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Some Novel Newton-Type Methods for Solving Nonlinear Equations

Morteza Bisheh-Niasar and Abbas Saadatmandi*

ABSTRACT: The aim of this paper is to present a new nonstandard Newton iterative
method for solving nonlinear equations. The convergence of the proposed method
is proved and it is shown that the new method has cubic convergence. Furthermore,
two new multi-point methods with sixth-order convergence, based on the introduced
method, are presented. Also, we describe the basins of attraction for these methods.
Finally, some numerical examples are given to show the performance of our methods
by comparing with some other methods available in the literature.
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1. Introduction

Finding the root of a nonlinear equation f(z) = 0 is one of the most important
problems in applied sciences and engineering. In the current paper, we consider the
problem of finding a real simple zero « of a function f: I C R — Rie., f(a) =0
and f’(«) # 0. Here, f is a sufficiently differentiable function on the open interval
I and « € I. Among the techniques, iterative methods are powerful tool for solving
nonlinear equation f(x) = 0, (see for example [1,2,3,4,5,6,7,8,9] and the references
therein). Also, for a relatively comprehensive survey on the multi-point iterative
methods the readers are referred to the article [10]. We recall here some classical
definitions which will be useful in the sequel.
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Definition 1.1. [11](Order of convergence)
Let {x,}22, converge to a and assume that x, # « for each n. The rate of
convergence of {x,} to v is of order p with asymptotic error constant C, if

lim 7|zn+1 —o _

n—oo |xn—a|P o

where p > 1 and C > 0.

Definition 1.2. [12/(Efficiency index)

The efficiency index is defined as p'/®, where p is the order of convergence and d
is the total number of functional evaluations per iteration.

In fact, the efficiency index gives a measure of the balance between the order of
convergence and the number of functional evaluations per step [12]. It is worthy
to mention here that, according to the Kung-Traub’s conjecture [12], an optimal
iterative method, without memory, based upon d evaluations could achieve a con-
vergence order of 291, Here, iterative method without memory is a scheme whose
(n + 1)th iteration is obtained by using only the previous nth iteration.

Perhaps the most widely used among all one-dimensional root-finding algo-
rithms is the classical Newton’s method (also known as the Newton-Raphson
method)

Tn+1 = Tn — f/(l' )a
n

n=0,1,-. (1.1)

It is known that this method has second order of convergence to simple roots. Also
the efficiency index of Newton’s method is v/2 ~ 1.414, because it uses f(z,) and
f'(zn) per iteration.

Cordero et al. in [2] described the following family of second order iterative
methods

f/(wn),

where H(u) is a function of variable u(x) = f(x)/f'(x) and H(0) = 1. Also,
the well-known family of third-order iterative methods, called Chebyshev-Halley
methods [13], are given by

Trpl = Tn — <1 PESLIC) )) S (@) (1.2)

Tnt+1 = Tn — H(U(Z'n))

21— pw(zy) ) f(x,)’
where,
w(x) = %, B EeR

For different values of the parameter 3, this method includes some famous iterative
methods. For example, the classical Chebyshev’s method (8 = 0), Halley’s method
(8 = 0.5), super-Halley”s method (8 = 1) and Newton’s method (8 — +o0) can
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obtained [12,13]. Moreover, Fang et al. [1] presented another third order iterative
method

= 2 flan)
T e /T = 2w(ay) ()

Recently, Cordero et al. [2] suggested the following family of third order iterative
methods

(1.3)

Tnt1 = Tn — G(w(zy)) (1.4)

where G(w) satisfies G(0) = 1 and G’(0) = 1/2. Note that, schemes (1.2) and (1.3)
are special case of scheme (1.4).

In this work, the idea behind in nonstandard finite difference method [14,15]
elegantly combined with the Newton’s method, is used to develop a new third-order
iterative method. Moreover, based on the introduced method, we developed two
new multi-point methods with sixth-order of convergence.

The organization of the rest of this paper is as follows: In Section 2, we construct
a nonstandard Newton iterative method and also the analysis of convergence for
this new method is presented. In Section 3, from this new method we obtain two
new composite sixth-order methods. In Section 4, the Basins of attraction using
the new methods are presented. In Section 5, several numerical results are given to
show the efficiency of our methods. Also, a comparison is made with the existing
results. Section 6 ends this paper with a brief conclusion.

