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New Approach for Accelerating Nonlinear Schwarz Iterations

Nabila Nagid and Hassan Belhadj

abstract: The vector Epsilon algorithm is an effective extrapolation method used
for accelerating the convergence of vector sequences. In this paper, this method is
used to accelerate the convergence of Schwarz iterative methods for stationary linear
and nonlinear partial differential equations (PDEs). The vector Epsilon algorithm
is applied to the vector sequences produced by additive Schwarz (AS) and restricted
additive Schwarz (RAS) methods after discretization. Some convergence analysis is
presented, and several test-cases of analytical problems are performed in order to
illustrate the interest of such algorithm. The obtained results show that the proposed
algorithm yields much faster convergence than the classical Schwarz iterations.
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1. Introduction

In scientific computing, the domain decomposition methods are now commonly
used when solving large linear or nonlinear systems arising from discretization of
partial differential equations (PDEs) [2,4,5,13]. The first models of these methods
have been established by H.A.Schwarz, the idea is to decompose a large problem
into a series of smaller subproblems, and therefore more easily resolved. There are

2010 Mathematics Subject Classification: 65N55, 65B05.
Submitted May 05, 2017. Published November 10, 2017

51
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.v38i4.37018


52 N. Nagid and H. Belhadj

several variant of Schwarz method, for example additive Schwarz method (AS),
and restricted additive schwarz method (RAS) [1,9,18,20].

So as to accelerate convergence of sequences produced by these methods, the
Aitken process appears as an acceleration method suitable for many domain decom-
position methods, in the case of linear problems, but this process does not warrant
the convergence when the problems are nonlinear. The generalization of Aitken
process for nonlinear sequences leads us to focus on the shanks transformation and
it’s derivatives algorithms. In practice, calculating determinants being very costly,
shanks transformation is calculated just for the low values of k, in particular for
k = 1, where the ∆2Aitken algorithm is obtained. The most common method
for calculating the shanks transformation is the Epsilon algorithm (ε-algorithm)
proposed by Peter Wynn [3,6,7,10]. There exist different variants of the Epsilon
algorithm that can be used with vector sequences: the vector Epsilon algorithm,
or the scalar Epsilon algorithm applied to each component of the vector sequences
[7,10].
There have many works that have treated the acceleration of domain decomposition
methods, for example in [19], the authors accelerate the nonlinear Schwarz itera-
tions by reduced rank extrapolation method. Another idea was described in [16],
to accelerate Schwarz iterations for ordinary differential equations ODEs. There
exist many other works that have treated the acceleration of domain decomposition
methods, see for examples [8,14,15,17].
The purpose of this paper is to accelerate the nonlinear iterative Schwarz, using
the vector Epsilon algorithm for PDEs, this algorithm is applied to the sequences
of vectors produced by AS and RAS methods, we show experimentally that the
proposed algorithm can provide faster convergence measured both in number of
iterations and in CPU Times.

2. Linear Schwarz iterations

We consider the following problem

{

L(u) = f in Ω,
Bu = g on ∂Ω.

(2.1)

where L is a linear operator, B is a boundary operator and Ω is a bounded domain
of Rd (d = 1, 2, ..).

H.A.Schwarz proposed an iterative method for the solution of classical bound-
ary value problems. There are several variants of Schwarz algorithms, additive,
multiplicative, and several hybrid types, a number of them are discussed in de-
tail in [2,4,5,12,13], in the present work, we have considered the additive Schwarz
method .

Let consider these notations, Ω as a union of nonoverlapping domains Ωj , j =
1, .., p, Γj = ∂Ωj ∩ ∂Ω, Γij = ∂Ωi ∩ Ωjand τ is the Richardson parameter (0 <
τ ≤ 1/p). The additive Schwarz algorithm in the Richardson version is written as
follows:
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For n = 0, ...

For each j = 1, ..., p,

solve







L(un+1,j) = f in Ωj ,
Bun+1,j = g on ∂Γj ,

un+1,j = vn on ∂Ωj\Γj .

Compute wn+1 = un+1,1 + ...+ un+1,p.

Update vn+1 = (1− pτ)vn + τwn+1.

The discretization of problem (2.1) leads to a linear system of equations of the
form

Au = f, (2.2)

where A is the discretization matrix by a numerical methods (Finite element, Finite
Difference , or Finite volume). We use the same notation f after discretization.

