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Existence of Entropy Solutions in Musielak-Orlicz Spaces Via a
Sequence of Penalized Equations

M. Elmassoudi, A. Aberqi and J. Bennouna

ABSTRACT: This paper, is devoted to an existence result of entropy unilateral
solutions for the nonlinear parabolic problems with obstacle in Musielak- Orlicz—
spaces:
Oru+ A(u) + H(z, t,u, Vu) = f + div(®(z, t,u)),
and
u > ae. in Q.

Where A is a pseudomonotone operator of Leray-Lions type defined in the inho-
mogeneous Musielak-Orlicz space WOI’QCL(,,(QT)7 H(z,t,s,&) and ®(z,t,s) are only
assumed to be Crathéodory’s functions satisfying only the growth conditions pre-
scribed by Musielak-Orlicz functions ¢ and 1 which inhomogeneous and does not
satisfies As-condition. The data f and ug are still taken in L'(Q7) and L' (Q).

Key Words: Musielak-Orlicz space, Nonlinear Obstacle-parabolic problems,
Entropy solution.
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1. Introduction

One of the driving forces for the rapid development of the theory of variable ex-
ponents function spaces, and more generaly the Musielak—Orlicz—functions spaces
has been the model of electro-rheological fluids introduced by Rajagopal and Ru-
sicka [page 457]. The model leads naturally to a functional setting involving func-
tion spaces with variable exponents. Electrorheological fluids change their mechan-
ical properties dramatically when an external electric field is applied. Also in the
mathematical community such materials are intensively investigated in the recent
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years. the concept of weak solutions is not enough to give a formulation to all
problems and does not provide uniqueness and stability properties. Hence, as an
extension of distributional solutions, we can use the notion of entropy.
Statement of the problem: Let Q be a bounded open set of RN (N > 2), T
is a positive real number, and Qr = Q x (0,T"). Consider the following nonlinear
Dirichlet equation:

u Z C in QT7
% + A(u) + H(z,t,u,Vu) = f + div(®(x,t,u)) in  Qr, (1.1)
u(z, t) =0 on 00 x (0,7), '
u(z,t =0) = up(x) in Q.

Where A(u) = —div(a(x,t,u, Vu)) is a Leary-Lions operator defined on the in-

homogeneous Musielak-Orlicz-Sobolev space VVO1 " Ly(Qr), ¢ is a Musielak-Orlicz-
function related to the growths of the Carathéodory functions a(zx,t,u, Vu),
O(x,t,u) and H(x,t,u, Vu) (see assumptions (3.1), (3.4) and (3.5). The data
f and ug in L*(Qr) and L'(Q) respectively, and ug > C.

The first prototype is taken from the Classical Sobolev spaces, having the fol-
lowing form:

ou
ot
Porzio et al. in [21] have proved the existence of weak solutions, with ¢(.,.) = 0.
For ¢(.,.) € L*(Qr) and p = 2, Boccardo et al. in [11] have proved the existence
of entropy solutions, recently R. Di-Nardo et al. in [16] have proved an existence
resultl\s[ of renormalized solutions in the case where p > 2 and ¢(.,.) € L"(Qr) with
+p

= oo and by Aberqi et al. in [2] for more general parabolic term. For the

elliptic version of the problem (1.1), more results are obtained see e.g. [12,13].

Ap(u) + div(c(, ) |ul " u) + b Vul® = £, inQr.

In the degenerate Sobolev-spaces an existence results is shown in [6] without
sign condition in H(z,t,u, Vu).

In the Orlicz-Sobolev spaces, Rhoudaf et al. in [19] proved the existence of
entropy solutions of the problem (1.1) where H(z,t,u, Vu) = 0 and the growth of
the first lower order ® prescribed by an anisotropic N-function ¢ defining space
does not satisfy the Ay-condition.

To our knowledge, differential equations in general Musielak—Sobolev spaces have
been studied rarely see [3,10,17,20], then our aim in this paper is to overcome some
difficulties encountered in these spaces and to generalize the result of [2,5,19,22],
and we prove an existence result of entropy solutions for the obstacle parabolic
problem (1.1), with less restrictive growth, and no coercivity condition in the first
lower order term ®, and without sign condition in the second lower order H, in the
general framework of inhomogeneous Musielak-Orlicz-Sobolev spaces WO1 “L,(Qr),
and the anisotropic N-function ¢, defining space does not satisfy the /\s-condition.
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Remark 1.1. The difficulties associated to the existence of entropy solutions of
equations (1.1) lies in the fact that:

1. ®(x,s) is non-coercive, and non-continuous with respect to x, we can’t applied
the Stoks formula.

2. The Musielak—Orlicz function ¢ not satisfy the Ag-condition which induce a
loss of reflexivity of the framework space.

Let us give an example of equations to which the present result can be applied:

u Z g in QT}
% — Ay (u) + up(z, Vu) = f + c(z, )0, o(z,a0lul) in  Qr,
u(x,t) =0 on 00 x (0,7).

Where —A,(u) = —div(%.vm, m(z, s) is the derivative of p(z, s) with re-

spect to s, ¢ is an admissible obstacle function.

Let us summarize the contents of this article. In section 2, we recall some defini-
tions, properties and technical lemmas about Musielak-Orlicz-Sobolev. In section
3 is devoted to specify the assumptions on ®, H, f, up and giving the definition of
a entropy solution of (1.1) . In section 4, we establish the existence result of such
a solutions in theorem (4.1), this last section is divided in 6 steps.

2. Preliminaries
2.1. Musielak-Orlicz function

Let 2 be an open subset of RY (N > 2), and let ¢ be a real-valued function
defined in 2 x R} and satisfying conditions:
(®1): @(x,.) is an N-function for all x € Q (i.e. convex, non-decreasing, con-
tinuous, ¢(x,0) = 0, ¢(z,0) > 0 for ¢ > 0, limy_osup,cq @ = 0 and
limy o0 Inf e @ = 00).
(P2): @(.,t) is a measurable function for all ¢ > 0.

A function ¢ which satisfies the conditions (®1) and (®3) is called a Musielak-
Orlicz function.

For a Musielak-Orlicz function ¢, we put ¢ (t) = ¢(x,t) and we associate its

non-negative reciprocal function ¢, !, with respect to t, that is

o, ez, 1) = oz, 0, (1) = t.

Let ¢ and v be two Musielak-Orlicz functions, we say that ¢ dominate v, and
we write v < @, near infinity (resp. globally) if there exist two positive constants ¢
and to such that for a.e. @ € Q, y(z,t) < p(z,ct) for all t >ty (resp. for all ¢ > 0).
We say that v grows essentially less rapidly than ¢ at O(resp. near infinity, and we
write v << ¢, for every positive constant ¢, we have

t t
lim (sup (@, )) =0 (resp. lim (sup (@, e )) = O).
=0 \geq @(,1) t=00 \geq $(2, 1)
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Remark 2.1. [10] If v << ¢ near infinity, then Ve > 0 there exist k(e) > 0 such
that for almost all x € Q we have

v(z,t) < k(e)p(x,et) Vt > 0.

Proposition 2.2. Let v << ¢ near infinity and ¥Vt > 0, sup,cqoy(z,t) < oo,
then for alle > 0, there exists Ce > 0 such that y(x,t) < o(x,et) + Ce, for all t > 0.

Example 2.3. v(x,t) = ||z||M(t) and M is an isotropic N-function.

~(z,t) = exp( VM (t) and M is an isotropic N-function.

]l +1

Proof: We have by definition, Ve > 0,3ty > 0, such that Va € Q,Vt > tg,v(x,t) <
o(z,et), for 0 <t < to, since v is increasing in ¢, we have

y(z,t) < vy(x,to) < supzv(x to) = Ce,
zel

then y(z,t) < p(z, et) + y(x,to) < @(z, et) + Ce,Vt > 0. O

2.2. Musielak-Orlicz space

For a Musielak-Orlicz function ¢ and a measurable function v : Q@ — R, we
define the functional

Qw,sz(u):/gw(z, |u(x)|)da.

The set K, () = {u:Q — R mesurable: g, o(u) < oo} is called the Musielak-
Orlicz class. The Musielak-Orlicz space L, (£2) is the vector space generated by
K,(Q); that is, L, () is the smallest linear space containing the set K,(Q2). Equiv-
alently

L,(©2) ={u:Q— R mesurable: Q<PQ()\)<OO for some A > 0}.