2. The nonstandard Newton iterative method and convergence analysis

We assume that « is a real simple root of a nonlinear equation f(x) = 0 and
2o is an initial guess sufficiently close to «. Let f(x) be sufficiently smooth in the
neighborhood of the root a. Then using Taylor’s expansion about the point a, we
obtain

f(@) = f(wo) + f'(xo)(a — xo) + O((z — 0)*), (2.1)
substituting # = « into Eq. (2.1) gives
0= f(@) = f(zo) + f'(z0)(a — x0) + O((a — w0)?). (2.2)

Since z is close to a, we get

f(xo) + f'(z0)(a — z0) = 0. (2.3)

Now, following the ideas of nonstandard finite difference method, developed by
Mickens [14,15], the (o — ) term on the left-side of Eq. (2.3) is replaced by

eb(afmg) -1

5 , (2.4)
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where b is a parameter. Substituting Eq. (2.4) into the (o — x¢) term on the
left-side of Eq. (2.3), we have

eb(oz—mo) -1

f(SUO)‘f'fl(xo)f ~ 0. (2.5)

By the Taylor’s expansion of the term (e?(®=#0) —1)/b in Eq. (2.5), we obtain

(a — 20)?

f(xo) + f'(z0) | (a0 —z0) + b 51 +0((a —z0)*)| =0. (2.6)
It is obvious that for b = J;,,,((gf:)), we get
/ " (a - 'TO)Q 3
f(zo) + f'(zo) (e — o) + f (mo)T + O((a = w0)”) =~ 0,

Now, employing Egs. (2.3) and (2.4), we obtain

, eb(afmg) -1 B 7 f”(zO)
f(zo) + f (SCO)T ~0, b= Flwo)’
. £'(x0) F(x0) " (o)
AT il n|ll-— J\Fo)] o) . .
a0t ) <1 Fi(io)? ) @7

Based on Eq. (2.7), the following nonstandard Newton iterative method is sug-
gested:

Tpt1 = Tp + (2.8)

b - S50t

Now, we discuss the convergence analysis of scheme (2.8).
2.1. Convergence of the method

Theorem 2.1. Let o € R be a simple zero of sufficiently differentiable function
f:I CR — R. If the initial estimation xqy is chosen sufficiently close to o and
g(x) = f(x)/f'(x) be a monotone increasing function on I, then the method defined
by (2.8) converges to a with cubic order of convergence and the error function is

2
el = <§c§ — 03> e3 +0(eh), (2.9)
o)
where e, = T, —a and ¢, = mff,(((g)’ n=1,2,3,..

Proof: By using Taylor’s expansion about «, we have

f(@n) = [(@)(en + c2el, + cze5 +---), (2.10)
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f'(xn) = f(a)(1 + 2coe,, + 3cze? +---), (2.11)
f(xn) = f(a)(2ca + 6c3en + 12¢4e2 + - --). (2.12)
By using these expansions, we get
1
= % = 2c9e,, + (6c3 — 6¢3)e2 + (16¢5 — 28cacs + 12¢4)e
+(100c3¢3 — 40¢5 — 50cacq — 30c3 + 20c5)en + -+,
f(xn) 1 12¢3 — 3c3 3 c3es + 20904 — 363 n
- - 4= . e+
! [(xn)  2c2 2 3 2 s

By Taylor series expansion of In(1 — w) and using computer algebra software as
Maple, we have

wyn(l—w)=w(~w— —— — —--- )

2 5
=—e,+ (gcg - 03) e+ (40203 - gcg - 304) et +0(ed). (2.13)

Employing Egs. (2.8) and (2.13), we have

2
Ent1 = <§c§ — 03> el +0(er). (2.14)

This completes the proof. O

For the computational cost, scheme (2.8) requires the evaluations of f(x,),
f'(z,) and f”(x,) per iteration. This gives 33 ~ 1.442 as an efficiency index of
this method.