A stationary iterative method for (2.2) is given by

un+1 = un +M−1(f −Aun), (2.3)

with a given initial approximation u0 to the solution of (2.2).
Algebraic domain decomposition methods group the unknowns into subsets,

uj = Rju, j = 1, ..., p, where Rj are rectangular restriction matrices. Coefficient
matrices for subdomain problems are defined by Aj = RjAR

T
j . The additive

Schwarz (AS) preconditioner, and the restricted additive Schwarz (RAS) precon-
ditioner (see [1,9,18,20]) are defined by:

M−1
AS =

∑p
j=1R

T
j A

−1
j Rj , M−1

RAS =
∑p

j=1

∼

RT
j A

−1
j Rj , (2.4)

where the
∼

Rj correspond to a non-overlapping decomposition, and it consists of
zeroes and ones, in such a way that

∑p

j=1

∼

RT
j Rj = I.

The additive Schwarz method constructs the sequence of approximations
{un}n∈N

by setting:

un+1 = un +
∑p

j=1R
T
j A

−1
j Rj(f −Aun), n = 0, 1, ... (2.5)

(without the Richardson acceleration).
The restricted additive Schwarz (RAS) algorithm is given by:

un+1 = un +
∑p

j=1

∼

RT
j A

−1
j Rj (f −Aun), n = 0, 1, ... (2.6)
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3. Nonlinear Schwarz iterations

We consider now the problem (2.1) with a nonlinear operator L. After dis-
cretization, we obtain an algebric nonlinear system

F (u) = 0, (3.1)

we transform this problem to a fixed point form

G(u) = u, (3.2)

where F and G are two mappings from R
n → R

n, using the same notation as
before, we define G on each subdomain Ωj , j = 1, 2, ..., p, as follows:

Gj(X) = RjG( RT
j (X)). (3.3)

The corresponding nonlinear additive Schwarz method is defined by

un+1 = un +
∑p

j=1R
T
j Gj(Rj(un)), n = 0, 1, ..., (3.4)

and the nonlinear restricted additive Schwarz method is defined by

un+1 = un +
∑p

j=1

∼

RT
j Gj(Rj(un)), n = 0, 1, ..., (3.5)

we also consider for the solution of (3.2) the Schwarz-Newton methods, where in
each subdomain, the nonlinear problem is solved by a Newton, see [21].

4. Vector Epsilon algorithm

The vector Epsilon algorithm is a nonlinear extrapolation method for acceler-
ating the convergence of sequences, one can say also that this is a generalization of
Aitken method. There exist several versions of the Epsilon algorithm (topological,
scalar, and vector Epsilon algorithm). In this work, we are only interested in the
vector form. We consider thereafter the fundamental algebraic results in the theory
of the vector Epsilon algorithm [3,6,7,10].

First, we recall some results concerning the Aitken’s process.
Let U = (un)n∈N is a sequence that converges to u, the convergence acceleration

methods consists in transforming U = (un)n∈N into another sequence (ε
(n)
2 ) which

converges faster to the same limit u.
Among these transformation methods, the best-known are the Richardson meth-

ods and ∆2Aitken.
We define the operator ∆ such as

{

∆0un = un

∆k+1un = ∆kun+1 −∆kun
.

Definition 4.1. Let U = (un)n∈N and V = (vn)n∈N two sequences of real numbers
that converge to u, we say that (un)n∈N converges faster than (vn)n∈N if:

lim
n→∞

un − u

vn − u
= 0 .
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Definition 4.2. Let U = (un)n∈N be a sequence of real numbers, the ∆2Aitken

process consists in transforming the sequence (un) into a new sequence (ε
(n)
2 ) defined

by :

εn2 =
un+2 un − u2

n+1

∆2un

= un+1 −
∆un+1

∆un+1

∆un

− 1
.

Theorem 4.3. If we apply the ∆2Aitken process to the sequence U = (un)n∈N

which satisfies the condition

lim
n→∞

(un+1 − u)/(un − u) = lim
n→∞

∆un+1 /∆un = ρ 6= 1,

then the sequence εn2 converges to u faster than un+1.

Proof:

Using the definition 4.1 we have:

lim
n→∞

un+1 −
∆un+1

∆un+1
∆un

−1
− u

un+1 − u
= 0

⇔ lim
n→∞

un+2 − un+1

un+1 − u
×

1
∆un+1

∆un

− 1
= 1

⇔ lim
n→∞

un+2−u

un+1−u
− 1

∆un+1

∆un

− 1
= 1

if the condition of the theorem is satisfied, then (εn2 ) converges to u faster than
(un+1).

