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abstract: Our main purpose is to provide for primitive associative Zp-algebras
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1. Introduction

The group grading on associative algebras was described by many authors such
as Y. A. Bahturin, A. Giambruno, S. Sehgal, M. Zaicev and I. Shestakov, see
[12,13,14,15]. They described all group gradings by an arbitrary finite group G
on non-simple finite-dimensional superinvolution simple associative superalgebras
over an algebraically closed field F of characteristic 0.
The existence of superinvolution on associative superalgebras was studied by many
authors, for example Michel Racine in [9] and A.Elduque and O. Villa in [1] studied
superalgebras, which are Z2-graded algebras, and existence of superinvolutions on
finite dimensional central simple superalgebras, and they found that non-trivial
central division superalgebras are never endowed with superinvolution of the first
kind, but they prove the graded version of the classical Albert and Albert-Riehm
Theorem of existence of superinvolution of the second kind.
Continuing on the studying of superalgebras, in [2,3,4] we developed the theory of
existence of pseudo-superinvolutions of the first kind and superinvolutions of the
first and second kinds on finite dimensional central simple associative superalgebras
over a fieldK of characteristic not 2. We proved that a central division superalgebra
D, over a field K of characteristic not 2, of even type has a pseudo-superinvolution
of the first kind if and only if D is of order 2 in the Brauer-Wall group BW(K).
Moreover we proved that if D is of type, then D has a pseudo-superinvolution of
the first kind if and only if

√
−1 ∈ K and D is of order 2 in the Brauer-Wall group

BW(K).
In this paper we generalize the above work about superalgebras to introduce the
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following article about primitive associative Zp-algebras with Zp-involution, and
the purpose of this article is to provide a structure theory analogous to that for
algebras and superalgebras [1,7,8,9,10] and to classify primitive Zp-rings having a
minimal one sided Zp-ideal.
In section 2 we introduced some examples of associative Zp-algebras, and in section
3 we proved that artinian simple associative Zp-ring is isomorphic to Mn(D), where
D is an associative division Zp-algebra.

2. Examples of Zp-algebras

Let p be any prime number. An associative Zp-ring R =
p−1
⊕

i=0

Ri is nothing but a

(Z/pZ)-graded associative ring. A (Z/pZ)-graded ideal I =
p−1
⊕

i=0

Ii of an associative

Zp-ring R is called a Zp-ideal of R. An associative Zp-ring R is simple if it has no
non-trivial Zp-ideals. An associative Zp-ring R is a commutative Zp-ring if

aαbβ = (−1)αβbβaα ∀aα ∈ Rα, bβ ∈ Rβ ,

where the product αβ is taken modulo p. We will say that such elements Zp-
commute.

Let R be an associative Zp-ring with 1 ∈ R0, then R is said to be a division
Zp-ring if all nonzero homogeneous elements are invertible, i.e., every 0 6= rα ∈ Rα

has an inverse r−1
α , necessarily in Rp−α, where the subscript p−α is taken modulo p.

Let K be a field of characteristic 0. An associative (Z/pZ)-graded K-algebra

A =
p−1
⊕

i=0

Ai is a finite dimensional central simple Zp-algebra over a field K, if

Z(A) ∩ A0 = K, where Z(A) = {a ∈ A | ab = ba ∀ b ∈ A} is the center of A, and
the only Zp-ideals of A are (0) and A itself.

Example 2.1. Let A = K( 3
√
a) be an algebraic field extension of the field K of

degree 3, that is [A : K] = 3. We can make A into a Z3-algebra by setting

A0 = K, A1 = K. 3
√
a, A2 = K.

3
√
a2.

Note that A is a central simple Z3-algebra, since A is a field and A ∩A0 = K.

Example 2.2. Let p be any prime number. A Zp-space over a field K is a

left K-vector space V which is Zp-graded V =
p−1
⊕

i=0

Vi. The associative algebra

EndKV =
p−1
⊕

i=0

EndiV , where

EndiV := {a ∈ EndKV : vja ∈ Vi+j},

is an associative Zp-algebra.
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Example 2.3. Let p be any prime number. Let D =
p−1
⊕

i=0

Di be a division Zp-

algebra, then A = Mk(D) can be made into a Zp-algebra by setting

A0 = Mk(D0), A1 = Mk(D1), · · ·,Ap−1 = Mk(Dp−1).

