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Derivations with Invertible Values in Flexible Algebras

G. Lakshmi Devi and K. Jayalakshmi

ABSTRACT: Derivations with invertible values of 0 - torsion flexible algebras sat-
isfying x(yz) = (zz)y over an algebraically closed field are described. For this class
of algebra with unit element 1 and derivation with invertible value d is either a
Cayley-Dickson algebra over its center Z(A) or a factor algebra of polynomial alge-
bra Cla]/(a?) over a Cayley-Dickson division algebra; also C'is 2 - torsion, d(C') = 0
and d(a) = 1+ ua for some u in center of C' and d is an outer derivation. Moreover,
C is a split Cayley-Dickson algebra over its center Z having a derivation with invert-
ible value d if and only if C is obtained by means of Cayley-Dickson process from
its associative division subalgebra and can be represented as a direct sum C =V &
aV.

Key Words: Derivations, Invertible values, Flexible algebras, Cayley-Dickson
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1. Introduction

Derivation with invertible values as a derivation of a ring with unity that only
takes multiplicatively invertible or zero values is defined in 1983 by Bergen, Her-
stein and Lanski [2] in which they determined the structure of associative rings
admitting derivations with invertible values. They proved that such ring must be
either a division ring, or the ring of 2 x 2 matrices over a division ring, or a factor of
a polynomial ring over a division ring of characteristic 2. They also characterized
those division rings such that a 2 x 2 matrix ring over them has an inner deriva-
tion with invertible values. Later their results were generalized in many cases like
generalized derivations, associative superalgebras and alternative algebras. In [8]
semiprime associative rings with involution, allowing a derivation with invertible
values on the set of symmetric elements, were given an examination. In [3] Bergen
and Carini studied associative rings admitting a derivation with invertible values
on some non - central Lie ideal. Also in the papers [4] and [9] the structure of
associative rings that admit « - derivations with invertible values and their natural
generalizations - (o, 77) - derivations with invertible values was described. In [12]
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Komatsu and Nakajima described associative rings that allow generalized deriva-
tions with invertible values. The case of associative superalgebras with derivations
with invertible values was studied in the paper of Demir, Albas, Argac and Fosner
[5]. Nonassociative algebras admitting derivations with invertible values are de-
scribed in the paper of Kaygorodov, Lopatin and Popov [11], where it was proved
that Jordan algebra can be represented as a symmetric bilinear form J(V, f) and
as a division algebra of Albert type.

Nowadays, a great interest is shown to the studying of nonassociative algebras
and superalgebras with derivations. Nevertheless, the problem of specification of
flexible algebras admitting derivations with invertible values remains unconsidered.
However, flexible composition algebras and Okubo algebras were studied by El-
duque and Myung [6, 7]. Our approach was motivated by the work of Kaygorodov
[11] where certain unital composition algebras are effectively constructed from 2, 3
- torsion free Jordan algebras. Some important examples of composition algebras
have arisen in the study of real division algebras, flexible algebras and Malcev -
admissible algebras and in physical problems related to the SU(3) particle physics.
Following technically Elduque and Myung, in the present paper, we come up with
an account of derivation with invertible values for 0 - torsion flexible algebra A
satisfying the identity xz(yz) = (x2)y, for all z,y,z € A over algebraically closed
field.

2. Preliminaries

Let A be an algebra with unit element 1 over field /. We denote the set of
invertible elements of A by U and consider derivations with invertible values i.e.
non - zero derivation d as for every xz € A, d(z) € U or d(xz) = 0. The nucleus of
an algebra A is the set

N(A)={ne€ A|(n,A,A) = (A,n, A) = (A, A,n) = (0)},

the commutative center of A is the set

K(A) ={k e A[[k Al = [A, k] = (0)},

and the center of A is

Z(A) = N(A) N K(A).

Derivation d is called inner if it lies in the smallest subspace of the space of all
linear operators an A containing all right and left multiplications by elements of A
and closed under commutation. Otherwise d is called outer.

The definition and properties of Cayley-Dickson algebras and the Cayley-Dick-
son process can be found, for instance, in [14]. Every Cayley-Dickson algebra
C over field F is 8 - dimensional, nonassociative simple and has unit element.
A nonassociative algebra A over a 2 - torsion free field with a non degenerate
symmetric bilinear form ( , ) permitting composition (z -y, - y) = (z,z)(y,y) for
all z,y € A [7] where x -y denotes the multiplication in A. If A has a unit element,
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then it is called unital. An algebra is flexible if the identity (zy)z = z(yz) is
satisfied for all z,y € A. It is clear that all unital composition algebras are flexible.

