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Strong Convergence Theorems for Strongly Monotone Mappings in

Banach spaces

M.O. Aibinu and O.T. Mewomo

abstract: Let E be a uniformly smooth and uniformly convex real Banach space
and E∗ be its dual space. Suppose A : E → E∗ is bounded, strongly monotone
and satisfies the range condition such that A−1(0) 6= ∅. Inspired by Alber [2],
we introduce Lyapunov functions and use the new geometric properties of Banach
spaces to show the strong convergence of an iterative algorithm to the solution of
Ax = 0.
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1. Introduction

Let H be a real Hilbert space. A mapping A : D(A) ⊂ H → H is said to be
monotone if for every x, y ∈ D(A), we have

〈x− y,Ax−Ay〉 ≥ 0.

A is called maximal monotone if it is monotone and the range of (I + tA) is all of
H for some t > 0. Consider the following problem:

find u ∈ H such that 0 ∈ Au, (1.1)

where A is a maximal monotone mapping onH . This is a typical way of formulating
many problems in nonlinear analysis and optimization. A well-known method for
solving (1.1) in a Hilbert space is the proximal point algorithm: x1 ∈ H and

xn+1 = Jrnxn, n ∈ N,
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introduced by Martinet [21] and studied further by Rockafellar [26] and a host of
other authors. Monotone mappings were first studied in Hilbert spaces by Zaran-
tonello [31], Minty [22], Kačurovskii [18] and a host of other authors. Interest in
monotone mappings stems mainly from their usefulness in numerous applications.
Consider for example (see e.g Chidume et al. [11]), the following: Let f : E → R

be a proper and convex function. The subdifferential of f at x ∈ E is defined by

∂f(x) = {x∗ ∈ E∗ : f(y)− f(x) ≥ 〈y − x, x∗〉 ∀ y ∈ E} .

Monotonicity of ∂f : E → 2E
∗

on E can be easily verified, and that 0 ∈ ∂f(x)
if and only if x is a minimizer of f. Setting ∂f = A, it follows that solving the
inclusion 0 ∈ Au in this case, is the same as solving for a minimizer of f . Several
existence theorems have been established for the equation Au = 0 when A is of the
monotone-type (see e.g., Deimling [15]; Pascali and Sburlan [24]). Let E be a real
normed space and let Jp, (p > 1) denote the generalized duality mapping from E
into 2E

∗

given by

Jp(x) =
{

f ∈ E∗ : 〈x, f〉 = ‖x‖p, ‖f‖ = ‖x‖p−1
}

,

where E∗ denotes its dual space and 〈., .〉, the generalized duality pairing. If E is
a uniformly smooth Banach space with Jp : E → E∗ and J∗

q : E∗ → E being the
duality mappings with gauge functions ν(t) = tp−1 and ν(s) = sq−1 respectively,
then J−1

p = J∗
q . For p = 2, the mapping J2 from E to 2E

∗

is called normalized
duality mapping. If there is no danger of confusion, we omit the subscript p of
Jp and simply write J . If E is smooth, then J is single-valued and onto if E is
reflexive (see e.g., Alber and Ryazantseva [3], p. 36, Cioranescu [14], p. 25-77, Xu
and Roach [29], Zǎlinescu [30]).

Let X and Y be real normed linear spaces and f : U ⊂ X → Y be a map
with U open and nonempty. The function f is said to have a Gâteaux derivative
at u ∈ U if there exists a bounded linear map from X into Y denoted by DGf(u)
such that for each h in X , we have

lim
t→0

f(u+ th)− fu

t
= 〈DGf(u), h〉 . (1.2)

We say that f is Gâteaux differentiable if it has a Gâteaux derivative at each u
in U . Let X and Y be real Banach spaces. A mapping A : D(A) ⊂ X → Y is
said to be uniformly continuous if for all ǫ > 0, there exists δ > 0 such that for all
x, y ∈ D(A), ‖x− y‖X < δ ⇒ ‖Ax−Ay‖Y < ǫ. A function ψ : [0,∞) → [0,∞)
such that ψ is nondecreasing, ψ(0) = 0 and ψ is continuous at 0 is called a modulus
of continuity. It follows that A is uniformly continuous if and only if it has a
modulus of continuity and A is said to be α-Hölder continuous if for some 0 < α ≤ 1,
there exists a positive constant k such that ψ(t) ≤ ktα for all t ∈ [0,∞). Let E be
a smooth Banach space, the single-valued mapping A : E → E∗

(i) is monotone if for each x, y ∈ E, we have

〈x− y,Ax−Ay〉 ≥ 0;
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(ii) is η-strongly monotone if there exist a constant η > 0 such that for each
x, y ∈ E, we have

〈x− y,Ax−Ay〉 ≥ η‖x− y‖p;

(iii) is maximum monotone if it is monotone and the range of (J + tA) is all of
E∗ for some t > 0;

(iv) satisfies the range condition if it is monotone and the range of (J + tA) is all
of E∗ for all t > 0.