✷

Now, we seek the conditions on (un) in order that ε
(n)
2 = u for n > N (N is a

given rank).

We have seen that:

ε
(n)
2 =

un+2 un − u2
n+1

∆2un

,

writing ε
(n)
2 based on determinants:

ε
(n)
2 =

∣

∣

∣

∣

un un+1

∆un ∆un+1

∣

∣

∣

∣

∣

∣

∣

∣

1 1
∆un ∆un+1

∣

∣

∣

∣

,

we want to have



56 N. Nagid and H. Belhadj

∣

∣

∣

∣

un un+1

∆un ∆un+1

∣

∣

∣

∣

∣

∣

∣

∣

1 1
∆un ∆un+1

∣

∣

∣

∣

= u ∀n ≥ N ,

therefore

∣

∣

∣

∣

un − u un+1 − u
∆un ∆un+1

∣

∣

∣

∣

=

∣

∣

∣

∣

un − u un+1 − u
un+1 − u un+2 − u

∣

∣

∣

∣

= 0 ∀n ≥ N ,

for this determinant to be zero, it is necessary and sufficient that there exist a0
and a1 such that:

a0(un − u) + a1(un+1 − u) = 0 ∀n > N ,

if a0+a1 = 0 we remark that un = un+1 ∀n and then the ∆2Aitken process cannot

be applied to un, and if a0 + a1 6= 0 then, we have ε
(n)
2 = u ∀n > N , therefore, we

have the following theorems.

Theorem 4.4. A necessary and sufficient condition to have ε
(n)
2 = u ∀n > N , is

that the sequence (un) verifies

a0(un − u) + a1(un+1 − u) = 0 ∀n > N , with a0 + a1 6= 0.

This theorem can be generalized to high order using a nonlinear acceleration
method, the Shanks transformation [3,6,7]. This transformation called enk(U) is
built such that enk (U) = u ∀n > N, and it consists in computing the quantities
enk (U) as follows

enk (U) =

k
∑

i=0

a
(n,k)
i un+i ∀n > N with

k
∑

i=0

a
(n,k)
i = 1 ,

from these equations, it is easy to obtain a determinantal formula for enk(U)

enk (U) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

un ... un+k

∆un ... ∆un+k

.

.

.

.

.

.
∆un+k−1 ∆un+2k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ... 1
∆un ... ∆un+k

.

.

.

.

.

.
∆un+k−1 ∆un+2k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

with

k
∑

i=0

a
(n,k)
i = 1 ,
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the transformed expression given above is to a ratio of two determinants having a
particular structure, and it’s a part of the hankel determinants [6,7].
The previous results leads to the following theorem.

Theorem 4.5. If for a fixed k, the sequence U is such that there exists u ∈ R and

a0, ..., ak ∈ R with
k
∑

i=0

ai 6= 0 satisfying
k
∑

i=0

ai(un+i − u) = 0 ∀n > N,

then
enk(U) = ε

(n)
2k = u ∀n > N.

The proof of theorems 4.4 and 4.5 are given for example in [6,7,8].

Remark 4.6. A recursive rule for computing the quantities enk (U) of shanks trans-
formation has been given by [6,7], these quantities can be computed by the following
Epsilon algorithm:

ε
(n)
−1 = 0 ε

(n)
0 = Un n = 0, 1, ...

ε
(n)
k+1 = ε

(n+1)
k−1 + (∆ε

(n)
k )−1 n, k = 0, 1, ...

where the inverse of a vector y is defined by: y−1 = y

‖y‖2
2

.

Using theorem 4.5, it has been proved that the vector Epsilon algorithm provides
a direct method for solving the linear systems of equations [6,7].

Theorem 4.7. If we apply the vector Epsilon algorithm to the sequence {un}
produced by

un+1 = Aun + b,

with a given u0 and A is a real square matrix such that I −A is invertible, then we
have

ε
(n)
2m = u for n = 0, 1, ...

where u = (I − A)−1 b and m is the degree of minimal polynomial of A for the
vector u0 − u.