A mapping n: A — F is called a quadratic form if

(i) n(Az) = \*n(z), where z € A, N € F

(ii) the function f(z,y) = n(z +y) — n(z) — n(y) is a bilinear form on A.

A quadratic form n(z) is called strictly nondegenerate if the symmetric bilinear
form f(z,y) which corresponds to it is nondegenerate, and it is called nondegenerate
if from n(a) = f(a,z) =0 for all z € A it follows that a = 0.

It is well known that Cayley-Dickson algebra C'is an example of flexible algebra.
C' is quadratic over F', that is, for every x € C the following relation holds:

x? — t(x)z +n(x) =0, (2.1)

where t(z),n(z) € F,t(x) is a F - linear mapping and n(z) is a strictly nondegener-
ate quadratic form satisfying n(zy) = n(z)n(y) for all 2,y € C, where xy denotes
the multiplication in A.

C' is also equipped with a symmetric bilinear nondegenerate form f(x,y) =
n(z +y) — n(x) — n(y). For a subset M C C, by M+, we mean the orthogonal
complement to M with respect to f.

A Cayley-Dickson algebra is called split if it contains zero divisors. Element x
of a split Cayley-Dickson algebra is invertible if and only if n(z) # 0 [14].

Let A be a simple flexible algebra. Then the center of the algebra A is a field
and let us suppose that A is a Cayley-Dickson algebra over its center. Flexible
algebra in associative form is (x,y,2z) = 0 for all 2,y € A. This on linearization
gives

(z,y,2) + (z2,y,2) =0 (2.2)

for all z,y,z € A.
Throughout this paper, let A satisfy the identity

x(yz) = (zz)y (2.3)

for all z,y, z € A.
It is easy to see that A with (3) satisfies the following identity

($7y’z>y = ($7y’yz>' (2'4)
3. Derivations with Invertible values
We begin this section with the following Lemmas.

Lemma 3.1.
If d(a) = 0 then either a = 0 or a is invertible.
Proof: In every flexible algebra satisfying (3), the following identity holds.

(u™t u,a) = 0. (3.1)
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We now show that product of two invertible elements is invertible. If v and v are
invertible then

(v Huw = uH ((ww)v™h) = (wH (ww)o™ + (v e Huw

= —(u Huv, o) + (v e Huw = (v uw, w4+ (v e uw

= ((v"")u)ut = 1.

Assume that a # 0. Since d # 0, there exists b € A such that d(b) € U. Hence
d(ba) = d(b)a € U and d(b)~'d(ba) = a.
Since d(b) and d(ba) are invertible, a is also invertible. O

Lemma 3.2.

Let I,J be the ideals of a flexible algebra A |, then the product I.J is also an
ideal of the algebra A.

Proof: Let i € I and j € J. Then for any u € A, (ij)u = i(uj) € IJ. And
u(ij) = (ui)j + (iu)j —i(uj) € IJ. Hence the product I.J is also an ideal of A. O

Lemma 3.3.

(i) If L # 0 is a one - sided ideal in A then d(L) # 0.
(ii) If I is a proper one - sided ideal of A, then I is both minimal and maximal.
(iii) If I is a proper ideal of A then I? = (0).
(iv) If A is 2-torsion free, then A is simple.

Proof: (i) When L = A, the statement is obvious. So, let L # A. Let u # 0 and
u € L. Then by Lemma 3.1, d(u) # 0 since u is not invertible.

(i) Tt suffices to show that every proper one - sided ideal in A is maximal. Let
I C J be a proper one - sided ideal of A. Then it is easy to check that d(I)NI = (0)
and I & d(I) is also one - sided ideal in A. By Lemma 3.3 (i), d(I) # 0 and d(I)
contains invertible elements. Hence I @ d(I) = A. For any j € J and for u,v € I,
we have j = u + d(v). So d(v) =j—u e JNd(I)=(0) and hence j =u € I.

(iii) Let I # A be an ideal of A. Then

d(I*) c d(I) + Id(I) C I.

Since product of two ideals in a flexible algebra satisfying (3) is an ideal and I does
not contain any invertible elements, by Lemma 3.3(i), 12 = (0).