For any Musielak-Orlicz function ¢, we put ¥(z, s) = sup(st — (x, 8)).
>0

1 is called the Musielak-Orlicz function complementargf to ¢ (or conjugate of ¢)
in the sense of Young with respect to s. We say that a sequence of function

Un € Ly(€) is modular convergent to u € L, () if there exists a constant A > 0
Up, —

such that lim g, o u) = 0, this implies convergence for o(IIL,,IILy) (see
n—00 ’

[9])-

In the space L, (), we define the following two norms

Hu|\¢:inf{)\>0:/gp(x, |u()\ | )da < 1},
Q

which is called the Luxemburg norm, and the so-called Orlicz norm by

llallon = sup [ fulz)ota)lde,

[lo]ly <
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where 1) is the Musielak-Orlicz function complementary to ¢. These two norms are
equivalent [9]. K, () is a convex subset of L., (€2). We define E,(f2) as the subset of
|u(z)]
Q A
all A > 0. It is a separable space and (E,(Q))* = L,(£2). We have E,(Q) = K,(),
if and only if ¢ satisfies the As—condition for large values of ¢ or for all values of
t, according to whether 2 has finite measure or not.

L,(€2) of all measurable functions u :  +— R such that / o(, )dz < oo for

We define
WL, (Q) = {u € Ly(Q) : D € Ly,(Q), Va <1},
W'E,(Q) = {u € E,(Q): D*u € E,(Q), Va <1},
where a = (a1, ...,an), |a| = |ai| + ... + |an| and D*u denote the distributional

derivatives. The space W' L, (1) is called the Musielak-Orlicz-Sobolev space.
Let
0p.0(u) = Z 0, 0(D%u) and

lal<1

lullio = nt{r>0:2,0(3) < 1}

for u € WL, (Q).
These functionals are convex modular and a norm on W' L, (), respectively. Then
the pair (W' L, (), [ulll, o) is a Banach space if ¢ satisfies the following condition
(see[20]): There exists a constant ¢ >0 such that inf,cq@(z,1) > c.
The space WL, (1) is identified to a subspace of the product o<1 L, (2) = IIL,,
We denote by D(£2) the Schwartz space of infinitely smooth functions with compact
support in  and by D(Q) the restriction of D(R) on Q. The space Wi L, (Q) is
defined as the o (I1L,, I1E,) closure of D(2) in WL, (2) and the space W E, ()
as the (norm) closure of the Schwartz space D(€2) in WL, ().
For two complementary Musielak-Orlicz functions ¢ and 1, we have [9].

e The Young inequality:
st < @(x,s) +(x,t) for all s, >0, z € Q.

e The Holder inequality:

| / u(z)v(z)dz| < ||ullgolllv]lyo for all u € Ly(2),0 € Ly ().
Q

We say that a sequence of functions u,, converges to u for the modular convergence
in WL, (Q) (resp. in Wy Ly, ()) if, for some A > 0, lim, o0 8, o (¥257%) = 0.
The following spaces of distributions will also be used

WLy(Q) ={f €D (Q): f=) (-1)"D*fo where fo€ Ly(Q)},

a<l
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and

W E(Q) ={feD(Q): f=D (-1)*Dfa where fo € E(Q)}.

a<l

Lemma 2.4. [9] Let Q be a bounded Lipschitz domain in RN and let o and 1) be two
complementary Musielak-Orlicz functions which satisfy the following conditions:

1. There exists a constant ¢ > 0 such that

inf 1
;Ielﬂsa(z, ) > ¢,

2. There exists a constant A > 0 such that for all x,y € Q with |z — y| < %, we
have

t g
pla,t) |t|(1°g<w)) forall t>1

3

/ oy, \)dx < oo, for any constanth > 0 and every compact K C ,
K

There exists a constant C >0 such that (y,t) <C a.e. in €.

Under this assumptions D(£2) is dense in L,(€2) with respect to the modular
topology, D(€2) is dense in Wi L,(Q) for the modular convergence and D(R) is
dense in W§L,(S2) for the modular convergence. Consequently, the action of a
distribution S in in W~1L,(Q) on an element u of Wi L, (£2) is well defined. It
will be denoted by < S,u >.

2.3. Truncation Operator

Tk, k > 0, denotes the truncation function at level & defined on R by T (r) =
max(—Fk, min(k, r)). The following abstract lemmas will be applied to the trunca-
tion operators.

Lemma 2.5. [10] Let F : R — R be uniformly lipschitzian,with F(0) = 0. Let ¢
be an Musielak-Orlicz function and let u € W L,(Q) (resp.u € WIE,(QQ)). Then
F(u) € WYL, () (resp.u € Wi E,(Q)). Moreover, if the set of discontinuity points
D of F' is finite, then

0 F( ){ F’(m)g—; a.e. in{x € Q;u(x) ¢ D},
ox; Y=o a.e. in{x € Q; u(z) € D}.



EXISTENCE OF ENTROPY SOLUTIONS IN MUSIELAK-ORLICZ SPACES 209

Lemma 2.6. [9] Suppose that Q) satisfies the segment property and let
u € Wy Ly(Q).
Then, there exists a sequence u, € D() such that

un, — u for modular convergence in Wi L, ().

Furthermore, if u € Wy Ly,(Q) N L¥(Q) then |[un|lco < (N + 1)||uloo-

Let Q be an open subset of RV and let ¢ be a Musielak-Orlicz function satis-
fying:

1 -1
vr (1)
/0 N+(1 dt =00 ae. x €, (2.1)

t™N

and the conditions of Lemma (2.4). We may assume without loss of generality that

1 -1

t

/ szfl)dt < oo ae. x€. (2.2)
0 tTN

S —1 t
Define a function ¢* : Q x [0,00) by ¢*(x,s) = / @INfl)dt x € Qand s € [0, 00).
0

-~

©* its called the Sobolev conjugate function of ¢ (see [1] for the case of Orlicz

function).

Theorem 2.7. [17] Let Q be a bounded Lipschitz domain and let ¢ be a Musielak-

Orlicz function satisfying (2.1)-(2.2) and the conditions of lemma (2.4). Then
Wo Lo () = Ly (),

where ©* 1s the Sobolev conjugate function of ¢. Moreover, if ® is any Musielak-
Orlicz function increasing essentially more slowly than ¢* near infinity, then the
imbedding
W()lLSD(Q) — L@(Q),

1§ compact.
Corollary 2.8. [17] Under the same assumptions of theorem (2.7), we have

Wy Lp(9) < Ly(€).
Lemma 2.9. [10] If a sequence un u, € Ly(2) converges a.e. to u and if u,
remains bounded in L, (§Y), then u € L,(QY) and u, — u for o(Ly,(S2), By (2)).
Lemma 2.10. Let u,,u € L,(Q). If u, — u with respect to the modular conver-
gence, then w, — u for o(Ly(2), Ly(12)).

Up — U

Proof: Let A > 0 such that / o(z, )dx — 0. Thus, for a subsequence,

Q
Uy, — w a.e. in Q. Take v € Ly(Q) and multiplying v by a suitable constant, we
can assume \v € Ly (Q).
By Young’s inequality, we have |(u, —u)v| < ¢(x, *==*) + 1 (z, Av) which implies,

by Vitali’s theorem, that / |(wy, — w)v|dz — 0. O
Q
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2.4. Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let © an bounded open subset RY and let Qr = Qx]0,T[ with some given
T > 0. Let ¢ be an Musielak-Orlicz function, for each o € NV denote by V¢ the
distributional derivative on Qr of order o with respect to the variable z € N¥.
The inhomogeneous Musielak-Orlicz-Sobolev spaces are defined as follows,

WL, (Qr) = {u € Ly(Qr) : Viu € Ly(Qr),Va € NV |a] < 1}, (2.3)
W E,(Qr) = {u € E,(Qr) : Vu € E,(Qr),Ya € NV |a| < 1}.

The last space is a subspace of the first one, and both are Banach spaces under the

norm
lal = > IVEuleqr-

laf<m

We can easily show that they form a complementary system when ) satisfies the
Lipschitz domain [9]. These spaces are considered as subspaces of the product
space IIL,(Q7) which have as many copies as there is a-order derivatives,|a| < 1.
We shall also consider the weak topologies o(IIL,,IIE,) and o(IIL,,IIL,). If
u € WL, (Qr) then the function : ¢ — u(t) = u(t,.) is defined on (0,7) with
values W1L, (). If, further, u € W' E,(Qr) then the concerned function is a
Wl’zEW (©)-valued and is strongly measurable. Furthermore the following imbed-
ding holds Wh*E,(Q) ¢ LY(0,T, WH*E,(9)).

