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A Covering Property with respect to Generalized Preopen Sets

Ajoy Mukharjee

abstract: In this paper, we introduce and study the notion of µ-precompact
spaces on the observation that each µ-preopen set of a generalized topological space
is contained in a µ-open set. The µ-precompactness is weaker than µ-compactness
but stronger than weakly µ-compactness of generalized topological spaces.
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1. Introduction

Let (X,P) be a topological space. We find that certain subsets like semi-open
sets (Levine [10], also called β-sets by Nj̊astad [13]), pre-open sets (Mashhour et
al. [11]), semi-pre-open sets (Andrijević [1], also called β-open sets by El-Monsef
et al. [9]), α-sets (Nj̊astad [13]) of a topological space X possess properties more
or less similar to those of open sets of X . Also topological properties generated by
sets like semi-open, pre-open etc. had impacts in developing the study of classical
objects, see e.g. [7,8,18]. On this observation, Császár [6] introduced and studied
γ-open sets in X . Again following the properties of γ-open sets of a topological
space, Császár [4] introduced and studied the concept of generalized topology.

Let X be a nonempty set and µ be a subcollection of the power set exp(X) of
X . µ is called a generalized topology on X if ∅ ∈ µ and the union of arbitrary
number of elements of µ is again a member of µ. A nonempty set X endowed
with a generalized topology µ is called a generalized topological space and it is
denoted by (X,µ). We write GT (resp. GTS) to denote the generalized topology
µ (resp. generalized topological space (X,µ)). An element of µ is called a µ-open
set of (X,µ). The complement of a µ-open set is called a µ-closed set of (X,µ).
A generalized topological space (X,µ) is called strong [3] (also called µ-space by
Noiri [14]) if X ∈ µ. For brevity, we retain the term µ-space due to Noiri [14] to
mean the strongly generalized topological space (X,µ) as well.

Henceforth, we write X to denote a GTS or µ-space to be understood from the
context. For a subset A of a GTS X , the generalized closure [2] of A is denoted by
cµ(A) which is the intersection of all µ-closed sets containing A and the generalized
interior [2] of A is denoted by iµ(A) which is the union of all µ-open sets contained
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in A. It can be proved that a subset A of X is µ-open (resp. µ-closed) if and
only if A = iµ(A) (resp. A = cµ(A)). Also for any subset A of X , we have
cµ(A) = X − iµ(X −A).

Throughout the paper, N denotes the set of natural numbers and R, the set of
real numbers.

2. µ-precompact spaces

We begin by recalling some known definitions and results to use in the sequel.

Definition 2.1 (Császár [2]). A subset A of X is called µ-preopen if A ⊂ iµ(cµ(A))
and µ-semiopen if A ⊂ cµ(iµ(A)).

Definition 2.2 (Sarsak [17]). A subset A of a GTS X is called µ-regularly closed
if A = cµ(iµ(A)). The complement of a µ-regularly closed set is called a µ-regularly
open set. So a subset A of a GTS is µ-regularly open if A = iµ(cµ(A)).

Note that if G is a µ-open set in X , then iµ(cµ(G)) is µ-regularly open in X .
We see that a subset A of X is µ-preopen if and only if there exists a µ-open

set G such that A ⊂ G ⊂ cµ(A). Also a subset A of X is µ-semiopen if and only
there exists a µ-open set G such that G ⊂ A ⊂ cµ(G).

We write ‘µ-open collection’ and ‘µ-preopen collection’ to mean a collection
consisting µ-open sets and µ-preopen sets respectively of a µ-space. A cover of a
µ-space X is a collection A of subsets of X such that

⋃

A∈A
A = X . A is called

a µ-open cover (resp. µ-preopen cover) of X if A is a µ-open collection (resp.
µ-preopen collection) of X and covers X . The terms ‘regularly µ-open collection’,
‘regularly µ-open cover’ ‘µ-semiopen collection’, ‘µ-semiopen cover’ are apparent.

Definition 2.3 (Sarsak [16]). A µ-space is called µ-compact if each µ-open cover
of X has a finite subcover.