Example 2.4. Let p be any prime number. Let ω be a fixed primitive p-th root
of unity. For a, b ∈ K×, let A =< a, b >ω be the K-algebra which is generated by
{i, j} which satisfy

{ip = a , jp = b , ij = ωji}.
Then A is a vector space over K with basis

{irjs : 0 ≤ r, s < p}.

So A has dimension p2 as a K-algebra. (See [11, section 15.4] and [6, Exercise
4.28]). This is a generalization of the quaternion algebras. We can make A into
Zp-algebra by setting

Al =< ikjm : k +m ≡ l( mod p) >K .

Example 2.5. Let D be a central division algebra over K and let A = M3(D). If

A0 =
(

∗ 0 0
0 ∗ 0
0 0 ∗

)

,A1 =
(

0 0 ∗
∗ 0 0
0 ∗ 0

)

,A2 =
(

0 ∗ 0
0 0 ∗
∗ 0 0

)

.

Then A is a Z3-algebra, written by A = M1+1+1(D), since A = A0 +A1 +A2 and
AiAj ⊆ Ai+j where the subscripts are taken modulo 3.

In the last example we can generalize the above example as follows, where p is
any prime number.

Example 2.6. Let p be any prime number. Let D be a central division algebra
over a field K and let A = Mp(D), then A can be made into Zp-algebra by setting

A0 =







∗
. . .

∗






, A1 =















0 · · · · · · 0 ∗
∗ 0 · · · · · · 0
0 ∗ 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 ∗ 0















,

A2 =



















0 · · · · · · 0 ∗ 0
0 0 · · · · · · 0 ∗
∗ 0 0 · · · · · · 0
0 ∗ 0 0 0 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 ∗ 0 0



















, · · · · · · , Ap−1 =



















0 ∗ 0 · · · 0
... 0 ∗ . . .

...
...

... 0
. . . 0

0
...

...
. . . ∗

∗ 0 0 · · · 0



















.
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In the next theorem we give an example of a simple associative Z3-algebra but
not simple as an algebra.

Theorem 2.7. Let R be a simple associative algebra, then the associative Z3-
algebra

A = {
(

a y x
x a y
y x a

)

: a, x, y ∈ R}

is simple as a Z3-algebra but not as an algebra.

Proof: Let J 6= 0 be a Z3-ideal in A. Then there exists
(

a y x
x a y
y x a

)

6= 0 ∈ J , which

implies that a 6= 0 or y 6= 0 or x 6= 0. If a 6= 0, then
(

a 0 0
0 a 0
0 0 a

)

6= 0 ∈ J0 which

implies that the identity matrix I3 is in J0 and hence J = A. similarly, if x 6= 0 (or

y 6= 0), then
(

0 0 x
x 0 0
0 x 0

)

6= 0 ∈ J1 (or

(

0 y 0
0 0 y
y 0 0

)

6= 0 ∈ J2) and

(

0 1

x
0

0 0 1

x

1

x
0 0

)

(

0 0 x
x 0 0
0 x 0

)

= I3

(or

(

0 0 1

y

1

y
0 0

0 1

y
0

)

(

0 y 0
0 0 y
y 0 0

)

= I3) which implies that the identity matrix I3 is in J0 and

hence J = A. Therefore A is simple Z3-algebra.

Let J = {
(

a a a
a a a
a a a

)

: a ∈ R}, then J 6= A is an ideal in A, which implies that A is

not simple as an algebra. ✷

3. Primitive Zp-rings

We first start by establishing the elementary results for Primitive Zp-rings anal-
ogous to those for rings [10, Chaps. II and III].