Remark 1.1. Observe that any maximal monotone mapping satisfies the range
condition. The converse is not necessarily true. Hence, range condition is weaker
than maximal monotone.

Let A : E → E be a single-valued mapping.

(i) A is accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that
〈j(x− y), Ax−Ay〉 ≥ 0;

(ii) A is η-strongly accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y)
and a constant η > 0 such that 〈j(x− y), Ax−Ay〉 ≥ η‖x− y‖p;

(iii) A is m-accretive if it is accretive and the range of (I+ tA) is all of E for some
t > 0;

(iv) A satisfies the range condition if it is accretive and the range of (I + tA) is
all of E for all t > 0.

Remark 1.2. Chidume and Djitte [12]. For a real q > 1, let E be a q-uniformly
smooth real Banach space and A : E → E be a map with D(A) = E. Suppose that
A is m-accretive, then A satisfies the range condition.

However, the converse is not necessarily true. Hence, range condition is weaker
than m-accretive. In a Hilbert space, the normalized duality map is the identity
map. Hence, in Hilbert spaces, monotonicity and accretivity coincide.

There have been extensive research efforts on inequalities in Banach spaces and
their applications to iterative methods for solutions of nonlinear equations of the
form Au = 0. Assuming existence, for approximating a solution of Au = 0, where
A is of accretive-type, Browder [4] defined an operator T : E → E by T := I −A,
where I is the identity map on E. He called such an operator pseudo-contractive.
It is trivial to observe that zeros of A correspond to fixed points of T . For Lipschitz
strongly pseudo-contractive maps, Chidume [6] proved the following theorem.

Theorem 1.3. Chidume [6]. Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be nonempty
closed convex and bounded. Let T : K → K be a strongly pseudocontractive and
Lipschitz map. For arbitrary x1 ∈ K, let a sequence {xn} be defined iteratively
by xn+1 = (1 − λn)xn + λnTxn, n ∈ N, where λn ∈ (0, 1) satisfies the following
conditions:
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(i)

∞
∑

n=1

λn = ∞,

(ii)

∞
∑

n=1

λ2n <∞.

Then, {xn} converges strongly to the unique fixed point of T .

The above theorem has been generalized and extended in various directions,
leading to flourishing areas of research, for the past forty years or so, for numerous
authors (see e.g., Censor and Reich [5]; Chidume [7], [6], [12]; Chidume and
Bashir [10]; Chidume and Chidume [9]; Chidume and Osilike [19] and a host of
other authors).

However, it occurs that most of the existing results on the approximation of
solutions of monotone-type mappings have been proved in Hilbert spaces or they
are for accretive-type mappings in Banach spaces. Unfortunately, as has been
rightly observed, many and probably most mathematical objects and models do
not naturally live in Hilbert spaces. The remarkable success in approximating the
zeros of accretive-type mappings is yet to be carried over to equations involving
nonlinear monotone mappings in general Banach spaces. Perhaps, part of the
difficulty in extending the existing results on the approximation of solutions of
accretive-type mappings to general Banach spaces is that, since the operator A
maps E to E∗, the recursion formulas used for accretive-type mappings may no
longer make sense under these settings. Take for instance, if xn is in E, Axn is in
E∗ and any convex combination of xn and Axn may not make sense. Moreover,
most of the inequalities used in proving convergence theorems when the operators
are of accretive-type involve the normalized duality mappings which also appear in
the definition of accretive operators.

Alber [2] introduced a Lyapunov functional which signaled the beginning of the
development of new geometric properties in Banach spaces. The Lyapunov function
introduced by Alber is suitable for studying iterative methods for approximating
solutions of equation 0 ∈ Au where A : E → 2E

∗

is of monotone type and other
related problems (see e.g [1], [11], [23], [32]). Inspired by Alber [2], our purpose in
this paper is to use the new geometric properties to study an iterative scheme for
the strongly monotone mappings. Therefore, we introduce Lyapunov functions and
prove the strong convergence theorem for strongly monotone mappings in uniformly
smooth and uniformly convex Banach spaces.

2. Preliminaries

Let E be a real normed space of dimension ≥ 2 and let S := {x ∈ E : ‖x‖ = 1}.
E is said to have a Gâteaux differentiable norm (or E is called smooth) if the limit

lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for each x, y ∈ S; E is Fréchet differentiable if it is smooth and the limit
is attained uniformly for y ∈ S. Further, E is said to be uniformly smooth if it
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is smooth and the limit is attained uniformly for each x, y ∈ S. The modulus of
convexity of E, δE : (0, 2] → [0, 1] is defined by

δE(ǫ) = inf

{

1−
‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ǫ

}

.