(iv) Let 24 #£ 0 and I # 0. Then by Lemma 3.3(i), d(I) # 0. So, there exists v € T
such that d(v) € U. As v? =0,

0= d*(v?) = d*(v)v + 2d(v)? + vd*(v).
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Hence 2d(v)” € I . As d(v) is invertible,d(v)’ is also invertible and 2d(v)? = 0
which implies that 2 = 0, and it is a contradiction . So A does not contain any
non - trivial ideals and hence A is simple. O

The set of all derivations of algebra A is denoted by D(A). Let us fix some
subset D C Der(A). The ideal I is called D - ideal, if for all 0 € D, a € I we have
d(a) € I. Algebra A is called D - simple if A2 # 0 and A contains no proper D -
ideals.

Lemma 3.4.

If flexible algebra A admits a derivation with invertible values d, then A is d -
simple.

Proof: This is an immediate consequence of Lemma 3.3(iii). O

Lemma 3.5.

If A is not simple and not associative, then A = Cla]/(a?), where C' is a Cayley-
Dickson algebra over its center Z(C), C is a division algebra, C' is 2 - torsion,
d(C) =0, d(a) =1+ ua for some u € Z(C) and d is an outer derivation.

Proof: By Lemma 3.3(ii) and (iv), we can see that A is 2 - torsion. If I is any
proper ideal in A then I? = (0) and all proper one - sided ideals in A are both
minimal and maximal. So, we can easily deduce that A contains a unique ideal
M and M? = 0. As in the proof of Lemma 3.3(ii), we have A = M & d(M).
For any u € A, there exists p,q € M such that d(u) = p + d(q). Therefore
p=d(u—q) € MNd(A) = (0). By denoting C = ker(d), We have A = C+ M. By
Lemma 3.1, C is a division algebra and hence A = C & M. Let n: M — C and
6 : M — M be two linear mappings defined by d(m) = n(m) + 6(m) for m € M.
For any u € C'and v € M,

ub(v) + un(v) = ud(v) = d(uv) = n(uv) + 6(uwv),

where uf(v), (uv) € M. Hence un(v) = n(uv) € n(M). Similarly n(v)u = n(vu) €
n(M). Hence n(M) is an ideal in C. Therefore C is isomorphic to M as a left
C - module as C' is simple and (M) # 0. By replacing a = n~(1), we obtain
A =C @ Ca. Since 7 is a module isomorphism, it is easy to check that [a, C] = 0.
By the identity

3(k,a,b) = 3(b,k,a) = 3(a,b, k) = [ab, k] — a[b, k] — [a, k]b =0,

satisfied for any k € K(V), a,b € V in any flexible algebra V, and we can deduce
that a € Z(A). Thus we obtain A = Cla]/(a?®). Hence C is a Cayley-Dickson
algebra over its center Z(C). We can write 6(a) = wua for some u € C. As
a € Z(A) and A is 2 - torsion, for any w € C, we obtain

0 = d(wa + aw) = w(l + ua) + (1 + ua)w = wua + vew = (Wu + uw)a.
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As C'is a division algebra, we have wu + uw = 0, hence u € Z(C). Finally, since
every ideal of A is invariant under the action of any inner derivation, a € M and
d(a) ¢ M, it is clear that d is an outer derivation. O

Theorem 3.6.

Let A be a flexible algebra with unit element 1, admitting a derivation with
invertible values d. Then one of the following conditions holds:

(i) A is a Cayley-Dickson algebra over its center Z(A);

(ii)A is a factor algebra of polynomial algebra C[a]/(a?) over a Cayley-Dickson
division algebra; also, C' is 2 - torsion, d(C') = 0 and d(a) = 1 + ua for some u in
the center of C' and d is an outer derivation.

Proof: The proof follows from Lemmas 3.3 and 3.5. g

Theorem 3.7.

An algebra C, which is a split Cayley-Dickson algebra over its center Z, admits
a derivation with invertible values d if and only if one of the following conditions
holds:

(i) C is obtained by means of the Cayley-Dickson process from its associative
division subalgebra V: C =V + sV, s> = B € Z, B # 0 where V = ker(d) and
dimzV = 4. Also, an arbitrary derivation with invertible values d is of the form
d(u + sv) = s(vr), where u,v € V and r € V is a fixed element with ¢(r) = 0.

(ii) C can be represented as a direct sum: C = V + aV, where t(a) = 0,
V = ker(d), V is a subfield of C, V = V* and dimzV = 4. Also, an arbitrary
derivation with invertible values d is of the form d(u + av) = v, where u,v € V.