The space WH*L,(Qr) is not in general separable, if W*L,(Qr), we can not
conclude that the function wu(t) is measurable on (0,7). However, the scalar func-
tion ¢+ [|u(t)||p.q , isin L'(0,T). The space Wy " E,(Qr) is defined as the (norm)
closure WH*E,(Qr) of D(Qr). We can easily show as in [9], that when 2 has the
segment property, then each element u of the closure of D(Qr) with respect of the
weak™ topology o(IIL,,IIEy) is a limit, in Wol’zEw(QT), of some subsequence
(u;) € D(Qr) for the modular convergence, i.e. there exists A > 0 such that for
all |a] <1

/ gp(z,w)dxdtﬁo as 1 — o0.
T

This implies that (u;) converge to u in WL, (Qr) for the weak topology
o(IL,, T1Ly).
Consequently,

—— o (IIL, ,IIEy) ———0(IIL,,I1Ly)

D(Qr) D(Qr) :
This space will be denoted by Wy'*L,(Qr) . Furthermore,

Wy " Ey(Qr) = Wy Lo (Qr) NTIE,.

Wy "Lo(Qr) F )

We have the following complementary system ( .
Wy Ex(Qr)  Fo
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I being the dual space of WO1 " E,(Qr). It is also, except for an isomorphism,
the quotient of IIL, by the polar set WOLIEW (Q7)*, and will be denoted by
F=W=14L,(Qr) and it is show that,

WL @) = {f = ¥ Vi facLo@n. (2.4
lal<1

This space will be equipped with the usual quotient norm

11l =inf > [l fallv.Qrs (2.5)
o<1
where the infimum is taken on all possible decompositions
F=> Vifar fa€Ly@Qr). (2.6)
le|<1
The space Fy is then given by,
R={f= 3 Vifa: facBu@n}. (2.7

jal<1
and is denoted by Fy = W12 E,(Qr).

Lemma 2.11. [3] Under the assumptions of lemma (2.4), and by assuming that
o(x,.) decreases with respect to one of coordinate of x, there exists a constant § > 0
which depends only on € such that

/ o(z, |u|)dxdt§/ o(x,0|Vu|)dzdt. (2.8)
T Qr

Definition 2.12. We say that u,, — w in W= Ly, (Qr)+ L*(Qr) for the modular
convergence if we can write u, = Z|a\<1 Deu® +ud and u = Z|a|<1 Doy + ud
with u® — u® in Ly(Qr) for modular convergence for all |a| < 1, and u® — u®
strongly in L*(Qr).

Lemma 2.13. Let {u,} be a bounded sequence in W% L., (Qr) such that

ouy,

o an + B, in D'(Qr),

Uy — u, weakly in W1’1L¢(QT), for o(IIL,,IIEy),

with {a,} and {B,} two bounded sequences respectively in W—1*L,(Qr) and
in M(Qr). Then u, — w in L, (Qr). Furthermore, if u, € Wol’ng,(QT), then
U, — u strongly in LY (Qr).

Proof: It is easily adapted from that given in [14] by using Theorem 4.4 and
Remark 4.3 instead of Lemma 8 of [23]. O
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Theorem 2.14. if u € WL, (Qr) N LY (Qr) (resp. Wy'" Ly (Qr) N LY(Qr))
and 2 G_W’l’ILw(QT) + LY(Qr), then there exists a sequence (vj) in D(Qr)
(resp. D(I,D(Qr))) such that v; — u in WH*L,(Qr) and

a’Uj ou

2t ot in WH Ly (Qr) + LY (Q7),

for the modular convergence.

Proof: Let u € WYL, (Qr) N LY(Qr) and &% € WLy (Qr) + L*(Qr), then
for any € > 0. Writing % = |al<1 D¢u®+u°, where u® € Ly(Qr) for all |a| <1
and u° € LY(Qr), we will show that there exits A > 0 (depending Only on u and
N) and there exists v € D(Qr) for which we can write 2% = 2jaj<1 Dgv + v

ot
with v¥, v € D(Q) such that
D¢v — D¢
/ oz, 22222y qudt < €,V]a| < 1, (2.9)
- A
lv — UHLI(QT) <e, (2.10)
[0 — || p1(qp) < e (2.11)
v —u”
(x, Ydzdt <e, V|a| <1 (2.12)
Qr

The equation (2.9) flows from a slight adaptation of the arguments [9], the
equations (2.10)-(2.11) flows also from classical approximation results.
For The equation (2.12) we know that D(Q) is dense in Ly (Qr) for the modular
convergence.
The case where u € Wy*L,(Qr) N L*(Qr)) can be handled similarly without
essential difficulty as it mentioned [9]. O

Remark 2.15. The assumption u € L*(Qr) in theorem (2.14) is needed only when
Qr has infinite measure, since else, we have L,(Qr) C L*(Q1) and so

WLy (Qr) N LYQr) = WHLy(Qr).

Remark 2.16. If in the statement of theorem (2.14) above, one takes I = R,
we have that D(Q x R) is dense in {u € Wy Ly(Q x R) N LY (Q x R) : 86—;‘ €
W=L2L,(Q x R) + LY (Q x R)} for the modular convergence. This trivially follows
from the fact that D(R, D(Q)) = D(Q x R).

Lemma 2.17. Let a < b € R and Q be a bounded open subset of RN with

0

the segment property, then {u € Wy Ly,(2 x (a,b)) N LY(Q x (a,b)) : a—ttt €
WL, (2 x (a,b)) + L (Q x (a,b))} € C([a,b], L}(Q)).
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Proof: Let u € Wy L,(Qx (a,b)) and 24 € W=17Ly,(Q x (a,b)) + L (2 x (a,b)).
After two consecutive reflections first with respect to t = b and then with respect
tot=a,

ﬁ(xv t) = ’LL(.CC, t)X(a,b) + ’LL(.CC, 2b — t)X(b,2b7a) in Q x (bv 2b — a)v

and

’EL(,CE, t) = ’&,(.’L‘, t)X(a,bea) + ﬂ(m, 2a — t)X(3a72b,a) in Q x (3@ —2b,2b— a)'

We get function @ € Wy'" Ly, (9 x (3a — 2b,2b — a)) with 9h e Wb Ly(Q x (3a —
20,2b — a)) + LY(Q x (3a — 2b,2b — a)). Now by letting a function n € D(R) with
n =1 on [a,b] and supp (n) C (3a — 2b,2b — a), we set uw = nu, therefore, by
standard arguments (see [15]), we have @ = u on (Q x (a,b)),

e Wy Lo(Qx R)NLY (2 x R) and 22 € Wy "Ly (Q x R) + L1(Q x R).

Let now v; the sequence given by theorem (2.14) corresponding to @, that is,

v —»T  in Wy L,( x R),

and 5 P
% — 5_1; in Wy Ly(Q x R) + L'(Q x R),

for the modular convergence.

If we denote Sk(s) = / Ty (t)dt the primitive of T},. We have,

0
/ Sy (v; — v;)(7)da = / 1 (v; fvj)(% C it 50 as i -0,
Q 0/ ot ot

from which, one deduces that v; is a Cauchy sequence in C(R; L'(Q)) and hence
u e C(R,L'(Q)). Consequently, u € C([a;b]; L'(Q2)). O

3. Essential assumptions

Let  be an open subset of RY (N > 2) satisfying the segment property, and
let ¢ and v be two Musielak-Orlicz functions such that ¢ and its complementary
1 satisfies conditions of Lemma 2.4 and Lemma 2.11 and v << ¢.

A: D(A) C WiLy(Qr) — WLy (Qr) defined by A(u) = —diva(z,u, Vu), where
a:Qr xR xRN — RV is Carathéodory function such that for a.e. x € Q and for
all s € R, €% € RN ¢ £ €%,

la(z,t,5,8)| < Blao(x,t) + ¥y v(@, kils]) + ¥; oz, k1 €])), (3.1)
with ao(.) € Eyx(Qr), and 8 > 0,

(a(z,t,8,&) —a(z, t,5,))(E - &) >0, (3.2)
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a(x,t,s,£).6 = ap(z, [§]) + ¢(z, |s]). (3.3)
®: Qr x R — RY is a Carathéodory function such that

(2, . 5)| < ez, )07 @@, aols]), (3-4)

1
where |lc(.,.)[z=(@r) <@ and 0 < ap < min(1; E>

H:Qr xR xRN — R is a Carathéodory function such that

[H(z,t,5,)] < h(z,t) + p(s)p(x, [£]), (3-5)

p: R — RT is continuous positive function which belong L!(IR) and h(.,.) belong
LY(Q7).

fe L' Q) (3.6)
up € L1(9). (3.7)
Let ¢ a measurable function with values in R such that
0
¢ € Wy E,(Qr) N L™>(Qr), 8_?; € LY(Qr) such that wg > ¢,

and let K¢ = {u € W Ly(Qr) : u> Cae. in Qr}.