E is uniformly convex if and only if δE(ǫ) > 0 for every ǫ ∈ (0, 2]. Let p > 1,
then E is said to be p-uniformly convex if there exists a constant c > 0 such
that δE(ǫ) ≥ cǫp for all ǫ ∈ (0, 2]. Observe that every q-uniformly smooth space
is uniformly smooth and every p-uniformly convex space is uniformly convex. A
normed linear space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y ⇒
‖x+ y‖

2
< 1.

Every uniformly convex space is strictly convex. Typical examples of such spaces,
(see e.g., Chidume [8], p. 34, 54) are the Lp, lp, and W

m
p spaces for 1 < p < ∞,

where

ρLp
(τ ) = ρlp(τ ) = ρWm

p
(τ ) ≤

{ 1
p
τp 1 < p < 2,

p−1
2 τ2 2 ≤ p <∞,

(2.1)

and

δLp
(ǫ) = δlp(ǫ) = δWm

p
(ǫ) ≥

{

1
2p+1 ǫ

2 1 < p < 2,
ǫp 2 ≤ p <∞.

(2.2)

Definition 2.1. Let E be a smooth real Banach space with the dual E∗.

(i) The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2 〈x, J2(y)〉+ ‖y‖2, for all x, y ∈ E, (2.3)

where J2 is the normalized duality map from E to E∗ introduced by Alber and
has been studied by Alber [2], Kamimura and Takahashi [17] and Reich [25].

(ii) The map V : E × E∗ → R is defined by

V (x, x∗) = ‖x‖2 − 2 〈x, x∗〉+ ‖x∗‖2 ∀ x ∈ E, x∗ ∈ E∗.

If E = H, a real Hilbert space, then Eq.(2.3) reduces to φ(x, y) = ‖x− y‖2 for
x, y ∈ H .
Also, it is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for all x, y ∈ E. (2.4)

We need the following lemmas and theorems in the sequel.

Lemma 2.2. B. T. Kien [20]. The dual space E∗ of a Banach space E is uni-
formly convex if and only if the duality mapping Jp is a single-valued map which
is uniformly continuous on each bounded subset of E.
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Lemma 2.3. Zǎlinescu [30]. Let ψ : R+ → R
+ be increasing with lim

t→∞
ψ(t) = ∞.

Then J−1
ψ is single-valued and uniformly continuous on bounded sets of E∗ if and

only if E is a uniformly convex Banach space.

Theorem 2.4. Xu [27]. Let E be a real uniformly convex Banach space. For
arbitrary r > 0, let Br(0) := {x ∈ E : ‖x‖ ≤ r}. Then, there exists a continuous
strictly increasing convex function

g : [0,∞) → [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), jp(x) ∈ Jp(x), jp(y) ∈ Jp(y), the following inequal-
ities hold:

(i) ‖x+ y‖p ≥ ‖x‖p + p 〈y, jp(x)〉+ g(‖y‖);

(ii) 〈x− y, jp(x)− jp(y)〉 ≥ g(‖x− y‖).

Lemma 2.5. Xu [28]. Let {an} be a sequence of nonnegative real numbers satis-
fying the following relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ∈ N,

where

(i) {α}n ⊂ (0, 1),

∞
∑

n=1

αn = ∞;

(ii) lim sup {σ}n ≤ 0;

(iii) γn ≥ 0,

∞
∑

n=1

γn = ∞.

Then, an → 0 as n→ ∞.

Theorem 2.6. Kido [19]. Let E∗ be a real strictly convex dual Banach space with
a Fréchet differentiable norm and A a maximal monotone operator from E into E∗

such that A−10 6= ∅. Let Jtx := (J + tA)−1x be the resolvent of A and P be the
nearest point retraction of E onto A−10. Then, for every x ∈ E, Jtx converges
strongly to Px as t→ ∞.

Lemma 2.7. Kamimura and Takahashi [17]. Let E be a smooth uniformly convex
real Banach space and let {xn} and {yn} be two sequences from E. If either {xn}
or {yn} is bounded and φ(xn, yn) → 0 as n→ ∞, then ‖xn − yn‖ → 0 as n→ ∞.

Lemma 2.8. Alber and Ryazantseva [3], p. 17. If a functional φ on the open
convex set M ⊂ dom φ has a subdifferential, then φ is convex and lower semicon-
tinuous on the set.
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Lemma 2.9. Rockafellar [26]. Let E be a reflexive smooth Banach space and
let A be a monotone operator from E to E∗. Then A is maximal if and only if
R(J + rA) = E∗ for all r > 0. That is, every maximal monotone map satisfies the
range condition.