Now let us suppose that x,+1 = ¢(x,,) define an one-point iterative method. As
pointed by Traub [12, Th. 5.3], to get a method of order p, we must use all deriva-
tives up to order p — 1. Therefore, the main practical difficulty associated with
one-point iterative methods is the evaluation of higher order derivatives. Fortu-
nately, multi-poit iterative methods overcome this limitation. In the next section,
based on the scheme (2.8), we are going to construct two new multi-point iterative
methods with sixth-order convergence.

3. Construction of two multi-point iterative methods

In recent years there has been a growing interest in multi-point methods (e.g.,
see the survey paper [10] and references therein) for solving nonlinear equations.
Here, we will improve the convergence rate of (2.8). The main advantage of these
methods is they have order six and they do not require the evaluation of any third
or higher order derivatives. Specifically, we propose the following iterative methods

Yn = Tn — f(xn)’
Method | : n . (3.1)
Lo B - i)
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and
Yo = 20 + ( “Wﬂﬁ)
Method I : 2 ) (3.2)
s == (14 (1)) #3

3.1. Convergence of the methods

Now, we shall prove that Method | and Method Il have sixth-order of convergence.

Theorem 3.1. Under the assumptions of Theorem(2.1), the method described by
(3.1) has sixth-order convergence to o and satisfies the following error equation:

2
Cnil = (gcg - 0303) eS +0(el).

Proof: Dividing Egs. (2.10) and (2.11), we get

[ ()

From the first step of the Method | and Eq. (3.3), we have

= e, — 22 4 (265 — 2¢3)e3 + (Teacs — 4ch — 3eq)e + O(e2). (3.3)

Yn = a + c2e2 — (2¢5 — 2c3)ed + (4¢3 — Teaes + 3eq)ed + O(e2). (3.4)

By the Taylor’s expansion of f(yn), f'(yn) and f”(y,) around « and using Eq.
(3.4), we obtain

fyn) = f(@) [c2e] — (265 — 2¢3)e) + (463 — Teacs + 3ea)ey, + O(ey)],  (3.5)

Fyn) = ()1 + 2636% + 4(cgeq — cg)ei

+ (8¢5 — 11cies + 6egeq)en + O(ed)], (3.6)
" (yn) = £ (@)[2¢2 + 6eacze? + (12¢5 — 12¢5¢3)ed
+ (24c3c3 4 12¢3cy — 42¢9¢3 + 18c3cq)el + O(eD)). (3.7)

By using Eqgs. (3.5),(3.6) and (3.7), we get

- (,’2 2ca )03
"(Yn 1 12¢2 -3 1 2¢9(—2¢2 + 2¢ 73(2%
wy = f (yn) - 4z c3 C3e7gl+_ 2(—2¢3 3) " & 4 0(eh),
f”(yn) 202 2 C2 2 o
(3.8)
F(n) " (9n) .
S Tm i S CE i

+ [2¢3 — 8ckcs + 6eacqlet + O(e3). (3.9)
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From the second step of the Method | and Egs. (3.8), (3.9) we obtain

w w
Tnt1 = Yn + w1 In(l —w) =y, + wi(—w — 5 "3 — )
1
=a+ 503(203 —3c3)el +0(el). (3.10)
Therefore, the error equation for the Method | is
2
em1<§éé@>£+owm. (3.11)

d

Theorem 3.2. Under the hypothesis of Theorem(2.1), the order of convergence of
the method defined by (3.2) is siz and satisfies the following error equation:

1
Ent1 = 502(403 —12¢5¢3 + 9¢2)el 4+ O(el).
Proof: From the first step of the Method Il and Eq. (2.14), we have
2 )
Yn = a + (gcg - 03) el + (40203 — 3¢y — gcg) et +0(ed). (3.12)

Also, similarly to Egs. (3.5) and (3.6), we have

2 5
Flyn) = f'(a) [(gcg — 03> ef’l + (40203 — 3cq — gC%) efl + O(ez)} , (3.13)
/ / 4 4 3 2 10 4 4 5
fyn) = fl(a) 1+ 502 —2coc3 | €, + | 8cses — §c2 —6cacy | e, +0(e)| .
(3.14)
Employing Egs. (3.13) and (2.10), we obtain
f(yn) : _ 44 o 4, 4
(ﬂ%) “ g2t e e )at
34 28