Note that <, > means for either the pairing between Wol’ILW (Qr) N L>®°(Qr) and
W12 Ly(Qr) + L' (Qr) or between Wy " Ly,(Qr) and W17 Ly (Qr).
The definition of a entropy solution of Problem (1.1) can be stated as follows.

Definition 3.1. A measurable function u defined on Q1 is a entropy solution of
Problem (1.1), if it satisfies the following conditions:

/Sk ))dm—i—/ %Tk(s—v(:v,o))dxdt
a(z, t,u, Vu)VT(u — v)dzdt

(x,t,u)VTi(u — v)dzdt + H(z,t,u, Vu)Ty(u — v)dzdt

Qr
/ 5
j fTi(u — v)dxdt —|—/ Sk (ug — v(x,0))dx,
k >

T
0, and Yve KcNL®(Qr) suchthat 2% € Ly(0,T; W Ly(Q)).
(3.8)

4. Main result

Theorem 4.1. Assume that (3.1) — (3.7) hold true . Then there exists at least one
entropy solution u of the problem (1.1) in the sense of definition (3.1).

Remark 4.2. The results obtained in Theorem (4.1), remains true if we replace
(3.4) by the growth condition |®(x,t,s)| < c(z)7, *v(, |s|), where c(.) € E,(Q) and
T ==
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Remark 4.3. Condition (3.3) can be replaced by the weaker one
a(‘ra Sa€)€ > Oé(p(.%', |€|) - b(x)a

where b(x) is in L'-function.

Remark 4.4. We obtain the existence result without assuming the coercivity con-
dition. However one can overcome this difficulty by introduced an appropriate test
function.

Remark 4.5. We will denote by C; with i = 1,2, ... any constant which depends
on the various quantities of the problem but not on n.

Proof:
Step 1: Approximate problem.
For each n > 0, we define the following approximations

an(z,t,8,6) = a(x,t,T,(s),&) ae. (v,t) €Qp, VsER, VECRY, (4.1)

D, (x,t,8) = P(x,t,T,(s)) ae. (x,t) €Qr, VseER, (4.2)
H(x,t,s,€)

1+ %|H($,t,s,§)|’

fn € L'(Qr) such that f, — f strongly in L'(Qr),and || fullr@r) < IIflL1@0)

H’n(‘rv t’s’ ) =

(4.4)
and
ugn € C5°(Q) such that wug,, — ug strongly in L*(Q). (4.5)
We define sgy(s) = T"T(S)
Let us now consider the approximate problem :
Oun, .
B div(an(z,t, up, Vuy,)) + Hy (2, t, n, Vug,)
+nTn(un - C)_Sg% (un) =fa+ d’L"U(‘I)n(.T, t, un)) in Qr, (46)
U (z,t) =0 on 00 x (0,7),
Un(wa 0) = Uon in Q.

Since H,, is bounded for any fixed n > 0, there exists at last one solution u, €
Wy L,(Qr) of (4.6)(see [18]).
Step 2: A priori estimates.

Lemma 4.6. Let {u,}, be a solution of the approzimate problem (4.6), then for
all k > 0, there exists a constants Cy and Co such that

/ a(x,t, Ty (un), V() VT (uy)de < kCh, (4.7)

and

/ (2, [V Tk (un) )z < kC, (4.8)

where Cy and Cy does not depend on the n and k.
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Proof: Fixed k > 0,

Let 7 € (0,7) and using exp(G(un))Tk(un) X (0, as a test function in problem

(4.9)

(4.6), where G(s) = / @dr, and o > 0 is a parameter to be specified later.
0 a
We get
aun +
—— exp(G(un)) Ty (un) T dadt
Q. Ot

+ / an (@, t, Un, Vun)V (exp(G(un ) T (ur ) T) dadt

+ / Py (2, t,un)V (exp(Gun)) T (un ) T) dadt

-

+ H (2, t, U, Vg) exp(G(un)) Tk (un) T dadt
QT

+ / nTn(un —¢) 7591 (un) exp(G (un)) Tk (uy ) T dzdt

-

ol

< kexp(—
(67

Ml @r)-
* For the (4.9), we take

Tk(r) = /OT exp(G(s))Tk(s) " ds,

then

ouy,

Q. Ot Q

By definition we have

and

/ka(un(O))d:E < keXp(HpCLllL1 Mol £ (0)-

* For the (4.11) we use (3.4) and Young inequality, we get

/ (2, t,u,)V(exp(G(un)) T (uy)*)dxdt

-

< b, [ ol uplua) exp(Glun) Tulun) *dade

-

+ / oz, Vun) p(un) exp(Gun)) Tk (un)er:Edt}

-

—eXp(G(un))Tk(un)erxdt:/ka(un(r))dx—/fk(un(O))dq}.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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—|—Hc(.,.)||Loo(QT)a0/ o(x, uy) exp(G(uy))dzdt

-

el )l @m /Q (2, [V T (un) ) exp(G(un)decdt

-

* For the (4.12) we have,

Ho (b, un, Vi) exp(G(un)) Tk (un) T dzdt < kexp( Hpollel )/ |h(z,t)|dzdt
Qr Qr
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+/ p(un) exp(G (un))p(2, Vun ) Th (un) T dxdt.

-

Finally using the previous inequalities and (3.3), we obtain

2 . £ a)p0) (G0 ) i)

+= fQT o, Vuy) p(un) exp(G(un )Tk (uy) T dzdt
+/ (m t, U, V) exp(G(uy)) VT (u,) T dadt
o Tt — )59 (1) (Gt ) Tt
<

””i—”“ 0 -t 500Gl ) Tl ot

-

-

+ag||e(., .)HLO@(QT) / o(x, un) exp(G(uy,))dedt
{0<un <k}

+||c(.,.)|Lao(QT)/Q o(z, VT (un) ") exp(G(uy))dxdt

-

+/ oz, Vun) p(un) exp(G(un ) Ti () T dadt

IIpIIL (

Qr
| exp(EL (1l @r) + luollzse) + / [, Ol dadt]

Qr

Using again (3.3) in (4.16) we get

{1—0&0”0(-01/-)|L°°(QT)}/ cp(:z:,un)p(un)eXp(G(un))Tk(un)erxdt

+{O‘_|C(-a-)||L°°(QT)_O/}/ (@, Viun)p(tun) exp(G () Ti (un)  dzdt
o Q-

-

+ / a(z,t, un, Vuy,) exp(G(un)) VT (u, )t dzdt

-

+/ nTn (un = Q) 591 (un) exp(G (un)) Tk (uy ) T dzdt

Jr/ o(x, Vun) p(un) exp(G(un ) T () T dadt (4.16)
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et Mz~ @n) {aoa/ o(x, un) exp(G(un))dedt
«@ {0<un <k}

+ap(z, VT (un)™) exp(G(un))d:cdt} + key.

<

If we choose o’ such that o’ < a — ||c(.,.)||L>(qg,) and using again (3.3) we get

i e @n) [ oy, D) G VT )

-

—|—/ nTy (uy — C)_sg%(un)exp(G(un))Tk(un)er:Edt < key. (4.17)

[CERITA Ry .
(0%

Taking — — [1 -
C2
a(x,t, U, Vuy,) exp(G(un)) VT (u, )T dzdt
Qr

+02/ nTn(un — Q)7 591 (un) exp(G (un)) Tk (un) T dadt < keycs.