Lemma 2.10. Cioranescu [14], p. 156. Let A : X → X∗ be a semicontinuous
monotone mapping with D(A) = X. Then A is maximal monotone.

Lemma 2.11. Chidume and Idu [13]. Let E be an arbitrary real normed space
and E∗ be its dual space. Let A : E → 2E

∗

be any mapping. Then A is monotone
if and only if T := (J −A) : E → 2E

∗

is J-pseudocontractive.

Lemma 2.12. (See, e.g., Chidume and Djitte [12]). Let X and Y be real normed
linear spaces and let T : X → Y be a uniformly continuous map. For arbitrary
r > 0 and fixed x∗ ∈ X, let

BX(x∗, r) : {x ∈ X : ‖x− x∗‖X ≤ r} .

Then T (B(x∗, r)) is bounded.

3. Main Results

We first give give some definitions and prove the lammas which are useful in
establishing our main results.

Definition 3.1. Let E be a smooth real Banach space with the dual E∗.

(i) We introduce the function φp : E × E → R defined by

φp(x, y) =
p

q
‖x‖q − p 〈x, Jy〉+ ‖y‖p, for all x, y ∈ E,

where J is the generalized duality map from E to E∗, p and q are real numbers
such that q ≥ p > 1 and 1

p
+ 1

q
= 1.

(ii) We introduce the function Vp : E × E∗ → R defined as

Vp(x, x
∗) =

p

q
‖x‖q − p 〈x, x∗〉+ ‖x∗‖p ∀ x ∈ E, x∗ ∈ E∗ such that q ≥ p > 1,

with 1
p
+ 1

q
= 1.

Remark 3.2. These remarks follow from Definition 3.1:

(i) For p = 2, φ2(x, y) = φ(x, y). Also, it is obvious from the definition of the
function φp that

(‖x‖ − ‖y‖)p ≤ φp(x, y) ≤ (‖x‖+ ‖y‖)p for all x, y ∈ E. (3.1)

(ii) It is obvious that

Vp(x, x
∗) = φp(x, J

−1x∗) ∀ x ∈ E, x∗ ∈ E∗. (3.2)
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Lemma 3.3. Let E be a smooth uniformly convex real Banach space. For d > 0,
let Bd(0) := {x ∈ E : ‖x‖ ≤ d}. Then for arbitrary x, y ∈ Bd(0),

‖x− y‖p ≥ φp(x, y)−
p

q
‖x‖q, q ≥ p > 1,

1

p
+

1

q
= 1.

Proof: Since E is a uniformly convex space, then by Theorem 2.4, we have for
arbitrary x, y ∈ Bd(0),

‖x+ y‖p ≥ ‖x‖p + p 〈y, Jx〉+ g(‖y‖).

Replacing y by −y gives

‖x− y‖p ≥ ‖x‖p − p 〈y, Jx〉+ g(‖y‖).

Interchanging x and y, we have

‖x− y‖p ≥ ‖y‖p − p 〈x, Jy〉+ g(‖x‖)

≥
p

q
‖x‖q − p 〈x, Jy〉+ ‖y‖p −

p

q
‖x‖q + g(‖x‖)

≥ φp(x, y)−
p

q
‖x‖q + g(‖x‖)

≥ φp(x, y)−
p

q
‖x‖q.

✷

Lemma 3.4. Let E be a smooth uniformly convex real Banach space with E∗ as
its dual. Then,

Vp(x, x
∗) + p

〈

J−1x∗ − x, y∗
〉

≤ Vp(x, x
∗ + y∗) (3.3)

for all x ∈ E and x∗, y∗ ∈ E∗.

Proof:

Vp(x, x
∗) =

p

q
‖x‖q − p 〈x, x∗〉+ ‖x∗‖p,

Vp(x, x
∗ + y∗) =

p

q
‖x‖q − p 〈x, x∗ + y∗〉+ ‖x∗ + y∗‖p.

Vp(x, x
∗ + y∗)− Vp(x, x

∗) = −p 〈x, y∗〉+ ‖x∗ + y∗‖p − ‖x∗‖p

≥ p 〈−x, y∗〉+ ‖x∗‖p + p
〈

y∗, J−1x∗
〉

(3.4)

+g(‖y∗‖)− ‖x∗‖p( by Theorem 2.4)

≥ p
〈

J−1x∗ − x∗, y∗
〉

, (3.5)

so that
Vp(x, x

∗) + p
〈

J−1x∗ − x∗, y∗
〉

≤ Vp(x, x
∗ + y∗).

