,...,n}} of
{X — E, | @ € A} such that {i,(c,(X — Ea,)) | k € {1,2,...,n}} covers X. It
means that X — (J;_,7,(cu(X — Ey,)) = 0 and hence (N _,cu(iu(Ea,)) = 0.

(¢) = (a): Let X be a p-space satisfying (c¢). Suppose # = {W, | a« € A} is
a p-preopen cover of X. So we find that & = {X — W, | a € A} is a collection
of p-preclosed sets such that ({X — W, | a € A} = (). By (c¢), we obtain a finite
subcollection {X — W,, | ap € Ak € {1,2,...,n}} such that (;_,c,(i,(X —
Wa,)) = 0 which in turn implies that (J;_;i,(c,(Wa,)) = X. So {W,, | ai €
Ak € {1,2,...,n}} is a finite subcollection # such that {i,(c,(Wa,)) | o €
Ak e {1,2,...,n}} covers X. Then by Theorem 2.11, X is p-precompact. O

Definition 2.13. A collection <7 of subsets of X is called a p-proximate cover of
X if ey (Upewrd) = X.

Theorem 2.14. Fach p-preopen cover of a p-precompact space X has a finite
-proximate p-preopen cover.

Proof: Let . = {A, | « € A} be a p-preopen cover of a p-precompact space X.
By u-precompactness of X, we obtain a finite y-open super cover {G1,Ga, ..., Gy}
of .. For each k € {1,2,...,n}, there exist an aj € A such that A,, C G C
cu(Aa,). Since {G1,Ga, ..., Gy} is a cover of X, we have X = (J;_,cu(Aq,) =
cu (Up—1Aay)- So {Aa,, Aa,, .., Aq, } is a finite p-proximate p-preopen cover of
X. O

Definition 2.15 (Csaszér [3]). A p-space X is called p-extremally disconnected if
cu(G) is p-open for each pi-open set G of X.

Theorem 2.16. A wpy-compact and p-extremally disconnected space is a p-precom-
pact space.

Proof: Let & = {E, | « € A} be a u-preopen cover of a wu-compact p-extremally
disconnected p-space X. For each a € A, there exists a p-open set G, such that
Eo C Gy C cuy(Eys) = ¢u(Ga). We see that 4 = {G, | o € A} is a p-open cover
of X. Since X is wu-compact, we obtain a finite subcollection {G,, | ar € A,k €
{1,2,...,n}} such that {c,(Ga,) | . € Ak € {1,2,...,n}} covers X. By p-
extremal disconnectedness of X, we see that {c,(Ga,) | ar € A,k € {1,2,...,n}}
is a finite pu-open super cover of &. O

Definition 2.17. A p-semiopen set A in X is said to be covered if G C A C ¢, (G)
for some p-open set G, then there exists a p-open set H such that G C A C H C
cu(G).

Lemma 2.18. A covered pi-semiopen set in X is p-preopen in X .
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Proof: Let A be a covered p-semiopen set and G C A C ¢,(G) for some pu-
open set. Then ¢,(A) = ¢,(G). Also we have another p-open set H such that
G C AC H C ¢,(GQ) which implies that A C i,(c,(G)) = iu(cu(A)). Hence A is
[-preopen. O

In Example 2.8, [1, 00) is p-open and hence it is both p-semiopen and p-preopen.
But there exist no p-open set G such that [1,00) C G. So [1,00) is not covered
p-semiopen. So we conclude that the converse of Lemma 2.18 may not be true.

Theorem 2.19. If each u-semiopen set of a p-precompact space X is covered, then
X is p-S-closed also.

Proof: Let . be a p-semiopen cover of X. By Lemma 2.18, . is a u-preopen
cover of X. By Theorem 2.11, .7 has a finite subcollection .7 such that {i,(c,(A)) |
A € T} covers X. For each A € 7, we have A C i,(c,(A)) C cu(A). So T is
a finite subcollection of . such that {(c,(A) | A € T} covers X and so X is
pu-S-closed. O

A subset A of a p-space is said to p-precompact with respect to X if each u-
preopen cover with respect to X of A has a finite p-open super cover. In view of
Theorem 2.11, it can be showed that a subset A of X is p-precompact with respect
to X if each p-preopen cover . with respect to X of A has a finite subcollection
T such that {i,(c.(G)) | G € T} covers A.

Theorem 2.20. If each proper u-reqularly closed set of a p-space X is p-precom-
pact with respect to X, then X is p-precompact.