-

It follow that

Tk (un)Jr

0< / nTn(u =€) sg1 (un) exp(G(un)) dxdt < ¢y,

-

by Fatou’s lemma as k — 0 we have

0< / NI (U — )7 591 (un) exp(G(uy))dadt < ¢;.
{unZO} "

Return to (4.17), we deduce easily
/ a(x, t, Up, V) exp(G(un)) VT (un)dzdt < keqcs.
{0<u, <k}

And as one has exp(G(uy,)) > 1 for 0 < u,, <k, then

/ a(x,t, un, Vg, ) VT (uy)dedt < keyes, (4.18)
{0<u, <k}
by (3.3)
k
/ o(@, |V T (un) T |)dodt < % (4.19)
and

0< / nT(un — )7 891 (up)dadt < ¢y. (4.20)
{un >0} "
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Similarly, taking exp(—G (uy))Tk(un) ™ X(o,r) as a test function in problem (4.6),

we get
o % exp(—G (un)) Tk (uy) ~dzdt
—|—/ an (2, t, U, Vun)V(exp(—G(uy)) VT (uy) ™ )dzdt
Jr/ D, (x,t, up)V(exp(—G(un))VTi(uy) ™ )dxdt
+ ; H(x,t,un, Vuy,) exp(—G(un)) Tk (un) ~ dedt
+/ nTn(un =€)~ 591 (un) exp(=G(un)) Tk (un )~ dwdt
> ; frnexp(—G(uy)) Tk (uy,) ~ dadt,
we take .
T () :/0 exp(—G(s))Tk(s) " ds,
then
oun, _ ~ ~
QTEGXP(_G(u”))Tk(U") d:z:dt:/QTk(un(T))d:E—/QTk(un(O))dx,

and using same techniques, we obtain also

/ a(x,t, un, V) exp(—G(uy)) VT (uy,)dxdt

-

+ 02/ nTn(u =€)~ sg1 (un) exp(—=G(un)) Tk (un) " dadt < keico.

-

It follow that

Yk(un)

0< / nT(up — Q) 591 (un) exp(—G(un)) _ dwdt < e,

-

we deduce by Fatou’s lemma as k — 0 that
0< / nTy(un — )7 sg1 (un) exp(—G(uy,))dadt < ¢q,
{’U.TLSO} "
And as one has exp(—G(uy)) > 1 since —k < u,, <0, then

/ a(x,t, un, V) VT (uy)dedt < keyea,
{—k<u, <0}

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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/ oz, [V T (un)~ | )dadt < FE1€2. (4.30)
«

and
0< / nTy(un — )7 891 (up)dadt < ¢y. (4.31)
{un<0} !

Combining now (4.18) and (4.29) we get,
/ a(x,t, tn, Vg ) VT (u,)dadt < kECY. (4.32)
Qr
Of the same with (4.19) and (4.30) we get,

/ o(x, VT (u,)|)dedt < kCs. (4.33)

we conclude that Ty ((uy)) is bounded in W, "L, (Qr) independently of n and
for any k£ > 0, so there exists a subsequence still denoted by w,, such that

Ti(un) — &  weakly in Wy " Ly (Qr). (4.34)
On the other hand, using (4.33), we have

glelgcp(:c, %)mea5{|un| >k} < /|un|>k o(x, W)dzdt

< / o(x, VT (u,)|)dzdt < kCs.

Then
kCy

meas{|uy| >k} < —————
lnf:bGQ 50(1'5 %)

)

for all n and for all k.
Assuming that there exists a positive function M such that lim;_, @ = +o0
and M(t) < essinf,eq p(x,t), Vt > 0. Thus, we get

lim meas{|u,| >k} = 0. (4.35)
k—o0
O

Step 3:
Now we turn to prove the almost every convergence of u, and convergence of
an(z,t, T (up), VI (up)).

Proposition 4.7. Let u,, be a solution of the approximate problem, then
Up U a.ein Qr, (4.36)
an (2, t, Ty (un), VTi(un)) = @i in (Lp(Q)YN, for o(IlLy,IIE,), (4.37)
for some @y, € (Ly(Q))N.
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Proof of (4.36) : Let A > 0 then
meas{|um — un| > A} < meas{|un| > k}

+meas{|u,| > k} + meas{|Tk(um) — Tk (un)| > A}.

By (4.34), we can assume that T (u,,) is a Cauchy sequence in measure in Q1 and
using (4.35) we deduce that for any € > 0 there exists some k(¢) > 0 such that

meas{|um — un| > A} < e forall n,m > Ny .

Which means that u,, is a Cauchy sequence in measure in Qr, thus converge almost
every where to some measurable function u.
Proof of (4.37) : We shall prove that {a(x,t, Tk (un), VIk(uy))}n is bounded in

(Ly(€2))" for all k > 0.
Let w € (E,(2))Y be arbitrary. By condition (3.2) we have,

(a(z, t, upn, Vup) — a(z, t, U, w))(Vu, —w) >0,

then

/ a(x,t, uy, Vuy )wdedt < / a(x,t, un, Vi, )Vu,dedt
{lun|<k} {lun|<k}
+/ a(x,t, up, w)(w — Vuy,)dxdt,
{lun|<k}

by (3.1) we have for v >

a(l’,t, Un,, k&) B
[ e S e < o [¢<x,ao<x,t>>+w<x,k1|Tk<un>|>]dxdt
(un|<k} 3v 3v
/ |w| d:vdt
< Bﬁ / (z,a0(z,t)) fy(x,lﬁk)dxdt}
3ﬁ[ / x, [w)) dmdt] (4.38)

Thus {a(x,t, Tk (un), kﬂ)} is bounded in (L ()Y
2
By (4.38),(4.7) and by the theorem of Banach—Steinhaus, the sequence
{a(@,t, Ty (un), Vi (un))}
remains bounded in (Ly(£2))" and we conclude (4.37).

Lemma 4.8. If the subsequence w, satisfies (4.6), then

lim hmsup/ a(z,t, up, Vuy)Vupdedt = 0. (4.39)
{m<|up|<m+1}

m—+00 5400
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Proof: Taking the function Z,,(u,) = Ti(u, — Tpn(uyn))” and multiplying the
approximating equation (4.6) by the test function exp(—G(uy))Zm (u,) we get

/fm(z,un(T))d:ch/ an (T, t, Up, V)V (exp(—G(up)) Zm (uy))dz dt
Q T

+/Q D, (2, t, un)V(exp(—G(un)) Zm (up))dx dt
:Hn(:c,t,un,Vun) exp(—G(un)) Zm (up)dzx dt

+J (
—l—j N (un =€)~ 5g1 (un) exp(—G(un)) Zm (un) do dt

= fn eXp(—G(un))Zm(un)d:Edt—i—/ T (uon )dz,
Qr Q

(4.40)
where T,,, (r) :/0 exp(—G(5)) Zm(s)ds.

we know that / T (2, un (T))dz > 0,
Q

and / nTn(up = Q) 591 (un) exp(—G(un)) Zm (un) dz dt > 0.

Qr
Then, using the same argument in step 2 to remove the term
/ p(un) exp(—G(up))Vun Zpy (uy )dx dt,
T

we obtain,

/ an (2, t, Un, Vun)Vupdz dt

{—(m+1)<up<-m}
+/ D (z,t,un) exp(—G(un))V Zm (un )dx dt

gammmﬂé|mam@mméwm@MWWMﬁ+/

[ugn |>m

|won |d:v] .
(4.41)

Thanks to the (3.4) and (4.41) we obtain,

/ @(z,|VZm(un)|)exp(fG(un))dzdt§C—Qexp(”p”ILl)( FuZom (up ) dedt
Qr @ @ Qr

+/ Ih(z,t)|Zm(un)dzdt+/

T {lwon|>m}

|u0n|dz) ,

Passing to limit as n — +00, since the pointwise convergence of u,, and strongly
convergence in L'(Qr) of f, and ug, we get
lim / 02, |V Zun ()] exp(—G(up))dadt < c( F Zpn(w)dzdt
Qr

n—-+oo Qr

+/T |h(x,t)|Zm(u)d:Edt+/{ |u0|d$)-

|ug|>m}
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By using Lebesgue’s theorem and passing to limit as m — +oo, in the all term
of the right-hand side, we get

lim  lim o(x, [V Zm (un)]) exp(—G(uy,))dzdt = 0. (4.42)

m——+oo0 n—-+o00 Qr

On the other hand, we have
lim  lim D, (x,t, up) exp(—G(un))V Z (uy )dadt

m—+00 n—-+0o00 Qr

< lim lim o(x, [V Zp (un)]) exp(—G (uy))dzdt

~ m—+4o00 n—+o00 Qr
li li d t -G dadt.
+m—1>I-I|-100n—1>I-POO m<|up[<m+1 T/J(SC, | n(za 7un)|)exp( (un)) x

Using the pointwise convergence of u,, and Lebegue’s theorem in the second term
of the right side, we get

lim U(x, |Pp(x, t, uy)|) exp(—G(un))dxdt

n—+oo m<|un,|<m+1
= / (x, |P(z,t,u)]) exp(—G(u))dxdt,
m<|u|<m+1

and also, by Lebesgue’s theorem

lim P(x, |P(z, t,u)|)dxdt = 0. (4.43)

m—+00 m<|u|<m+1

Then, we deduce

lim  lim D, (x, b, up) exp(—G(up))VZy (uy)dx dt = 0.

m——+oo0 n—-+o0o QT

Finally passing to the limit in (4.41), we get

lim  lim an (z,t, Uy, Vg, )Vuyde dt = 0.

m——+00 n—400 {—(m—i—l)gung—m}
In the same way we take Z,,(u,) = T1(un — Thn(uy))T and multiplying the ap-
proximating equation (4.6) by the test function exp(G(un))Zm (u,) and we also
obtain
lim lim an(z,t, Uy, Vg, )Vuyde dt = 0.

m—+00 n—+400 {mgunngrl}
On the above we get (4.39). O
Step 4: Almost everywhere convergence of the gradients.