✷
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Lemma 3.5. Let E be a reflexive strictly convex and smooth real Banach space
with the dual E∗. Then,

φp(y, x)− φp(y, z) ≥ p 〈z − y, Jx− Jz〉 = p 〈y − z, Jz − Jx〉 for all x, y, z ∈ E.
(3.6)

Proof: Consider the functional Vp : E × E∗ → R with respect to the variable y∗

and a fixed element y defined as

Vp(y, y
∗) =

p

q
‖y‖q − p 〈y, y∗〉+ ‖y∗‖p for all y ∈ E, y∗ ∈ E∗.

We first show that Vp has a subdifferential on open subsetM ⊂ dom Vp. For every
h ∈ E∗ and t ∈ R\ {0}, we have,

Vp(y, y
∗) =

p

q
‖y‖q − p 〈y, y∗〉+ ‖y∗‖p,

Vp(y, y
∗ + th) =

p

q
‖y‖q − p 〈y, y∗ + th〉+ ‖y∗ + th‖p

≥
p

q
‖y‖q − p 〈y, y∗〉 − pt 〈y, h〉+ ‖y∗‖p

+pt
〈

J−1y∗, h
〉

+ g(‖th‖),

then lim
t→0

Vp(y, y
∗ + th)− Vp(y, y

∗)

t
≥ p

〈

J−1y∗ − y, h
〉

.

Therefore, grad Vp(x, y) = p(J−1y∗ − y) and by the Lemma 2.8, Vp is convex and
lower semicontinuous. Then it follows from the definition of subdifferential that

Vp(y, x
∗)− Vp(y, z

∗) ≥ p
〈

J−1z∗ − y, x∗ − z∗
〉

for all y ∈ E, x∗, z∗ ∈ E∗.

Since φp(y, x) = Vp(y, J
−1x∗), we have

φp(y, x)− φp(y, z) ≥ p 〈z − y, Jx− Jz〉 for all x, y, z ∈ E.

✷

Theorem 3.6. Let E be a uniformly smooth and uniformly convex real Banach
space and E∗ be its dual space. Suppose A : E → E∗ is bounded, η-strongly
monotone and satisfies the range condition such that A−1(0) 6= ∅. Let {λn} and
{θn} be real sequences in (0, 1) such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)
∞
∑

n=1

λnθn = ∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞
∑

n=1

λ2n <∞.
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For arbitrary x1 ∈ E, define {xn} iteratively by:

xn+1 = J−1 (Jxn − λn (Axn + θn(Jxn − Jx1))) , n ∈ N, (3.7)

where J is the generalized duality mapping from E into E∗. There exists a real
constant ǫ0 > 0 such that ψ(λnM0) ≤ ǫ0, n ∈ N for some constant M0 > 0. Then,
the sequence {xn} converges strongly to the solution of Ax = 0.

Proof: Let x∗ ∈ E be a solution of the equation Ax = 0. There exists r > 0
sufficiently large such that:

r ≥ max

{

φp(x
∗, x1),

4p

q
‖x∗‖q

}

. (3.8)

We divide the proof into two parts.
Part 1: We prove that {xn} is bounded. It suffices to show that φp(x

∗, xn) ≤
r, ∀ n ∈ N. The proof is by induction. By construction, φp(x

∗, x1) ≤ r. Suppose
that φp(x

∗, xn) ≤ r for some n ∈ N. We show that φp(x
∗, xn+1) ≤ r.

From inequality (3.1), for real p > 1, we have ‖xn‖ ≤ r
1
p + ‖x∗‖. Since A is

bounded and by Lemma 2.2, J is uniformly continuous on bounded subsets of E,
we define

M0 := sup
{

‖Axn + θn(Jxn − Jx1)‖ : θn ∈ (0, 1), ‖xn‖ ≤ r
1
p + ‖x∗‖

}

+ 1. (3.9)

Let ψ be the modulus of continuity of J−1
p : E∗ → E on bounded subsets of E∗.

Observe that by the uniform continuity of J−1 on bounded subsets of E∗, we have

‖xn − J−1(Jxn − λn (Axn + θn(Jxn − Jx1)))‖

= ‖J−1(Jxn)− J−1(Jxn − λn (Axn + θn(Jxn − Jx1)))‖

≤ ψ(λnM0). (3.10)

Define

ǫ0 := min

{

1,
ηr

4M0

}

where ψ(λnM0) ≤ ǫ0.