Proof: Every derivation of C is inner. It is easy to check that Z C ker(d) and
d is a Z - linear mapping. So C is considered as a Z - algebra. Suppose that
C' allows a derivation with invertible values d. Take a subspace W C C such
that dimzW = 4 and W does not contain invertible elements. From Lemma
3.1, we have dimzd(W) = 4 and W Nd(W) = (0), hence C = W & d(W). In
particular, for any a € C' there exists r,s € W such that d(a) = r + d(s). Hence,
r=d(a—s) € WNd(A) = (0). By denoting V' = ker(d), we have C =V + W.
By Lemma 3.1, V is a division algebra and so C' =V @& W and dimzV = 4. Using
the facts that V' is simple and Z(C) C Z(V), we have that V is an associative
subalgebra in C. The following relation is valid in C' [14]:

uowv—t(u)v —t(v)u — f(u,v) =0. (3.2)
Replacing v = d(u), we obtain

wod(u) —t(u)d(u) — t(d(u))u — f(u,d(u)) = 0. (3.3)
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By applying d on (1), we obtain
wod(u) —t(u)d(u) = 0. (3.4)

By subtracting (7) from (8), we get ¢t(d(u))u+ f(u,d(u)) = 0. If w and 1 are linearly
independent over Z, we have

f(u,d(u)) =0. (3.5)

If w € Z then u € ker(d) and the relation (9) is obvious. By linearizing (9), we
obtain f(u,d(v)) + f(d(u),v) = 0. Since V' = ker(d), for arbitrary u € C' we have
f(d(w),V) = —f(u,d(V)) = 0 and hence d(C) C V-+. We will now study two cases:

Case(i). If the restriction of the form f on V is nondegenerate, then C' can be
obtained from V' by means of the Cayley-Dickson process [14], that is, C' =V + sV,
2= #0,V+ =3sV. Then d(s) = sr for some r € V and therefore for arbitrary
u,v € V we have d(u + sv) = d(s)v = (sr)v = s(vr). For any a,b,c € C we have
n(a)f(b,c) = f(ab,ac). For a = s,b = 1,c = r, we obtain f(s,sr) = n(s)t(r) =0
by using (9). Since s> = 8 € Z, 3 # 0, we have n(s) # 0 and t(r) = 0.

Case(ii). If the restriction of the form f on V is degenerate then there exists
0 # v € V such that f(v,V) = 0. Hence f(v,v) = 2n(v) = 0. As v is invertible,
n(v) # 0 and so C' is of 2 - torsion. In C, the following relation holds [14]:

fla,e)f(b,c) = f(ab,ec) + f(ac,be). (3.6)

By replacing @ = v, e = u, b = v 'w,c = 1, where u,w € V, we obtain

fv,u)f(v™tw, 1) = f(w,u) + f(v,uv~ w), and so by the arbitrariness of u,w we
obtain f(V,V) =0, that is, V C V*.

Now let us suppose that there exists a € V+,a ¢ V. Then by the skew symmetry
of the associator and (5), we have dimzaV = 4 and A =V @ V. By (10), we
obtain

fu,aw) = f(u-1,aw) = = f(uw,a) + f(u,a)f(1,w) =0

for any u,w € V. Hence aV C V+* and C = V1. This is a contradiction to the
nondegeneracy of the form f. Let a = d~'(1). Thena ¢ V and C =V @ aV.
Equation (9) implies that f(a,1) = t(a) = 0. By the definition of f and from
f(V,V) = 0, we obtain f(u,w) = n(u + w) — n(u) — n(w) = 0, for any u,w.
Hence n is a ring homomorphism from V to Z. Since V is simple, n(1) = 1 and
ker(n) =0, V is a subfield of Z.

Conversely let us suppose that condition (i) is true, which means that C is
obtained from V by the Cayley-Dickson process. Let 0 # r € V such that ¢(r) = 0.
Let d : u+sv — s(vr),u,v € V be a mapping. We now show that d is a derivation.
Let w1, v1,u2,v2 € V. Then

d(ug + sv1)(ug + sv2) + (u1 + sv1)d(ug + sva)

= B(va(r 4+ 7)v1) + s((ugvy + tqv2)r) = B(vat(r)v1) + s((ugvr + tqv2)7)

= s((ugu1 +11v2)r) = d((urus + foath) + s(@1va +ugvr)) = d((ug + sv1)(uz + sv2)).
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Since V' is a division algebra, n(d(u+sv)) = n(s(vr)) = n(s)n(v)n(r) = —pn(v)n(r)
# 0, if v #£ 0. So d(u + sv) is invertible for any u € V,0 # v € V. Hence d takes
invertible values.