This step is devoted to introduce a time regularization of the Ty (u) for k>0
in order to perform the monotonicity method.
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Lemma 4.9. Under assumptions (3.1)-(3.7), and let (z,) be a sequence in
Wy Lo(Qr) such that:

zn =z for o(IlLy,(Q7),IEy(QT)), (4.44)
(a(z,t, 2, V2zy)) is bounded in (L¢(QT)N, (4.45)
/ [a(x,t, 2, Vz,) — a(x, t, 2n, Vax,)] [V, — Veax,ldedt — 0, (4.46)

T

asn and s tend to +0o, and where X, is the characteristic function of Qs = {(z,t) €

Qr;|Vz| < s} then,

Vz, = Vz ae inQr, (4.47)
lim a(x,t, zn, V) Vzyde dt = / a(x,t,z,Vz)Vzdz dt, (4.48)
n—-+oo Qr Qr
o(,|Vzu|) = @(z,|Vz]) in LY(Qr). (4.49)
Proof: It is easily adapted from that given in [7]. ]

Let v; € D(Qr) be a sequence such that v; — u in Wy L, (Qr) for the
modular convergence.
This specific time regularization of Ty (v;) (for fixed k > 0) is defined as follows.
Let (o)) be a sequence of functions defined on € such that

af € L=(Q) N Wy Ly() forall u >0, (4.50)
||046LHL°°(Q) <k, forall pu>0,

and

1
aly converges to  Tx(ug) a.e. in @ and —|laf||, 0 converges to 0, u — +oo
W

For k > 0 and g > 0, let us consider the unique solution (7%(v;)), € L>®(Q) N
Wy*L,(Q) of the monotone problem:

QLD (330}~ Tal)) = 0 1m D'(@),
(Tk(v5))u(t =0) = aff in Q.
Remark that due to

(T (v, "
7( k(ftj))# € Wol’ L,(Qr).
We just recall that,

(Ti(v;)y = Te(u) ae in Qp, weakly—= in L*(Qr)
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(Th(v;)p — (T(u), in Wy Ly(Qr) for the modular convergence as j —
+o0.
(Th(u)), — Tr(u) in Wy " Ly(Qr) for the modular convergence as 1 — +oc.

1(Tk(wi))ulle=(@r) < maz([[(Th(u)ll=@r), llogllL=@) <k,

for all 4 > 0, and for all & > 0. We introduce a sequence of increasing C!(R)-
functions S,, such that

Sm(r) =1for |r| <m, Sp(r)=m+1—|r|, form <|r| <m+1,5,(r) =0

for |r] > m 4+ 1 for any m > 1. And we denote by €(n, u,n,j,m) the quantities
such that

mgI}Floo jEIJPoo ngl}rloo ull)IJIrloo nll)IJIrloo 6(7’L, Ho1 95 m> =0
For fixed k > 0, let W) = Ty(Ti(un) — Tr(vj),)t and W) = T, (Tk(u) —
Tr(vj)u)* ‘
Multiplying the approximating equation by exp(G/(un)))W 1 S (un) and using the
same technique in step 2 we obtain:

/ < a—exp(G(un))I/V:’njS’m(un) dz dt
QT ot 7
+/ an (T, tn, Vug) exp(Gun))V(W,53) S (un ) da dt

+ . an (2, t, Un, Vun)Vuy exp(G(un))W[f,’an;n(un) dx dt
T
- . Dy (2, t, un ) exp(G (un)) V(WD) S (un ) da dt
T
— . o (2, U ) Vi exp(G (un) )Wl Sy (un ) dae dt
T
< Fr exp(G(un)) W, S (un) da dt+/ h(z,t) exp(G(un)) W} S (un) da dt.

Qr Qr
(4.51)

Now we pass to the limit in (4.51) for k real number fixed.
In order to perform this task we prove below the following results for any fixed
k> 0:

— exp(G(un))W;’,’anm(un) dadt > e(n, pu,n,7) for any m > 1, (4.52)

/ D, (0, t, Up) S (un) eXp(G(un))V(Wl’Z’g) dx dt = e(n,j,p) for any m > 1,

’ (4.53)
/ D, (x, t, un)Vu,Sh, (un) eXp(G(un))Wﬁ’nj dx dt = e(n, j, 1) for any m > 1,
’ (4.54)
/ A (T, t, Uy Vg ) VunSh () exp(G(un))Wﬁ,’nj dx dt < e(n,m), (4.55)

T
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/ an (2, 1, Uny Vi) Sy (un) exp(G(un ) ) V(W) da dt < Cn + €(n, j, jp,m),
’ (4.56)

JnSm(un) exp(G(un))WIZ’nj dx dt
Qr

Jr/ h(z,t) exp(G(un))WﬁhjSm(un) dedt < Cn—+e(n,m), (4.57)

/Q [a(m, t, T (un), Vi (un)) — al@, t, To(un), VTk(u))] [VTk(un) - VTk(u)]dac dt — 0.

(4.58)
Proof of (4.52):
Lemma 4.10.
Ouy, i .
; e exp(G (un) )W, S (un )ddt > e(n, p,m,m, j) m > 1. (4.59)
T
Proof: Is a particular case of the proof in [4], with b(x,u) = w. O
Proof of (4.53): If we take n > m + 1, we get
P (2, t,un) exp(Gun))Sm(un) = @(@,t, Tint1(un)) exp(G(Tm+1(un)))

XSm(Tm-‘rl(“n))a

then @, (x,t, uy,) exp(G(un))Sm(uy,) is bounded in Ly (Q), thus, by using the
pointwise convergence of u,, and Lebesgue’s theorem we obtain

D, (2, t, up) exp(G(un))Sm(un) = ®(x,t,u) exp(G(u))Sy, (u),
with the modular convergence as n — 400,
then
D, (z,t,up) exp(G(un))Sm(un) = O(x, t,u) exp(G(u))Sm (u),
for o([1 Ly T L)
In the other hand VW;}% = VTi(un) — V(Tk(vy)), for [Ti(un) — (Tk(vj))u] <n
converge to VT (u) — V(Tk(v;)), weakly in (L, (Qr))", then

/ D, (x,t, up) exp(G(un))Sm (un)VWZZJ; dx dt

T

— O(z,t,u)Sp (u) exp(G(u))VWi77 dxdt, as n — +00
Qr

By using the modular convergence of lem as j — +oo and letting p tends to
infinity, we get (4.53).
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Proof of (4.54):
For n > m+1 > k, we have Vu,S, (u,) = VTt1(un) a.e. in Qr. By the
almost every where convergence of u,, we have exp(G(un))W,1 — exp(G(u))W] ,
in L (Qr) weak-* and since the sequence (@, (z, t, Tyt1(un)))n converge strongly
in Ey(Qr) then

D, (z,t, Ty (un)) exp(G(uy,)) W:’g = ®(2,t, Tyt (u) exp(G(u))W?

wn?

converge strongly in Ey(Qr)as n — +oo. By virtue of VI, 41 (un) = V41 ()
weakly in (L,(Qr))" as n — +oo we have

/ D, (z,t, Trns1 (un))Vu, S, (un) exp(G(un))Wﬁ’nj dx dt
m<|up|<m+1 ’

— O(z,t,u))Vu exp(G(u))VVi77 dx dt

m<|u|<m+1

as n — 4oo with the modular convergence of Wﬁm as j — —+oo and letting
w— +00 we get (4.54).

Proof of (4.55):

For (4.55), we have

an (2, t, U, Vuy)S), () Vg, exp(G(uy)) eXp(G(un))Wﬁ;}j dx dt
Qr

= / (T, t, U, Vg )Sh, (un) Vs, eXp(G(un))W;}’g dx dt
m<|uy|<m+1 '

<nC an (2, t, Up, Vg )Vuy, de dt.

m<|up|<m+1

Using (4.39), we get

/ an (2, by Up, Vun)Sh, (un) Vg, exp(G(un))WIZ’g dx ds < e(n, p, m).