(?c§03 - gcg — 10coc3 — 4ckey + 60304) ed +0(eb). (3.15)

Dividing Eqgs. (3.13) and (3.14), we get

n 2 5
I (yn) = (§c§ — 63) e;o’l + (40203 —3cq — gcg) efl-i-

14
(Ecg — 9c3cs + 8cacy + 3ch — 605) ed +0(eb). (3.16)
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Finally, substituting from the Eqgs. (3.15) and (3.16) into the second step of the
Method I, we have the following error equation:

1
eni1 = §CQ(403 —12¢3¢3 + 9¢3)el + O(el). (3.17)

d

Per iteration Method | and Method Il requires two evaluations of the function,
two of its first derivative and one of its second derivative. Therefore, the efficiency
index is 65 ~ 1.4309.

4. Dynamical behavior

The set of initial conditions leading to long-time behavior that approaches the
attractor(s) of a dynamical system is defined as basin of attraction [16,17]. To
study dynamical behavior, we analyze the basins of attraction of our methods on
the polynomial f(z) = z® — 1, which has simple zeros {1,0.5 4 0.866025i }. Toward
this end, we take a rectangle D = [—4,4] x [—4,4] € C with a 400 x 400 grid. In
Figure 1, we have presented the basins for the Newton’s method (1.1) and new
nonstandard Newton’s method (2.8). Also, the basins for Method | and Method |1
are plotted in Figure 2. Finally, graphical presentations of the number of iterations
for our methods to converge to one of the roots of f(z) are shown in Figures 3 and
4. For more technical details in obtaining these figures, the interested reader can
see [17,18].

new nonstandard Newton's method

! 0

Im(z)

Im@)

Figure 1: Basins of attraction for f(z) = 23 — 1 for the Newton’s method (left) and
new nonstandard Newton’s method (right).
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Mothod | Mothod Il

Figure 2: Basins of attraction for f(z) = z® — 1 for the Method | (left) and Method
Il (right).

new nonstandard Newton's method

o -4 o
-4 2 2 4

o
Re(@)

Figure 3: Number of iterations needed by Newton’s method (left) and new non-
standard Newton’s method (right) to converge to one of the roots of f(z) = 2% —1
as a function of the initial condition.

Method It

Inz)

o
Re(z)

Figure 4: Number of iterations needed by Method | (left) and Method Il (right) to
converge to one of the roots of f(z) = 23 — 1 as a function of the initial condition.
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5. Numerical results

In this section, we present some numerical examples to show the performance
of the developed methods. Also, we compare our numerical results with those
obtained by various iterative methods earlier in the literature. For this purpose we
consider the following test functions [2,8,6,19,20] in our experiments.

filz) = ( ) —ax, o =0.5, o= 0.739085
fo(x) = —sin?(z) + 3cos(z) + 5, 19 = —1, a~ —1.207647
fa(z) =e* — 1.5 —tan" (), o = —7, a ~ —14.101269
fa(z) =e® +27% 4+ 2cos(x) — 6, 9 = 2.5, o~ 1.829383
1

ﬁ@ﬂ:vEfEfB:mf15amﬂ6%w5
fo(z) = cos(x) —x e* + 2%, 19 =0, a =~ 0.6391540
j}(x)::: 247030 _ 1 g0 =15, a ~ 1.6278185

()

fs(z) = 2® 4+ log(x) 4+ 0.15 cos(50x), zo = 0.75, a =~ 1.657400

Numerical computations have been done with 25 digits, in Maple 17. Also, we
have used the stopping criterion |f(z,+1)] < 1072°. For every method and test
function, we calculate the value of |f(2,+1)| and |2,41 — x| at the last iteration.
Furthermore, we calculate the number of iterations (IT) and the computational
order of convergence (COC) approximated (see [2]) by means of

In(|zni1 — @al/|20 — Tn-1l)
ln(|zn - zn,1|/|zn,1 - $n72|)

p~ COC =

In Table 1, we compare scheme (2.8) with the results obtained by using harmonic
mean Newton’s method (HNM) [21], Super-Halley method (SHM) [2] and modi-
fied homotopy perturbation method (MHPM) [4, algorithm 2.1]. All these methods
have order three and use three functional evaluations per step. So, their efficiency
index is the same. Also, the computing results for Method | and Method Il are given
in Table 2. According to Tables 1 and 2, we find that the presented methods pro-
duce satisfactory results and also the computational order of convergence confirms
the theoretical results.
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Table 1: The comparison of the scheme (2.8) with different methods and several
test functions.