Definition 2.4 (Sarsak [17]). A µ-space is called weakly µ-compact (briefly, wµ-
compact) if each µ-open cover G of X has a finite subcollection Gn such that
⋃

G∈Gn
cµ(G) = X.

Definition 2.5 (Sarsak [15]). A µ-space is called µ-S-closed if each µ-semiopen
cover G of X has a finite subcollection Gn such that

⋃

G∈Gn
cµ(G) = X.

We now introduce the following.

Definition 2.6. Let S be a µ-preopen collection of X. For each A ∈ S , there
exists a µ-open set U such that A ⊂ U ⊂ cµ(A). We define U = {U | A ∈ S , A ⊂
U ⊂ cµ(A)}. Then U is said to be a ‘µ-open super collection’ of S .

It follows that there always exists a µ-open super collection of a µ-preopen
collection of a µ-space X . We also see that U is a cover of X if S is a cover of X .
In this case, U is said to be a µ-open super cover of the µ-preopen cover S .

Definition 2.7. A µ-space X is said to be µ-precompact if each µ-preopen cover
of X has a finite µ-open super cover.
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If U is a finite µ-open super cover of a µ-preopen cover S of a µ-precompact
space X , then for each U ∈ U , there exists a µ-preopen set A ∈ S such that
A ⊂ U ⊂ cµ(A). Thus we have a finite subcollection {A | U ∈ U , A ⊂ U ⊂ Cl(A)}
of S corresponding to U .

It is easy to see that a µ-compact space is a µ-precompact space and a µ-
precompact space is a weakly µ-compact space but reverse implication relations
are not true.

Example 2.8. On R, we define µ = {∅, R} ∪ {(−∞, n) | n ∈ N} ∪ {[1,∞)}. The
µ-space (R, µ) is µ-precompact but not a µ-compact space.

Lemma 2.9. If A is µ-preopen in X, then iµ(cµ(A)) is µ-regularly open in X.

Proof: Since A is a µ-preopen set in X , there exists a µ-open set G such that
A ⊂ G ⊂ cµ(A) which implies that cµ(A) = cµ(G). Thus we have iµ(cµ(A)) =
iµ(cµ(G)). Since iµ(cµ(G)) is µ-regularly open, iµ(cµ(A)) is µ-regularly open in X .

✷

Example 2.10 (cf. Example 1 [12]). We define µ = {∅, (−∞, b), (−∞, b]} where
b ∈ R. So (X,µ) is a GTS. We put A = (−∞, a), a ∈ R and a > b. We see that
iµ(cµ(A)) = (−∞, b] and iµ(cµ((−∞, b])) = (−∞, b]. It means that iµ(cµ(A)) is
µ-regularly open in (X,µ). As A 6⊂ iµ(cµ(A)), A is not µ-preopen in X.

So we conclude that the converse of Lemma 2.9 need not be true in general.

Theorem 2.11. A µ-space X is µ-precompact if and only if each µ-preopen cover
S of X has a finite µ-regularly open super cover {iµ(cµ(A)) | A ∈ T } where T is
a finite subcollection of S .

Proof: By µ-precompactness of X , we obtain a finite µ-open super cover G of S .
For each G ∈ G , there exists A ∈ S such that A ⊂ G ⊂ cµ(A) which implies that
A ⊂ G ⊂ iµ(cµ(A)) ⊂ cµ(A). We put T = {A ∈ S | G ∈ G , A ⊂ G ⊂ cµ(A)}. It
means that T is a finite subcollection of S . G being a cover of X , {iµ(cµ(A)) |
A ∈ T } is also a cover of X . By Lemma 2.9, iµ(cµ(B)) is regularly open for each
B ∈ T . So T is a finite subcollection of S such that {iµ(cµ(B)) | B ∈ T } is a
µ-regularly open super cover of the µ-preopen cover S of X .

Conversely, since iµ(cµ(A)) is µ-open and A ⊂ iµ(cµ(A)) ⊂ cµ(A) for each
A ∈ T , {iµ(cµ(A)) | A ∈ T } is a finite µ-open super cover of S . So X is
µ-precompact. ✷

Theorem 2.12. In a µ-space X, the following statements are equivalent.