Proof: Let ./ = {4, | @ € A} be a p-preopen cover of X. Since . is a cover
of X, there exits an A € . such that A # 0. By Lemma 2.9, i,(c,(A)) is p-
regularly open in X and so X —i,(c,(A)) is p-regularly closed in X. By the
assumption, we get a finite subcollection {A4,, | ar € Ak € {1,2,...,n}} such
that X —i,(cu(A)) C Up_iiu(cu(Aq,)) and thus X C Up_yipu(cu(Aa,))Vin(cu(4)).
Therefore by Theorem 2.11, X is p-precompact. O

Recall that a nonempty collection € of nonempty subsets of a set S is called a
filter base [19, p. 78] if C1,Cy € .7, then C3 C C; N Cy for some C3 € 7. A filter
base is called maximal [19, p. 80] if its not properly contained into another filter
base. A filter base is always contains in a maximal filter base [19, p. 80].

Definition 2.21. A filter base .% on a p-space X is called p,,-converges to a point
x € X if for each p-preopen set A of X with x € A, there exists F € % such that
F Ciu(en(A)).

Definition 2.22. A filter base % on a p-space X is called p,-accumulates to a
point x € X if for each p-preopen set A of X with x € A, F Ni,(cu(A)) # 0 for
each F' € F.
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Lemma 2.23. If a filter base % in X p,-converges to a point x € X, then the
filter base is p,-accumulates to x.

Proof: By p,-convergence of % to x € X, there exists F' € .# such that F' C
iu(cu(A)) for each p-preopen set A with € A. Let E € .#. Then there exists
D e .Z such that D C ENF C F Ciu(cu(A)). So DNiy(eu(A)) #0. As D C E,
we have ENiy(cy(A)) # 0. So F py-accumulates to z € X. O

Lemma 2.24. Let . be a mazimal filter base in X. Then F p,-converges to
x € X if and only if F is p,-accumulates to x € X.

Proof: Since .# is a filter base, .% is p,-accumulates to z € X by Lemma 2.23 if
F is py-converges to x € X.

Conversely, let a maximal filter base .7 p,-accumulate to € X. If .# does not
pu-converges to x, then for each F' € F, there exists a u-preopen set A containing
x such that F ¢ i,(cu(A)) ie. FNey(in(X —A) # 0. We put & = .F U
{FNnecu(in(X —A)) | F € F}. Then & is a filter base properly containing .7, a
contradiction to the fact that .% is a maximal filter base. O

Theorem 2.25. The following statements are equivalent:
1. X is p-precompact.
2. Each filter base p,,-accumulates to some xg € X.

3. Each maximal filter base p,-converges in X.

Proof: (a) = (b): Suppose that there exists a filter base % = {F, |« € A} in X
and # does not p,-accumulates in X. It means that for each x € X, there exists a
p-preopen set A, containing x and an Fy,(,) € % such that Fy, ;) Ni,(cu(Az)) = 0.
So ¥ ={A, | v € X} is a u-preopen cover of X. By Theorem 2.11, .% has a finite
subcollection A, , Ay,, ..., Az, such that {i,(c.(Az,)) | k€ {1,2,...,n}} covers
X. As .7 is a filter base, there exists an Iy € % such that Fy C ﬂzlea(Ik). It
means that Fy Ni,(cu(Ag,)) =0 for each k € {1,2,...,n}}. Now Fy = FpNX =
Fo NV (Up—1tu(cu(Azy))) = Upey (Fo Nip(cu(Az,)) = 0, a contradiction to the fact
that Fy # 0.

(b) = (¢): Let .# be a maximal filter base in X. By (ii), .# p,-accumulates to
some xg € X. .# being a maximal filter base in X, .# p,-converges to g € X by
Lemma 2.24.

(¢) = (a): Let .¥7 = {Ay | @ € A} be a p-preopen cover of X. If possible,
let X be not u-precompact. Then for each finite subcollection Ag of A, we have
Uaen,in(cu(Aa)) # X which implies that (e, cu(iu(X — Aa)) # 0. We put
Fay = Naea,ulin(X — Aqa)). Let A be the collection of all finite subcollection of
A. We write # = {F) | A € A} (each F) bears the meaning as of Fa,). We see that
Z is a filterbase on X and hence there exists a maximal filter base .# containing
F. By (¢), # p,-converges to some point zg € X and so .# p,-accumulates to
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some point g € X by Lemma 2.24. As .¥ is a cover of X, there exists Ag € .%
such that zg € Ag. Then by construction, ¢, (i,(X — Ao)) € #. Since M p,-
accumulates to zo and zo € Ao, we see that M Ni,(cu(Ag)) # 0 for each M € A,
in particular, ¢, (i,(X — Ao)) Niu(cu(Ao)) # 0, a contradiction to the fact that
cu(in(X = Ao)) Nip(cu(Ao)) = 0. =
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