T

Proof of (4

57):
Since Sy, (r) <1

and W;},J] <n we get

JoSim(un) exp(Gun)) W,y dwdt < e(n,n),
Qr

/ h(z,t) exp(G(un))Wl’gSm(un) dzx dt < Ch.

T

Proof of (4.56):
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an (2, t, Uy, Vg, ) S () exp(G(un))VWlﬁ’nj dx dt
Qr

= an(x,t, T (un), VI (un))Sm (un) exp(G(uy,))
{lun | <E}N{0L< Ty (un ) —Th (v;) ) <n}
X (VT (un) — VI (vj),) de dt
*/ an(zatvunvvun)sm(un)
{un [>EIN{0<Ty (un)— Tk (v;) ) <n}
x exp(G(un))VTi(v;), dxdt. (4.60)

Since an (2, t, Tty (un ), Vg (uy)) is bounded in (Ly(Q7))Y, there exist some
@in € (Ly(Qr))N such that ay,(z,t, Tyt (tn), Vgy(ty)) — @hiy weakly in
(Ly(Q7))N. Consequently,

/ an (2, t, un, V) Sm (un) exp(G(un))VTi(vj), dx dt
{lun [>k}N{0<S Ty (wn) =Ty (vi) ) <n}

:/ S (u) exp(G(w))VT,(v)) p @ty dz dt + €(n), (4.61)
{lul>k}N{0< Ty (u) =Tk (vj)p)<n}

where we have used the fact that
S (un) exp(G(un)) VT (V5)w) X {un |5 K}0{0<Te (un) =T (05),) <}

= S () exp(G(w) VT (V) ) X{jul >k} {0< Tk (w) =T (v5),0) <n}

strongly in (E,(Qr))V.
Letting j — 400, we obtain

S (u) exp(G(w))VT(v)) y@hpn da dt
{lu|>k}N{0< Tk (u) =Tk (vi)u) <n}

= / S () exp(G(u)) VT (u) @iy dx dt + €(n, 7).
(Il >k} {0 Ty () — T (1)) <17}
One easily has,
/ S (w) exp(G(w)) VT (4) y @y dx dt = €(n, j, ).
{lul>E}N{0<Ty (w) =T (w) ) <n}
By (4.51)-(4.57), (4.60) and (4.61) we obtain

/ an(z,t, T (un), VI (un))Sm (un) exp(G(uy,))
{lun [SEYN{OLS Ty (un) =Tk (v;) )| <0}

X (VT (un) — VI (vj),) de dt
S Cn+e(n7j’u’m)’
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we know that exp(G(u,)) > 1 and Sy, (uy) =1 for |u,| < k then

/ an(z,t, Tk (un), VT (un)) (VT (un) — VIk(vj),) de dt
{lun [<EIN{OSTy, (un) = Tg (v;)u)|<n}
< Cn+e(n,j,p,m). (4.62)

Proof of (4.58):
Setting for s > 0, Q° = {(z,t) € Q : [VT}(u)| < s} and Q5 = {(,?) € Q :
|VT)(v;)| < s} and denoting by x* and x; the characteristic functions of Q* and
Q; respectively, we deduce that letting 0 < ¢ < 1, define

Ok = (a(z, t, T (un), VI (upn)) — a(z, t, Ty (un), VI (w)) (VI (un) — VI (w)).

For s > 0, we have
0 < / ©° pdxdt
_ 5
= /QS 9n,kX|Tk(un)—Tk(Uj)u|§n) dx dt

5
" /Qs O kX T () T (w3) 4 ) 4 -

The first term of the right-side hand, with the Holder inequality,

s

5 5 1-6
/QS O kX Ty () =T (), <) B2 A < (/QS On kX ()~ Ty (w5l <) 42 ) (/ dz dt)

< Cl(/Q O kX ()~ Ty (1) <y AT L)
Also using the Holder inequality, the second term of the right-side hand is
O i dz dt)‘;(/ dx dt)' ~°,
[Ty (un)=Tg(vj)ul>n)

since a(x,t, Ty (uy), VT (uy)) is bounded in (Ly(Q7))Y, while VT (uy) is boun-
ded in (Ly,(Qr))Y then

5
/ en,kX\Tk(un)—Tk(vj)“‘>n) dzdt < (
Qs oL

s -5
/QS @n,kX\Tk(un)—Tk(vj)u\>n) dr dt < Cameas{(z,t) € Qr : [Tk(un) — Ti(v;)ul > 77}1 .

We obtain,

O dzdt < Cl(/ O kX7 (1) ~Tu (vl <) 42 48)°
Q* Qs

+Coymeas{(z,t) € Qr : [Tr(un) — Ti(v;)u| > n}'~°.
On the other hand,

/QS On kX Ty (wn) T (v) .| <) 4T
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S / (a(:z:, t, Tk(un)a ka(un)) - G/(.’L', ta Tk(u")’ ka(u)Xs))
| Tk (wn ) =Tk () | <m)

X (VT (un) — VT (u)x,) dx dt.
For each s > r,r > 0,one has

0< / (a(z,t, Tk (un), VT (un)) — a(z, t, Ty (un), Vi (u)))
Q N{|Tk (un) =Tk (vj)ul<n)}

X (VT (up) — VT (u))dadt

<

/ (a(z,t, Tk (un), VT (un)) — alx, t, Tr(un), VI (u)))
Q*N{| Tk (un) =Tk (vj)ul<n)}

X (VT (upn) — VT (u))dadt

/ (a(z,t, Tk (un), VIk(uy)) — alx, t, T (un), VT (w)Xx,))
Q*N{| Tk (un) =Tk (vj)ul<n)}

X (VT (up) — VIi(u)x,) de dt

<

/ (a(‘ra l, Tk(u")’ ka(un)) - a(m, L, Tk(un)a ka(u)Xs))
Q| Tk (un ) =Tk (vi)u|<m)}

X (VT (up) — VI (uw)x®) de dt

/ (@l , T (), VT (1)) — (e, £, Ti ), VT(0,))
[Tk (un) =Tk (vj)ul<n

X (VT (un) — VTi(vi)x;) dz dt
+/ a(w,t, Ty (un), VI (un)) (VTk(v;)X; — VTk(u)x®) dx dt
[Tk (wn) =Tk (vi)u|<n

+ [ (@0 1. Tl ), TT(0)5) = . T, VT (1))
T (un) =Tk (v)ul<n

VT (uy,)dzdt

—/ a(:c,t,Tk(un),VTk(Uj)X;)VTk(Uj)Xj) dx dt
| Tk (wn)=Tr(vj)ul<n
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+/ a(x,t, T (un), VI (u)x*) VT (u)x®) de dt
[Tk (wn) =Tk (vi)n|<n

= Il(nvja S) + 12(n5j) =+ 13(n7.]) + I4(n,j,u) =+ I5(n5,u’)

We go to the limit as n, j, p, and s — 400

L :/ a(@, b, T (n), V() (VT () — VT (0;),0) d dt
[T (wn) =Tk (vi)ul<n

f/ a(z, t, Tr(un), VTk(un))(VTk(vj)X; — VT (vj),) dedt
| Tx (un) =Tk (v;)ul<n

—/ a(z,t, T (un), VIE(v;)X5) (VT (un) — VT (v5)X3)) dz dt.
[T (wn) =Tk (vj)ul<n

Using (4.62), the first term of the right-hand side, we get

/ alx, t, Tk(un), VI (un)) (VI (un) — VIi(v;),) do dt
[T (un) =Tk (vj)p|<n

< Cn+e(n,m,j,s)— / a(z,t, Ty (u),0)VT(v;), dxdt
[u| >k Ty (u) =Tk (vi) | <n

< Cn+e(n,m,j, ).
The second term of the right-hand side tends to

/ wk(VTk(Uj)xj- — VT (vj),) dx dt,
| T (w) =T (V)| <n

since a(z,t, Tk (un), Vi (uy)) is bounded in (Ly(Qr))", there exist some wy €
(Ly(Qr))N such that (for a subsequence still denoted by u,

a(z,t, Ty (un), VIg(un)) = @ in (Ly(Qr))Y for o(IlLy,IIE,).
In view of the fact that

(VTk(v;)x; = VTk(V) )X T ()= Ti (v)), | <1
= (VT(vj)xG = VTi(0)1) X7 ()~ T (o) <0

strongly in (E,(Qr))Y asn — 4o0.
The third term of the right-hand side tends to

/ o, To(uw), VTo(w;)x2) (VTk(w) — VTi(07)x3) de dt.
[Ty (w)=Tr(vj)u|<n
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Since
a(@,t, Ti(un), VTi(V5) X5 )X T (wn)~ T (v;)| <1
= a(x, t, Ti(w), VI (03)X5))X Ty (w)~ T ()| <
in (Ey(Q7))N while
(VTk(un) — VTk(v;)x3;)) = (VTk(u) — VIk(v;)x5)),

in (L,(Qr))N for o(I1Ly,I1E,).
Passing to limit as j — +o0o and g — 400 and using Lebesgue’s theorem, we
have

Il S CU =+ e(n,j, S, ,LL)
For what concerns Is, by letting n — 400, we have

I, — @k (VTk(vi)x; — VTi(u)x*®) dx dt.
T (w) =T (v;) | <n)

Since a(z,t, Tj (un), VIk(uy)) = @i in (Ly(Qr))Y, for o(IlLy, 11E,),
while

(VT (vi)x; — VIR(W)X") X7y (wn) =T (0;) 0| <n
= (VTe(vj)X; = VTR(WX)X |13 (0) = Th (1) 1| <

strongly in (E,(Qr))V.
Passing to limit j — +o00, and using Lebesgue’s theorem, we have

I, = ¢(n, j).