1. X is µ-precompact.

2. Each µ-preopen cover A of X has a finite subcollection B such that {iµ
(cµ(B)) | B ∈ B} covers X.

3. If E is a collection of µ-preclosed sets of X such that
⋂

E∈E
E = ∅, then there

exists a finite subcollection F of E such that
⋂

F∈F
iµ(cµ(F )) = ∅.
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Proof: (a) ⇒ (b): Follows from Theorem 2.11.
(b) ⇒ (c): Let E = {Eα | α ∈ ∆} be a collection of µ-preclosed sets such

that
⋂

α∈∆Eα = ∅. It means that {X − Eα | α ∈ ∆} is a µ-preopen cover of X .
By (b), we find a finite subcollection {X − Eαk

| αk ∈ ∆, k ∈ {1, 2, . . . , n}} of
{X − Eα | α ∈ ∆} such that {iµ(cµ(X − Eαk

)) | k ∈ {1, 2, . . . , n}} covers X . It
means that X −

⋃n
k=1iµ(cµ(X − Eαk

)) = ∅ and hence
⋂n

k=1cµ(iµ(Eαk
)) = ∅.

(c) ⇒ (a): Let X be a µ-space satisfying (c). Suppose W = {Wα | α ∈ A} is
a µ-preopen cover of X . So we find that E = {X − Wα | α ∈ A} is a collection
of µ-preclosed sets such that

⋂

{X −Wα | α ∈ A} = ∅. By (c), we obtain a finite
subcollection {X − Wαk

| αk ∈ A, k ∈ {1, 2, . . . , n}} such that
⋂n

k=1cµ(iµ(X −
Wαk

)) = ∅ which in turn implies that
⋃n

k=1iµ(cµ(Wαk
)) = X . So {Wαk

| αk ∈
A, k ∈ {1, 2, . . . , n}} is a finite subcollection W such that {iµ(cµ(Wαk

)) | αk ∈
A, k ∈ {1, 2, . . . , n}} covers X . Then by Theorem 2.11, X is µ-precompact. ✷

Definition 2.13. A collection A of subsets of X is called a µ-proximate cover of
X if cµ

(
⋃

A∈A
A
)

= X.

Theorem 2.14. Each µ-preopen cover of a µ-precompact space X has a finite
µ-proximate µ-preopen cover.

Proof: Let S = {Aα | α ∈ ∆} be a µ-preopen cover of a µ-precompact space X .
By µ-precompactness of X , we obtain a finite µ-open super cover {G1, G2, . . . , Gn}
of S . For each k ∈ {1, 2, . . . , n}, there exist an αk ∈ ∆ such that Aαk

⊂ Gk ⊂
cµ(Aαk

). Since {G1, G2, . . . , Gn} is a cover of X , we have X =
⋃n

k=1cµ(Aαk
) =

cµ (
⋃n

k=1Aαk
). So {Aα1

, Aα2
, . . . , Aαn

} is a finite µ-proximate µ-preopen cover of
X . ✷

Definition 2.15 (Császár [3]). A µ-space X is called µ-extremally disconnected if
cµ(G) is µ-open for each µ-open set G of X.

Theorem 2.16. A wµ-compact and µ-extremally disconnected space is a µ-precom-
pact space.

Proof: Let E = {Eα | α ∈ A} be a µ-preopen cover of a wµ-compact µ-extremally
disconnected µ-space X . For each α ∈ A, there exists a µ-open set Gα such that
Eα ⊂ Gα ⊂ cµ(Eα) = cµ(Gα). We see that G = {Gα | α ∈ A} is a µ-open cover
of X . Since X is wµ-compact, we obtain a finite subcollection {Gαk

| αk ∈ A, k ∈
{1, 2, . . . , n}} such that {cµ(Gαk

) | αk ∈ A, k ∈ {1, 2, . . . , n}} covers X . By µ-
extremal disconnectedness of X , we see that {cµ(Gαk

) | αk ∈ A, k ∈ {1, 2, . . . , n}}
is a finite µ-open super cover of E . ✷

Definition 2.17. A µ-semiopen set A in X is said to be covered if G ⊂ A ⊂ cµ(G)
for some µ-open set G, then there exists a µ-open set H such that G ⊂ A ⊂ H ⊂
cµ(G).