Proof: Let p(t) =
m
∑

i=0

ait
i the minimal polynomial of A for the vector u0 − u, the

definition of the minimal polynomial of a matrix for a vector is:

m
∑

i=0

(ai A
i) (u0 − u) = 0,

the matrix I −A is invertible, therefore p(1) =
m
∑

i=0

ai 6= 0 on the other hand, we

have u = Au+ b,
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so un+1 − u = A(un − u),
and uk − u = Ak(u0 − u), ∀k > 0
replacing in p(t) we have

An

m
∑

i=0

ai (ui − u) =

m
∑

i=0

ai (un+i − u) = 0 ∀n,

so using theorem 4.5 we prove that

ε
(n)
2m = u ∀n ≥ 0.

✷

Now, let to be solve the following nonlinear problem

Find x ∈ R
p
such that x = F (x)

where F : R
p −→ R

p is differentiable in the sense of Frechet in a neighborhood
of x, knowing x0 we set u0 = xn and we solve for k = 1, ..., 2m− r the following
iterative problem

uk = F (uk−1).

To calculate ε
(r)
2(m−r) we applied the Epsilon algorithm to the vectors u0, ..., u2m−r,

then we take xn+1 = ε
(r)
2(m−r), where m is the degree of minimal polynomial of

F ′(x) for the vector xn − x and r is the multiplicity of the root (λ = 0) for this
minimal polynomial.
The nonlinear fixed point problems can be accelerated by the Epsilon algorithm if
the conditions of theorem 4.8 is verified.

Theorem 4.8. Let F : R
p −→ R

p such as there exist x ∈ R
p wich satisfies

x = F (x), such that F is differentiable in the sense of Frechet in a neighborhood of
x, and such that I−F ′(x) is invertible. Then there exists a neighborhood V of x such
that for any x0 ∈ V the previous algorithm converges to x at least quadratically, ie:

‖xn+1 − x‖ = o( ‖xn − x‖ 2) n = 0, 1, ...

Proof: If F is differentiable in the sense of Frechet in a neighborhood of x, we
have:

uk+1 − x = F ′(x)(uk − x) + o( ‖uk − x‖ 2),

where o( ‖zk‖
2) refers to a vector yk ∈ R

p such as ∀k > K ‖yk‖ ≤ A ‖zk‖
2.

Let p(t) =
m
∑

i=0

ait
i the minimal polynomial of F ′(x) for the vector xn − x,

since I − F ′(x) is invertible, we have p(1) =
m
∑

i=0

ai 6= 0,

we have: u1 − x = F ′(x)(u0 − x) + o( ‖u0 − x‖ 2),
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and uk − x = [F (x)′]k(u0 − x) +
∑k−1

j=0 [F (x)′]k−1−jo(||uj − x||2),

replacing in the minimal polynomial

m
∑

i=0

ai[F
′(x)]i(xn − x) =

m
∑

i=0

ai[F
′(x)]i(u0 − x) = 0 (because u0 = xn),

and

m
∑

i=0

ai[F
′(x)]i(u0 − x) =

m
∑

i=0

ai(ui − x) +

i−1
∑

j=0

[F (x)′]i−1−jo(||uj − x||2) = 0,

therefore
m
∑

i=0

aiui = x

m
∑

i=0

ai +

i−1
∑

j=0

[F (x)′]i−1−jo(||uj − x||2),

using theorems 4.4 and 4.5 we get

ε
(r)
2(m−r) = x+

i−1
∑

j=0

[F (x)′]i−1−jo(||uj − x||2).

✷

5. Vector Epsilon algorithm applied to AS/RAS for linear systems

We consider the following problem:

{

L(u) = f in Ω,
Bu = g on ∂Ω.

(5.1)

In the case where the operator L is linear, a discretization of the equation (5.1)
leads to a linear system of equations of the form

Au = f. (5.2)

The additive Schwarz methods allows to compute the sequence of approxima-
tions {un}n∈N

by setting:

un+1 = un +M−1
AS(f −Aun), (5.3)

with

M−1
AS =

∑p

j=1R
T
j A

−1
j Rj ,

i.e.,
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















un+1,1

un+1,2

.

.

.
un+1,p

















=

















un,1

un,2

.

.

.
un,p

















+

















A11

A22 0
.

0 .
.

App

















−1 















rn,1
rn,2
.
.
.

rn,p

















,

we can write
un+1 = B un + F, (5.4)

where
B = I −M−1

ASA.

Theorem 5.1. Suppose that A and M−1
AS a real square matrices that have the same

size such that C = M−1
ASA is non singular. If we apply the vector Epsilon algorithm

to the aditive Schwarz sequence (5.4) then εn2m = u, where u is the solution of the
linear system Cu = F, and m the degree of the minimal polynomial of B .