Similar ways as above give
13 = e(nv .])

I, = / a(x,t, Ty (u), VT (w)) VT (u) dr dt + e(n, j, p, s, m).
|Th (w) =Tk (w) u|<n)

Is = / a(x,t, Ty (u), VT (u)) VT (u) de dt + e(n, j, p, s,m).
[Tk (w) =T (w) | <m)

Finally, we obtain,

Ok dz dt < C1(Cn + e(n, p,n,m))° + Cale(n, p,))' .
QS
Which yields, by passing to the limit sup over n, j, i, s and

/QT (@, t, T (wn), VTi(wn)) = al,t, T (un), YTk () (VT (un) = VT ()] ? dw dt = e(n).
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Thus, passing to a subsequence if necessary, Vu,, — Vu a.e. in Q", and since r
is arbitrary,
Vu, - Vu, ae. in Qrp.

Step 5: Equi-integrability of the nonlinearity sequence
We shall prove that H,,(z,t, U, Vu,) — H(x,t,u, Vu) strongly in L*(Q).

Consider go(un) = / P(8)X {s>n}ds and multiply (4.6) by exp(G(un))go(un), we
0
get

/th(un)(T)dx—i—/ a(x, Un, Vg, )V (exp(G(un))go(uy,))dadt

T

+ / D, (2, Up, V)V (exp(G(un))go(uy,))dadt

+ / H,(z,t,upn, Vuy) exp(G(un))go(uy,))dxdt

+oo Il e
<[ peanyesy (LEE) 17l n + ol s + 1hesan |

T
where Ty (r) = / go(s) exp(G(s))ds > 0,
0
then using same technique in step 2 we can have

+oo

/ plun)o(z, Vuy,)dedt < C(/ p(s)dz).
{un>h} h

Since p € L1(R), we get
lim sup/ plun)p(z, Vuy,)dadt = 0.
h—=00 neN J{u, >n}

0
Similarly, let go(un) = / P(8)X{s<—pydr in (4.6), we have also

Un

lim sup/ plun)p(z, Vuy,)dadt = 0.
{un<—h}

h—00 neN

We conclude that

lim Sup/ plun)p(z, Vuy,)dzdt = 0. (4.63)
{lun|>h}

h—00 neN

Let D C Q then

/p(un)tp(ac,Vun)dacdt <  max (p(x))/ o(x, Vuy,)dzdt
D {lun|<h} D |un|<h}

+/ plug)p(z, Vuy,)dadt.
DN{|un|>h}
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Consequently p(u,)p(z, Vu,) is equi-integrable. Then p(uy,)¢(x, Vu,) converge to
p(u)p(x, Vu) strongly in L*(R). By (3.5), we get our result.
Step 6: We show that u satisfies (3.8)
Firstly show that u > ¢ a.e. in Q7.
(4.20) and (4.31) we get
In fact, from (4.20) and (4.31) we get

og/ Ty (up — ()~ dwdt <
n

T

Let n tends to +o0o0 we obtain

/ (u—¢)"dadt =0,
T

then (u— ()~ =0 a.e. in Qp; thus u > ¢ a.e. in Qr.

Secondly passing Now to the limit in (4.65) to show that u satisfies the equation
(3.8).

Let v € Wi L, (Qr) N L>°(Q7) such that % € WL, (Qr) + L' (Qr), then by
theorem (2.14) we can take

v=v on Qr,

TEWH L, (2 x R)NLYQ x R)NL>(Q x R),

v i
% €W BT Ly (Qr) + LY(Qr),
and there exists v; € D( x R) such that
— . 1,z av] v -1,z 1
v; =T in Wy Ly,(QxR) and EHEGW P Ly(Qr) + L (Q1),

(4.64)
for the modular convergence in W L, (Qr) , with

lvill oo (@r) < (N + 2)[[v]| Lo (@) -

Pointwise multiplication of the approximate equation ((4.6)) by Tk (u, — v;), we
get

T
/ < %,Tk(un — ;) >ds +/ an(z, 8, Un, Vun)) VT (un — vj)dads
0 8 Qr

+/ D, (2, 8, un) VT (un — vj)dzds + / T (tun —€)~ 891 (un)Tk(un — v;)dxds
Qr Q "

+/ H, (z,8,Un, V) VT (un — vj)dads = foTrk(un — vj)dzds.
QT QT
(4.65)

We pass to the limit as in (4.65), n tend to +oo and j tend to +oo.
Limit of the first term of (4.65):
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The first term can be written

T T
ouy, B O(un — vj)
/0 <55 JTp(un —vj) >ds = /0 <= T (un —vj) > ds

T 8vj
+/0 <E,Tk(unfvj)>ds
Sk(un(T) — v (T)) — Sk(un(0) — v;(0))

T 8’0]'
+ | < E’Tk(un — ;) > ds.

We pass to the limit as n — 400 and 7 — 400 we can easily deduce

T du,
/0 < E,Tk(unfw) >ds — /QSk(Un(T)*’U(T))dl‘*/gsk(un(o> —v(0))dz

T
+/O < %,Tk(un —v) > ds.

e We can follow same way in [8] to prove that

lim inf liminf/ a(z, 8, U, V) VI (u, — vj)dzds
T

j—o00 n—oo

> / a(x, s,u, Vu)VTj(u — v)dads.
T

e For n >k + (N +2)|v||pe(or)
(@, 5,un)VTk(un —v5) = (2, 8, Tt (N+2) [0l] oo 0y (Un)) Ve (tn — ;).
The pointwise convergence of u,, to u as n tends to +ocoand (3.4), then

(@, 8, Tht (N+2) o]l oo (@ (Un)) Ve (U — v —

(x, 8, Tht (N+2)|0]| oo (0 (W) VT (u — ;)

weakly for o(IIL,,IIL,).
In a similar way, we obtain

lim (, 8, Th (N+2) 0]l oo (@) (W) Vi (u — vj)dads

J—0o0 QT

:/ Dz, 8, Thy (N+2) 0]l oo (@) (W) VT (u — v)dads

T

:/ O(z, s,u)VTi(u — v)dxds.
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e Limit of H,(z, s, un, V) Tk (un — vj):
Since H,(z,s,un, Vu,) converge strongly to H(z,t,u, Vu) in L*(Qr) and
and the pointwise convergence of u,, to u as n — +0o0, it is possible to prove
that H,(z, s, un, Vtn)Tk(u, — vj) converge to H(z,s,u, Vu)Tr(u — v;) in
LY(Qr) and

lim H(z,s,u, Vu)Ti(u — vj)drds = H(z,s,u, Vu)Ti(u — v)dzds.
I JQr Qr

e Since f, converge strongly to fin L'(Qr), and Tk(u, — v;) — Ti(u — vj)
weakly™ in L>°(Qr), we have / foTk(uyn —v;)deds — / fTk(u—v;)dxds

Qr Qr
as n — oo and also we have / fTk(u—v;)dzds — fTe(u —v)dxds
) Qr Qr
as j — 00.
Finally we know that / T (un — )7 891 (un)Th(uy — vj)dads > 0, thus
o =

T
0
/ Sk(u(T) —o(T))dx +/ < —U,Tk(u —v)>ds
Q 0 s
+/ a(x, s,u, Vu)VTy(u — v)dxds + O(z, s, u)VTi(u — v)drds

T Qr
+/Q H(z,s,u, Vu)Ti(u — v)dzds

< 7 fTe(u —v)dxds — / Sk(ug — v(z,0))dz.

T Q

As a conclusion, the proof of Theorem (4.1) is complete.
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