Lemma 2.18. A covered µ-semiopen set in X is µ-preopen in X.
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Proof: Let A be a covered µ-semiopen set and G ⊂ A ⊂ cµ(G) for some µ-
open set. Then cµ(A) = cµ(G). Also we have another µ-open set H such that
G ⊂ A ⊂ H ⊂ cµ(G) which implies that A ⊂ iµ(cµ(G)) = iµ(cµ(A)). Hence A is
µ-preopen. ✷

In Example 2.8, [1,∞) is µ-open and hence it is both µ-semiopen and µ-preopen.
But there exist no µ-open set G such that [1,∞) ⊂ G. So [1,∞) is not covered
µ-semiopen. So we conclude that the converse of Lemma 2.18 may not be true.

Theorem 2.19. If each µ-semiopen set of a µ-precompact space X is covered, then
X is µ-S-closed also.

Proof: Let S be a µ-semiopen cover of X . By Lemma 2.18, S is a µ-preopen
cover ofX . By Theorem 2.11, S has a finite subcollection T such that {iµ(cµ(A)) |
A ∈ T } covers X . For each A ∈ T , we have A ⊂ iµ(cµ(A)) ⊂ cµ(A). So T is
a finite subcollection of S such that {(cµ(A) | A ∈ T } covers X and so X is
µ-S-closed. ✷

A subset A of a µ-space is said to µ-precompact with respect to X if each µ-
preopen cover with respect to X of A has a finite µ-open super cover. In view of
Theorem 2.11, it can be showed that a subset A of X is µ-precompact with respect
to X if each µ-preopen cover S with respect to X of A has a finite subcollection
T such that {iµ(cµ(G)) | G ∈ T } covers A.

Theorem 2.20. If each proper µ-regularly closed set of a µ-space X is µ-precom-
pact with respect to X, then X is µ-precompact.

Proof: Let S = {Aα | α ∈ ∆} be a µ-preopen cover of X . Since S is a cover
of X , there exits an A ∈ S such that A 6= ∅. By Lemma 2.9, iµ(cµ(A)) is µ-
regularly open in X and so X − iµ(cµ(A)) is µ-regularly closed in X . By the
assumption, we get a finite subcollection {Aαk

| αk ∈ ∆, k ∈ {1, 2, . . . , n}} such
thatX−iµ(cµ(A)) ⊂

⋃n
k=1iµ(cµ(Aαk

)) and thusX ⊂
⋃n

k=1iµ(cµ(Aαk
))∪iµ(cµ(A)).

Therefore by Theorem 2.11, X is µ-precompact. ✷

Recall that a nonempty collection C of nonempty subsets of a set S is called a
filter base [19, p. 78] if C1, C2 ∈ S , then C3 ⊂ C1 ∩C2 for some C3 ∈ S . A filter
base is called maximal [19, p. 80] if its not properly contained into another filter
base. A filter base is always contains in a maximal filter base [19, p. 80].

Definition 2.21. A filter base F on a µ-space X is called pµ-converges to a point
x ∈ X if for each µ-preopen set A of X with x ∈ A, there exists F ∈ F such that
F ⊂ iµ(cµ(A)).

Definition 2.22. A filter base F on a µ-space X is called pµ-accumulates to a
point x ∈ X if for each µ-preopen set A of X with x ∈ A, F ∩ iµ(cµ(A)) 6= ∅ for
each F ∈ F .
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Lemma 2.23. If a filter base F in X pµ-converges to a point x ∈ X, then the
filter base is pµ-accumulates to x.