Proof: The solution u is a fixed point of the operator

u → u+M−1
AS(f −Au),

let P = MAS − A is the difference between A and MAS, when (5.3) converge, it
converges to the solution of the preconditioned system

M−1
ASAu = M−1

ASf,

by setting yn = un − u we obtain

un+1 = un +M−1
AS(f −Aun)

= (I −M−1
AS(MAS − P ))un +M−1

AS f

= M−1
ASPun +M−1

ASAu

= M−1
ASPun +M−1

AS(MAS − P )u

= u+M−1
ASP (un − u)

the equivalent system becomes

yn+1 = M−1
ASPyn = Byn,

using theorem 4.7, we have εn2m = u, where m is the degree of the minimal
polynomial of B, and we have

Pm(B)(u0 − u) =
∑k

n=0γ
nBn(u0 − u) =

∑k

n=0γ
n(un − u) = 0,
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where γn are the coefficients of the polynomial Pd such that Pd(1) = 1.

✷

6. Vector Epsilon algorithm applied to AS/RAS for nonlinear systems

We consider now the nonlinear reaction diffusion problem defined by:

Lu− f(u) = g in Ω, (6.1)

we can write

Lu = G(u) in the sense of D′(Ω). (6.2)

The corresponding discretized problem can be written as follows:

AU = G(U) ∈ R
p, (6.3)

where A is the matrix of the discretized operator L, obtained by the finite ele-
ments on a regular grid, G : R

p −→ R
p is the nonlinear function, and U is the

vector containing the approximation of the solution of the continuous problem to
grid points. We remark, that if we put F = A−1G(.), then the problem (6.3) is
equivalent to U = F (U).

Let solve the following problem:

find x ∈ R
p such that x = F (x) (6.4)

where F : R
p −→ R

p is differentiable in the sense of Frechet, in a neighborhood
of x, m is the degree of minimal polynomial of F ′(x) for the vector xn − x and r
is the multiplicity of the root (λ = 0) for this minimal polynomial.

Knowing x0 we set u0 = xn and we solve for k = 1, ..., 2m − r, the following
iterative problem uk = F (uk−1).

To calculate ε
(r)
2(m−r) we apply the Epsilon algorithm to the vectors u0, ..., u2m−r.

then we take xn+1 = ε
(r)
2(m−r).

The application of the Epsilon algorithm to the nonlinear RAS provides a method
of resolution with quadratic convergence, see [11].

Theorem 6.1. Let un+1 = un +
∑p

j=1

∼

RT
j Fj(Rj(un)) n = 0, 1, ..., where F :

R
p −→ R

p is defined on each subdomain Fj(X) = RjF ( RT
j (X)), and G(u) :=

F(u)− u =
∑p

j=1

∼

RT
j Fj(u)− u = 0. If F is differentiable in the sense of Frechet in

a neighborhood of u, and I − F
′(u) is invertible, then there exists a neighborhood

V of u such that ∀ x0 ∈ V

‖xn+1 − u‖ = o( ‖xn − u‖ 2) n = 0, 1, ...
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Proof: If F is differentiable in the sense of Frechet in a neighborhood of u, we have:

uk+1 − u = F
′(u)(uk − u) + o( ‖uk − u‖ 2).

Let p(t) =
∑

m
i=0ait

i the minimal polynomial of F′(u) for the vector un − u,
since I − F

′(u) is invertible, thus p(1) =
∑

m
i=0 ai 6= 0,

we have: u1 − u = F
′(u)(u0 − u) + o( ‖u0 − u‖ 2),

and uk − u = [F′(u)]k(u0 − u) + o( ‖u0 − u‖ 2),
replacing in the minimal polynomial

∑

m
i=0ai[F

′(u)]i(xn − u) =
∑

m
i=0ai(ui − u) + o( ‖u0 − u‖ 2) = 0,

therefore u0 = xn, using theorems 4.4 and 4.5 we get

ε
(r)
2(m−r) = u+ o( ‖xn − u‖ 2).

✷

The algorithm (Epsilon-RAS)
In case of convergence , lim

n−→∞
un = u.

1. Choose a starting approximation x0.

2. Set u0 = xn at the iteration n, and

uk+1 = uk +
∑p

j=1

∼

RT
j Fj(Rj(uk)) k = 0, ....2m− r.