Applying Lemma 3.4 with y∗ := λn (Axn + θn(Jxn − Jx1)) and by using the defi-
nition of xn+1, we compute as follows,

φ
p
(x∗, xn+1) = φ

p

(

x∗, J−1 (Jxn − λn (Axn + θn(Jxn − Jx1)))
)

= Vp (x∗, Jxn − λn (Axn + θn(Jxn − Jx1)))

≤ Vp(x
∗, Jxn)

−pλn

〈

J−1(Jxn − λn (Axn + θn(Jxn − Jx1)))− x∗, Axn + θn(Jxn − Jx1)
〉

= φ
p
(x∗, xn)− pλn 〈xn − x∗, Axn + θn(Jxn − Jx1)〉

−pλn

〈

J−1(Jxn − λn (Axn + θn(Jxn − Jx1)))− xn, Axn + θn(Jxn − Jx1)
〉

.
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By Schwartz inequality and uniform continuity of J−1 on bounded subsets of E∗

(Lemma 2.3), we obtain

φp(x
∗, xn+1) ≤ φp(x

∗, xn)− pλn 〈xn − x∗, Axn + θn(Jxn − Jx1)〉

+pλnψ(λnM0)M0 (By applying inequality (3.10))

≤ φp(x
∗, xn)− pλn 〈xn − x∗, Axn −Ax∗〉 (since x∗ ∈ N(A))

−pλnθn 〈xn − x∗, Jxn − Jx1〉+ pλnψ(λnM0)M0.

By Lemma 3.5, p 〈x∗ − xn, Jxn − Jx1〉 ≤ φp(x
∗, xn) − φp(x

∗, x1) = 0. Therefore,
using strong monotonicity property of A, we have,

φp(x
∗, xn+1) ≤ φp(x

∗, xn)− pηλn‖xn − x∗‖p − pλnθn 〈xn − x∗, Jxn − Jx1〉

+pλnψ(λnM0)M0

≤ φp(x
∗, xn)− pηλn‖xn − x∗‖p + pλnθn 〈x

∗ − xn, Jxn − Jx1〉

+pλnψ(λnM0)M0

≤ φp(x
∗, xn)− pηλn

(

φp(x
∗, xn)−

p

q
‖x∗‖q

)

+ pλnψ(λnM0)M0

= φp(x
∗, xn)− pηλnφp(x

∗, xn) + pηλn

(

p

q
‖x∗‖q

)

+pλnψ(λnM0)M0

≤ (1− pηλn)r + pηλn
r

4
+ pλnǫ0M0

≤ (1− pηλn)r +
pηλn
4

r +
pηλn
4

r

=

(

1−
pηλn
2

)

r < r.

Hence, φp(x
∗, xn+1) ≤ r. By induction, φp(x

∗, xn) ≤ r ∀ n ∈ N. Thus, from
inequality (3.1), {xn} is bounded.

Part 2: We now show that {xn} converges strongly to a solution of Ax = 0.
Strongly monotone implies monotone, since A is monotone and also satisfies the
range condition and by the strict convexity of E, we obtain for every t > 0, and
x ∈ E, there exists a unique xt ∈ D(A), where D(A) is the domain of A such that

Jx ∈ Jxt + tAxt.

If Jtx = xt, then we can define a single-valued mapping Jt : E → D(A) by
Jt = (J + tA)−1J . Such a Jt is called the resolvent of A. Therefore, by Theorem
2.6, for each n ∈ N, there exists a unique yn ∈ D(A) such that

yn = (J +
1

θn
A)−1Jx1.

Then, we have (J + 1
θn
A)yn = Jx1, such that

θn(Jyn − Jx1) +Ayn = 0. (3.11)



180 M.O. Aibinu and O.T. Mewomo

Observe that the sequence {yn} is bounded because it is a convergent sequence by
Theorem 2.6. Moreover, {xn} is bounded and hence {Axn} is bounded. Following
the same arguments as in part 1, we get,

φp(yn, xn+1) ≤ φp(yn, xn)− pλn 〈xn − yn, Axn + θn(Jxn − Jx1)〉

+pλnψ(λnM0)M0

≤ φp(yn, xn)− pλn 〈xn − yn, Axn + θn(Jxn − Jx1)〉

+pλnǫ0M0. (3.12)

By the strong monotonicity of A and using Theorem 2.4 and Eq. (3.11), we obtain,

〈xn − yn, Axn + θn(Jxn − Jx1)〉 = 〈xn − yn, Axn + θn(Jxn − Jyn + Jyn − Jx1)〉

= θn 〈xn − yn, Jxn − Jyn〉

+ 〈xn − yn, Axn + θn(Jyn − Jx1)〉

= θn 〈xn − yn, Jxn − Jyn〉

+ 〈xn − yn, Axn −Ayn〉

≥ θng(‖xn − yn‖) + η‖xn − yn‖
p

≥
1

p
θnφp

(yn, xn),

by Lemma 3.3 for some real constants p > 1. Therefore, the inequality (3.12)
becomes

φp(yn, xn+1) ≤ (1 − λnθn)φp(yn, xn) + pλnǫ0M0. (3.13)

Observe that by Lemma 3.5, we have

φp(yn, xn) ≤ φp(yn−1, xn)− p 〈yn − xn, Jyn−1 − Jyn〉

= φp(yn−1, xn) + p 〈xn − yn, Jyn−1 − Jyn〉

≤ φp(yn−1, xn) + ‖Jyn−1 − Jyn‖‖xn − yn‖. (3.14)

Let R > 0 such that ‖x1‖ ≤ R, ‖yn‖ ≤ R for all n ∈ N. We obtain from
Eq.(3.11) that

Jyn−1 − Jyn +
1

θn
(Ayn−1 −Ayn) =

θn−1 − θn
θn

(Jx1 − Jyn−1) .