Now let us suppose that condition (ii) is true. Let d : u+av — v be a mapping.
We now show that d is a derivation with invertible values. As V = V+ t(u) =0
for any u € V. Since C is 2 - torsion, from equation (6) we have

[a,u] = aou=t(u)a+tla)u+ f(u,a) = f(u,a) € Z. (3.7)

Hence d([a,u]) = 0. By substituting a in (1), we have a® € Z. By(11), it is easy to
verify that for u,w € V the following identity holds:

(u,w,a) = uf(w,a) + f(u,a)w + f(a,uvw). (3.8)
Hence d((u,w,a)) = 0. For any u, v, w,h € V we have
d((ua +v)(wa + h)) = d((ua)(wa) + (ua)h + v(wa) + vh)

= d((ua)(wa)) + d((ua)h) + d(v(wa)).

ii)w d((ua)h) = d((au)h) = d(a(uh)) = uh and d(v(wa)) = d((vw)a) = vw.
d((ua +v)(wa + h)) + (ua + v)d(wa + h)

= w(wa + h) + (va + v)w = u(wa) + vh + (va)w + vw.

Thus we have to show that d((ua)(wa)) = u(wa) + (ua)w.
But
u(wa) + (va)w = (uw)a — (u, w, a) + ulaw) + (u, a, w)

= (uw)a + u(wa + f(w,a)) = (u,w,a) + uf(w,a).

Now, since a? € Z and d(a?(uw)) = n(a)d(uw) = 0, we have
d((ua) (wa)) = d{(au + F(u, a))wa) = d((au)(wa)) + f(u, a)d(wa)

= d(a(ua)a) + f(u,a)w = d(a(a(vw) + f(a,uw))) + f(u, a)w
= d(aQ(uw)) + fla,uvw) + f(u,a)w = f(a,uw) + f(u,a)w.

By equating the expressions, we can get the equation (12). Hence d is a derivation
of C. As V is a field and d takes values in V, d is a derivation with invertible
values. O

Acknowledgements
This project is partially supported by Jawaharlal Nehru Technological University
Ananthapur, Registered No. 13PH0909.



10.

11.

12.

13.
14.

DERIVATIONS WITH INVERTIBLE VALUES IN FLEXIBLE ALGEBRAS 71

References

. L. Bajo,Lie algebras admitting nonsingular pre-derivations, Indag. Math(N.S)8(1997), 433-

437.

J. Bergen, I. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math
35(1983), 300-310.

J. Bergen and L. Carini, Derivations with invertible values on a Lie ideal, Canad. Math. Bull
31(1988), 103-110.

J.C. Chang, a-derivations with invertible values, Bull. Inst. Math. Acad. Sinica 13(1985),
323-333.

C. Demir, E. Albas, N. Argac and A. Fosner, Superderivations with invertible values, J.
Algebra Appl 14(2015), 11pp.

A. Elduque and H.C. Myung, On flezible Composition algebras, Comm. Algebra 21(1993),
2481-2505.

A. Elduque and H.C. Myung, Flexible Composition algebras and Okubo algebras, Comm.
Algebra 19(1991), 1197-1227.

A. Giambruno, P. Misso and P.C. Milies, Derivations with invertible values in rings with
involution, Pac.J. Math 123(1986), 47-54.

M. Hongan and H. Komatsu, (o, 7)-Derivations with invertible values, Bull. Inst. Math. Acad.
Sinica 15(1987), 411-415.

I. Kaygorodov and Y. Popov, Alternative algebras admitting derivations with invertible values
and invertible derivations, Izvestiya. Math 78(2014), 922-935.

I. Kaygorodov, A. Lopatin and Y. Popov, Jordan algebras admitting derivations with invert-
ible values, arXiv: 1511.00742.

H. Komatsu and A. Nakajima, Generalized derivations with invertible values, Comm. Algebra
32(2004), 1937-1944.

A.A. Popov,Differentiably simple alternative algebras, Algebra and Logic 49(2010), 456-469.

K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov and A.l. Shirshov, Rings that are nearly asso-
ctative, Pure and Applied Mathematics, 104, Academic Press, Inc, New York-London, 1982.

G. Lakshmi Dewvi,

Department of Mathematics,
Government College(Autonomous,)
Ananthapuramu, Andhra Pradesh, India.
E-mail address: glakshmi229@gmail.com

and

K. Jayalakshmi,

Department of Mathematics,

JNTUA College Of Engineering (Anathapuramu),
Andhra Pradesh, India.

E-mail address: kjay.maths@jntua.ac.in



	Introduction
	Preliminaries
	Derivations with Invertible values