3. Apply the Epsilon algorithm to the vectors u0, ..., u2m−r to calculate ε
(r)
2(m−r).

4. Compute xn+1 such that

xn+1 = ε
(r)
2(m−r),

(r = 0 if the partial Frechet derivative of F is invertible).

7. Numerical Experiments

In this section, we compare the performance of Schwarz iterations with those
accelerated with the vector Epsilon algorithm in terms of number of iterations and
CPU Time.
We treat two different applications, the first one in the linear case and the second
one in the nonlinear case. We have implemented the finite element discretization in
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two spatial dimensions and all computational experiments presented were carried
out using Freefem++.
We compare results for different number of nonoverlapping subdomains and differ-
ent discretizations.
In all plots, the labels AS and RAS refer to the additive and restricted additive
Schwarz methods, respectively. The labels Epsilon-AS and Epsilon-RAS refer to
the vector Epsilon algorithm applied to sequences constructed by the AS and RAS
methods, respectively.

Application to the Helmholtz Problem
We consider the Helmholtz problem

{

−k2u−∆u = f in Ω
∂u
∂n

= g on ∂Ω
(7.1)

Let k be a constant, we take k = 10, g = y(y − 1) and we use a finite element
discretization on an equidistant grid on the domain Ω = [0, 1]× [0, 1] with homoge-
neous Neumann boundary conditions. Figure 1 illustrates the computational result
on all domain Ω using FreeFem ++.

Figure 1: Helmholtz problem: Solution on Ω

Now, using the Epsilon-RAS algorithm, we solve the problem on multiple sub-
domains. Let p the number of subdomains, figure 2 shows the solution for p=4, and
table 1 shows the behaviour of the error norm (L∞) when we apply the Epsilon-
RAS algorithm to the problem (7.1).

Figure 3 shows the behaviour of the error norm using a logarithmic scale versus
number of iterations for all algorithms, when p=16.
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Figure 2: Helmholtz problem: Solution for p=4

Table 1: Helmholtz problem: Error norm for Epsilon-RAS algorithm with p=4
E

(n)
0

E
(n)
2

E
(n)
4

E
(n)
6

E
(n)
8

E
(n)
10

0.92 × 10−1

0.67 × 10−1 0.18 × 10−3

0.29 × 10−1 0.86 × 10−4 0.37 × 10−5

0.92 × 10−2 0.61 × 10−4 0.22 × 10−5 0.38 × 10−6

0.86 × 10−2 0.43 × 10−4 0.88 × 10−6 0.25 × 10−6 0.98 × 10−7

0.64 × 10−2 0.23 × 10−4 0.72 × 10−6 0.72 × 10−7 0.83 × 10−8 0.12 × 10−8

0.27 × 10−2 0.91 × 10−5 0.65 × 10−6 0.51 × 10−7 0.44 × 10−8

0.86 × 10−3 0.77 × 10−5 0.55 × 10−6 0.28 × 10−7

0.64 × 10−3 0.68 × 10−5 0.43 × 10−6

0.52 × 10−3 0.45 × 10−5

0.44 × 10−3

Figure 3: Helmholtz problem. Convergence for p=16

It can be observed that AS and RAS require 165 and 143 iterations, respectively,
whereas Epsilon-AS and Epsilon-RAS only need 51 and 25 iterations, respectively,
for the same problem.
The vector Epsilon algorithm reduces both the number of iterations and the CPU
Time. Similar results about fastness of convergence are observed when we compare
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the CPU Time versus the number of subdomains for all algorithms. The results
are reported in table 2 and figure 4.

Table 2: Helmholtz problem: CPU Time versus Number of subdomains
Subdomains (P) CPU Time AS CPU Time Epsilon -AS CPU Time RAS CPU Time Epsilon -RAS

P = 4 500.24 462.13 448.37 221.74
P = 9 366.92 341.27 232.13 210.11
P = 16 273.88 244.62 198.46 172.68
P = 25 218.60 161.382 143.15 122.44
P = 36 148.07 119.21 72.64 46.91
P = 49 131.15 92.90 41.12 28.35

Figure 4: Helmholtz problem. CPU Time versus number of subdomains

Application to the Bratu problem
We consider now the following nonlinear reaction diffusion problem

−∆u+ λeu = f in Ω (7.2)

The domain is the unit square Ω = [0, 1]× [0, 1] decomposed uniformly into p
nonoverlapping subdomains.

b is chosen so that the solution is known to be the vector of all ones, using a
finite element discretization, we obtain the following nonlinear system of equations

AX + λeX − b = 0 in Ω (7.3)

For this problem, we use the nonlinear additive and restricted additive Schwarz
iterations, respectively; and their acceleration with vector Epsilon algorithm. In
each subdomain, we use the nonlinear SSOR method to solve the smaller nonlinear
problem.