Proof: By pµ-convergence of F to x ∈ X , there exists F ∈ F such that F ⊂
iµ(cµ(A)) for each µ-preopen set A with x ∈ A. Let E ∈ F . Then there exists
D ∈ F such that D ⊂ E ∩ F ⊂ F ⊂ iµ(cµ(A)). So D ∩ iµ(cµ(A)) 6= ∅. As D ⊂ E,
we have E ∩ iµ(cµ(A)) 6= ∅. So F pµ-accumulates to x ∈ X . ✷

Lemma 2.24. Let F be a maximal filter base in X. Then F pµ-converges to
x ∈ X if and only if F is pµ-accumulates to x ∈ X.

Proof: Since F is a filter base, F is pµ-accumulates to x ∈ X by Lemma 2.23 if
F is pµ-converges to x ∈ X .

Conversely, let a maximal filter base F pµ-accumulate to x ∈ X . If F does not
pµ-converges to x, then for each F ∈ F , there exists a µ-preopen set A containing
x such that F 6⊂ iµ(cµ(A)) i.e. F ∩ cµ(iµ(X − A)) 6= ∅. We put E = F ∪
{F ∩ cµ(iµ(X − A)) | F ∈ F}. Then E is a filter base properly containing F , a
contradiction to the fact that F is a maximal filter base. ✷

Theorem 2.25. The following statements are equivalent:

1. X is µ-precompact.

2. Each filter base pµ-accumulates to some x0 ∈ X.

3. Each maximal filter base pµ-converges in X.

Proof: (a) ⇒ (b): Suppose that there exists a filter base F = {Fα | α ∈ A} in X

and F does not pµ-accumulates in X . It means that for each x ∈ X , there exists a
µ-preopen set Ax containing x and an Fα(x) ∈ F such that Fα(x)∩ iµ(cµ(Ax)) = ∅.
So S = {Ax | x ∈ X} is a µ-preopen cover of X . By Theorem 2.11, S has a finite
subcollection Ax1

, Ax2
, . . . , Axn

such that {iµ(cµ(Axk
)) | k ∈ {1, 2, . . . , n}} covers

X . As F is a filter base, there exists an F0 ∈ F such that F0 ⊂
⋂n

k=1Fα(xk). It
means that F0 ∩ iµ(cµ(Axk

)) = ∅ for each k ∈ {1, 2, . . . , n}}. Now F0 = F0 ∩X =
F0 ∩ (

⋃n
k=1iµ(cµ(Axk

))) =
⋃n

k=1(F0 ∩ iµ(cµ(Axk
)) = ∅, a contradiction to the fact

that F0 6= ∅.
(b) ⇒ (c): Let F be a maximal filter base in X . By (ii), F pµ-accumulates to

some x0 ∈ X . F being a maximal filter base in X , F pµ-converges to x0 ∈ X by
Lemma 2.24.

(c) ⇒ (a): Let S = {Aα | α ∈ ∆} be a µ-preopen cover of X . If possible,
let X be not µ-precompact. Then for each finite subcollection ∆0 of ∆, we have
⋃

α∈∆0
iµ(cµ(Aα)) 6= X which implies that

⋂

α∈∆0
cµ(iµ(X − Aα)) 6= ∅. We put

F∆0
=

⋂

α∈∆0
cµ(iµ(X −Aα)). Let Λ be the collection of all finite subcollection of

∆. We write F = {Fλ | λ ∈ Λ} (each Fλ bears the meaning as of F∆0
). We see that

F is a filterbase on X and hence there exists a maximal filter base M containing
F . By (c), M pµ-converges to some point x0 ∈ X and so M pµ-accumulates to
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some point x0 ∈ X by Lemma 2.24. As S is a cover of X , there exists A0 ∈ S

such that x0 ∈ A0. Then by construction, cµ(iµ(X − A0)) ∈ M . Since M pµ-
accumulates to x0 and x0 ∈ A0, we see that M ∩ iµ(cµ(A0)) 6= ∅ for each M ∈ M ,
in particular, cµ(iµ(X − A0)) ∩ iµ(cµ(A0)) 6= ∅, a contradiction to the fact that
cµ(iµ(X −A0)) ∩ iµ(cµ(A0)) = ∅. ✷

Acknowledgments

The author is thankful to the referees for their some kind comments and sug-
gestions which lead to revise the paper in the present form.

References
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