By taking the duality pairing of each side of this equation with respect to yn−1−yn
and by the strong monotonicity of A, we have

〈Jyn−1 − Jyn, yn−1 − yn〉 ≤
θn−1 − θn

θn
‖Jx1 − Jyn−1‖‖yn−1 − yn‖,

which gives,

‖Jyn−1 − Jyn‖ ≤

(

θn−1

θn
− 1

)

‖Jyn−1 − Jx1‖. (3.15)
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Using (3.14) and (3.15), the inequality (3.13) becomes

φp(yn, xn+1) ≤ (1 − λnθn)φp(yn−1, xn) + C

(

θn−1

θn
− 1

)

+ pλnǫ0M0,

for some constant C > 0. By Lemma 2.5, φp(yn−1, xn) → 0 as n → ∞ and
using Lemma 2.7, we have that xn − yn−1 → 0 as n → ∞. Since by Theorem 2.6,
yn → x∗ ∈ N(A), we obtain that xn → x∗ as n→ ∞. ✷

Corollary 3.7. Let E be a uniformly smooth and uniformly convex real Banach
space and E∗ be its dual space. Suppose A : E → E∗ is a bounded and maximal
monotone mapping such that A−10 6= ∅. Let {λn} and {θn} be real sequences in
(0, 1) such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)

∞
∑

n=1

λnθn = ∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,

∞
∑

n=1

λ2n <∞.

For arbitrary x1 ∈ E, define {xn} iteratively by:

xn+1 = J−1 (Jxn − λn (Axn + θn(Jxn − Jx1))) , n ∈ N, (3.16)

where J is the generalized duality mapping from E into E∗. There exists a real
constant ǫ0 > 0 such that ψ(λnM0) ≤ ǫ0, n ∈ N for some constant M0 > 0. Then,
the sequence {xn} converges strongly to the solution of Ax = 0.

Proof: Strong monotone implies monotone, therefore the result follows from
Lemma 2.9 and by Theorem 3.6. ✷

Corollary 3.8. Chidume and Idu [13]. Let E be a uniformly convex and uni-
formly smooth real Banach space and E∗ be its dual space. Let T : E → 2E

∗

be
a J-pseudocontractive and bounded map such that (J − T ) is maximal monotone.
Suppose F JE (T )={v ∈ E : Jv ∈ Tv} 6= ∅. For arbitrary x1, u ∈ E, define a sequence
{xn} iteratively by:

xn+1 = J−1 ((1− λn)Jxn + λnηn − λnθn(Jxn − Ju)) , ηn ∈ Txn, n ∈ N, (3.17)

where {λn} and {θn} are real sequences in (0, 1) satisfying the following conditions:

(i)
∞
∑

n=1

λnθn = ∞,
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(i) λnM
∗
0 ≤ γ0θn; δ

−1
E (λnM

∗
0 ) ≤ γ0θn,

(iii)
δ
−1

E

(

θn−1−θn

θn
K

)

λnθn
→ 0;

δ
−1

E∗

(

θn−1−θn

θn
K

)

λnθn
→ 0 as n→ ∞,

(iv) 1
2
θn−1−θn

θn
K ∈ (0, 1),

for some constants M∗
0 > 0 and γ0 > 0, where δE : (0,∞) → (0,∞) is the modulus

of convexity of E and K := 4RL sup{‖Jx− Jy‖ : ‖x‖ ≤ R, ‖y‖ ≤ R} + 1, x, y ∈
E, R > 0. Then the sequence {xn} converges strongly to a J-fixed point of T .

Proof: Define A := (J − T ), then by the Lemma 2.11, A is a bounded maximal
monotone map. Therefore, the iterative sequence (3.17) is equivalent to

xn+1 = J−1 (Jxn − λn (Axn + θn(Jxn − Ju))) , n ∈ N, (3.18)

where J is the normalized duality mapping from E into E∗. Hence, the result
follows from the Corollary 3.7. ✷

Corollary 3.9. Let E be a uniformly smooth and uniformly convex real Banach
space and E∗ be its dual space. Suppose A : E → E∗ is a semicontinuous bounded
monotone mapping such that A−10 6= ∅. Let {λn} and {θn} be real sequences in
(0, 1) such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)

∞
∑

n=1

λnθn = ∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,

∞
∑

n=1

λ2n <∞.