Gj(X) = CωX + ω(2− ω)(Dj − ωUj)
−1Dj(Dj − ωLj)

−1(b − λeX)

where
Cω = (Dj−ωUj)

−1(ωLj+(1−ω)Dj)(Dj−ωLj)
−1(ωUj+(1−ω)Dj) and Aj =

Dj − Lj − Uj We chose the values of λ = 6.998 and Ω = 0.5. Using FreeFem++,
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Figure 5: Bratu problem. Solution on Ω

the solution of the problem (7.3) on Ω is presented in figure 5.
Figure 6 shows the solution of problem (7.2) using nonlinear Epsilon-RAS al-

gorithm on p=8 nonoverlapping subdomains.

Figure 6: Bratu problem: Solution for p=8

The following results reported in table 3, show the L∞ Error norm when we
apply the nonlinear Epsilon-RAS algorithm to the problem (7.2).

To show experimentally that the vector Epsilon algorithm can indeed provide
a good acceleration, we show the behaviour of the error norm using a logarithmic
scale versus number of iterations for all methods, when p=16, see figure 7.

As in the linear case, it can be observed that both nonlinear additive and
restricted additive Schwarz iterations take too long to converge, whereas nonlinear
Epsilon-AS and Epsilon-RAS require far fewer iterations for convergence.
As in the previous example, When we compare the CPU Time, one can observe
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Table 3: Bratu problem: Error norm for nonlinear Epsilon-RAS algorithm with
p=8

E
(n)
0 E

(n)
2 E

(n)
4 E

(n)
6 E

(n)
8 E

(n)
10 E

(n)
12

0.93 × 10−1

0.80 × 10−1 0.21 × 10−2

0.73 × 10−1 0.88 × 10−3 0.48 × 10−4

0.69 × 10−1 0.63 × 10−3 0.33 × 10−4 0.19 × 10−5

0.57 × 10−1 0.52 × 10−3 0.27 × 10−4 0.78 × 10−6 0.82 × 10−7

0.44 × 10−1 0.49 × 10−3 0.15 × 10−4 0.63 × 10−6 0.66 × 10−7 0.58 × 10−8

0.36 × 10−1 0.38 × 10−3 0.93 × 10−5 0.59 × 10−6 0.38 × 10−7 0.31 × 10−8 0.74 × 10−9

0.28 × 10−1 0.22 × 10−3 0.89 × 10−5 0.37 × 10−6 0.15 × 10−7 0.24 × 10−8

0.94 × 10−2 0.97 × 10−4 0.68 × 10−5 0.24 × 10−6 0.71 × 10−8

0.83 × 10−2 0.82 × 10−4 0.45 × 10−5 0.11 × 10−6

0.71 × 10−2 0.73 × 10−4 0.32 × 10−5

0.53 × 10−2 0.65 × 10−4

0.37 × 10−2

Figure 7: Bratu problem: Convergence for different number of subdomains p

that the Epsilon algorithm performs very well, the application of the extrapolation
method yields much faster convergence than the classical Schwarz iterations. The
results are reported in table 4 and in figure 8.

Table 4: Bratu problem: CPU Time versus Number of subdomains
Subdomains (P) CPU Time AS CPU Time Epsilon -AS CPU Time RAS CPU Time Epsilon -RAS

P = 4 572.11 299.98 498.32 282.14
P = 9 482.31 279.11 421.16 224.62
P = 16 322.67 212.04 281.75 184.35
P = 25 242.67 168.22 200.83 131.17
P = 36 154.51 98.14 122.98 83.56
P = 49 98.83 36.44 75.41 21.12

8. Conclusion

We have proposed an accelerated form of Schwarz iterations for nonlinear prob-
lems (AS-RAS) using the vector Epsilon algorithm. Comparing CPU-Time and
the number of iterations, we show that this accelerated method is fast and it has
a better accuracy than the direct classical Schwarz method.
As perspective of the present work, we can generalize the acceleration method for
non stationary PDEs, and apply it to a real modelling case.
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Figure 8: Bratu problem: CPU Time versus number of subdomains
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