Method [ IT lf(@nt1)]  |Tpn41 —2xn] COC
Scheme (2.8)

fi(x) 3 1.70e — 24 291le—10 3.013
folz) 3 148c—22 246e—08  2.938
f5(2) 4 0 794 — 09  2.936
fa(x) 4 1.00e =24 5.79¢ —18  2.998
f5(x) 3 1.64e —22 9.0le—10 2.783
fe(x) 4 7.00e —25 3.33e—19 2.961
fr(x) 4 9.00e —23  2.70e —09  3.120
fs(@) 4 248¢—21 92le—09  3.005

MHPM
fi(z) 3 0 L17e—11  2.919
fa(x) 4 6.00e —24 1.54e—15 2.999
f3(x) failed failed failed failed
fa(x) 3 2.00e —23 2.51le—08 2.384
fs(x) 4 1.00e —24  1.59e¢—19  3.002
fo(x) 4 8.00e —25 4.43e—10 2.953
fr(x) failed failed failed failed
fs(x) failed failed failed failed
HNM
fi(z) 3 0 523 — 12 3.025
fa(x) 4 6.00e —24 1.21e—20 2.999
fa(x) 4 0 2.76e —10  3.016
fa(2) 4 1.00e—24 1.94e—15  3.008
(@) 3 1.62-22 99le—07 2917
fo(x) 4 0 2.86e — 18  2.998
fr(x) failed failed failed failed
fs(2) 18 0 7.69e — 14 3.008
SHM
fi(z) 3 0 1.77e—11  2.941
fo(z) 4 6.00e—24 1.75e—15 3.002
f3(x) 6 0 372 —10 2.974
fa(z) 4 1.00e—24 1.02c—14  3.007
fs(2) 4 0 1.08¢ — 19 3.002
fola) 4 7T.00e—25 835e—11 2.993
fr(x) failed failed failed failed
fs(x) 4 4.00e —25 1.27e—12  2.989
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Table 2: The computing results for Method | and Method II.

Method | IT [f(@ns1)|  |Tngr —xn] COC

Method |
fi(z) 2 1.00e—25 417e—07  —
fo(x) 2 6.84e—22 1.65e—04  —
fs(z) 3 0 1.2le—12  6.081
fa(z) 3 1.00e—24 1.3le—18 5.745
f5(x) 2 0 455e —04  —
fo(x) 2 1.50e —21  6.19e — 04 -
fr(z) failed failed failed failed
fs(x) 3 2.82e — 22 3.08¢ — 5 5.544

Method Il
fi(z) 2 0 510e — 07 -
fo(x) 2 6.00c—24 18le—05  —
fa(z) 3 0 92.25¢ — 09 7.219
Fa(z) 2 654e—21 6.7Te—04  —
f5(x) 2 0 208 —04  —
fe(z) 2 3.96e —21  1.26e — 03 —
(@) 4 1.00e—23 393 —06 6.930
fs(x) 3 4.00e — 25 1.02e — 11 6.226

In this paper, the idea behind in nonstandard finite difference method is used to
develop a new Newton-type iterative method for solving nonlinear equations. The
convergence analysis shows that this method is cubically convergent. This obtained
method was also compared with other third-order methods via numerical examples.
Also, we developed two new multi-point methods with sixth-order convergence.
Furthermore, to study dynamical behavior, we analyze the basin of attractions of
our methods on the polynomial f(z) = 2z® — 1. Finally, numerical results show
that the new methods can be of practical interest and the computational order of

6. Conclusion

convergence confirms the theoretical results.
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