For arbitrary x1 ∈ E, define {xn} iteratively by:

xn+1 = J−1 (Jxn − λn (Axn + θn(Jxn − Jx1))) , n ∈ N, (3.19)

where J is the generalized duality mapping from E into E∗. There exists a real
constant ǫ0 > 0 such that ψ(λnM0) ≤ ǫ0, n ∈ N for some constant M0 > 0. Then,
the sequence {xn} converges strongly to the solution of Ax = 0.

Proof: The result follows from Lemma 2.10 and by the Corollary 3.7. ✷

Corollary 3.10. Let E be a uniformly smooth and uniformly convex real Banach
space and E∗ be its dual space. Suppose A : E → E∗ is a uniformly continuous
and maximal monotone mapping such that A−10 6= ∅. Let {λn} and {θn} be real
sequences in (0, 1) such that,

(i) lim θn = 0 and {θn} is decreasing;
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(ii)

∞
∑

n=1

λnθn = ∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞
∑

n=1

λ2n <∞.

For arbitrary x1 ∈ E, define {xn} iteratively by:

xn+1 = J−1 (Jxn − λn (Axn + θn(Jxn − Jx1))) , n ∈ N, (3.20)

where J is the generalized duality mapping from E into E∗. There exists a real
constant ǫ0 > 0 such that ψ(λnM0) ≤ ǫ0, n ∈ N for some constant M0 > 0. Then,
the sequence {xn} converges strongly to the solution of Ax = 0.

Proof: The result follows from Lemma 2.12 and by the Corollary 3.7. ✷

Corollary 3.11. Aibinu and Mewomo [1]. Let E be a p-uniformly convex real
Banach space with uniformly Gâteaux differentiable norm such that 1

p
+ 1
q
= 1, p ≥ 2

and E∗ its dual space. Let A : E → E∗ be a bounded and η-strongly monotone
mapping such that A−10 6= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence
defined iteratively by

xn+1 = J−1(Jxn − λnAxn), n ∈ N, (3.21)

where J is the generalized duality mapping from E into E∗ and {λn} ⊂ (0, γ0), γ0 ≤
1 is a real sequence satisfying the following conditions:

(i)

∞
∑

n=1

λn = ∞;

(ii)
∞
∑

n=1

λ2n <∞.

Then, the sequence {xn} converges strongly to the unique point x∗ ∈ A−10.

Proof: By taking θn = 0 in Theorem 3.6, we obtain the desired result. ✷

Corollary 3.12. Diop et al. [16]. Let E be a 2-uniformly convex real Banach space
with uniformly Gâteaux differentiable norm and E∗ its dual space. Let A : E → E∗

be a bounded and k-strongly monotone mapping such that A−10 6= ∅. For arbitrary
x1 ∈ E, let {xn} be the sequence defined iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ∈ N, (3.22)

where J is the normalized duality mapping from E into E∗ and {an} ⊂ (0, 1) is a
real sequence satisfying the following conditions:
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(i)

∞
∑

n=1

αn = ∞;

(ii)

∞
∑

n=1

α2
n <∞.

Then, there exists γ0 > 0 such that if αn < γ0, the sequence {xn} converges strongly
to the unique solution of the equation Ax = 0.

Proof: By taking p = 2 in Corollary 3.11, we obtain the desired result. ✷

Corollary 3.13. Chidume and Djitte [12]: Let E be a 2-uniformly smooth real
Banach space, and let A : E → E be a bounded m-accretive mapping. For arbitrary
x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ∈ N,

where {λn} and {θn} are sequences in (0, 1) satisfying the conditions:

(i) lim θn = 0 and {θn} is decreasing;

(ii)

∞
∑

n=1

λnθn = ∞, λn = o(θn);

(ii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,

∞
∑

n=1

λ2n <∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant
γ0 > 0 such that if λn ≤ γ0θn for all n ∈ N, {xn} converges strongly to a solution
of the equation Ax = 0.

Proof: The result follows from the Theorem 3.6 since uniformly smooth and uni-
formly convex spaces are more general. ✷

Remark 3.14. The Lyapunov functions which we introduced admit the generalized
duality mapping. Therefore, the duality mapping, J in our iteration is a generalized
one while in Chidume and Idu [13], J is the normalized duality mapping. Clearly,
our results show the efficacy of the new geometric properties in Banach spaces. The
iterative algorithm study by Chidume and Djitte [12] has been successfully extended
into uniformly smooth and uniformly convex Banach spaces for strongly monotone
mappings. Also, our method of prove is constructive and is of independent interest.

Remark 3.15. Prototype for our iteration parameters in Theorem 3.6 are, λn =
1

(n+1)a and θn = 1
(n+1)b

, where 0 < b < a and a+ b < 1.
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