If R =
p−1
⊕

i=0

Ri is an associative Zp-ring, a (right) Zp-module M over R is a right

R-module with grading M =
p−1
⊕

i=0

Mi as R0-modules such that

mirj ∈ Mi+j for any mi ∈ Mi, rj ∈ Rj , i, j ∈ Zp.

If N =
p−1
⊕

i=0

Ni is also a Zp-module over R, then a Zp-module homomorphism over

R from M to N is an R0-module homomorphism hj , j ∈ Zp, such that

Mihj ⊆ Ni+j .

Given a Zp-module M over R, End(M) (action of End(M) on the right), the ring
of Zp-module endomorphism of M over R, is a Zp-ring. For i ∈ Zp, let

Endi(M) := {h ∈ End(M) : Mjh ⊆ Mi+j}.

The Commuting Zp-ring C of R on M is defined to be C =
p−1
⊕

i=0

Ci, where

Ck := {ck ∈ Endk(M) : ckri = (−1)ikrick, i ∈ Zp}.
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Thus the elements of C are Zp-commuting with those of R acting on M .

A Zp-module M over R is irreducible if MR 6= {0} and M has no proper Zp-
submodule. The next two results are standard and are included for complete-
ness’sake.

Lemma 3.1 (Generalized Schur’s Lemma). Let M =
p−1
⊕

i=0

Mi, N =
p−1
⊕

i=0

Ni be

irreducible Zp-modules over R =
p−1
⊕

i=0

Ri and let fj be a Zp-module homomorphism

of M into N . If fj 6= 0, then fj is invertible.

Proof: Since fj 6= 0, Mfj =
p−1
⊕

i=0

(Mifj) is a nonzero Zp-submodule of N . By the

irreducibility of N , Mfj = N . Let keri(fj) = {mi ∈ Mi : mifj = 0}. Then

ker(fj) =
p−1
⊕

i=0

keri(fj) is a Zp-submodule of M properly contained in M (fj 6= 0).

By irreducibility of M , ker(fj) = {0} and fj is invertible. ✷

Corollary 3.2. Let M =
p−1
⊕

i=0

Mi be an irreducible Zp-module over R =
p−1
⊕

i=0

Ri.

Then the commuting Zp-ring C of R on M is a division Zp-ring.

Proof: If cj 6= 0 ∈ Cj , then micj 6= 0 for some mi ∈ Mi. By generalized Schur’s
Lemma, cj is invertible in End(M) and hence in C. Thus C is a division Zp-ring.

✷

The following lemma is the key to the proof of the density theorem for associa-
tive Zp-algebras.

Lemma 3.3. Let M =
p−1
⊕

i=0

Mi be an irreducible Zp-module over the Zp-ring R =

p−1
⊕

i=0

Ri. If Mi 6= {0}, then Mi is an irreducible R0-module and for any nonzero

mi ∈ Mi, miRj = Mi+j. If Mk 6= {0} for all 0 ≤ k ≤ p− 1, then the commuting
ring of R0 on Mk can be identified with C0, the zero part of the commuting Zp-ring
C of R on M .

Proof: If Ni is a nonzero R0-submodule of Mi, then Ni +
p−1
∑

j=1

NiRj is a nonzero

Zp-submodule of M . Therefore Ni +
p−1
∑

j=1

NiRj = M . So Ni = Mi and Mi is an

irreducible R0-module.
If miR0 = {0} for some mi 6= 0 ∈ Mi, let Ni = {ni ∈ Mi : niR0 = {0}}. Since
Ni is a nonzero R0-submodule of Mi, Ni = Mi. So MiR0 = {0}. If MiRα =
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{0} ∀α ∈ Zp, then MiR = {0} and hence Mi is a proper Zp-submodule of M ,
a contradiction. Therefore MiRα 6= {0} for some α ∈ Zp which implies that
p−1
∑

j=1

MiRj is a proper Zp-submodule of M , a contradiction. Hence if mi 6= 0, then

miR0 6= {0} and miR0 = Mi. Also miRj ⊇ miR0Rj = MiRj is an R0-submodule
of Mi+j , for 1 ≤ j ≤ p − 1. Now let H = {α ∈ Zp : MiRα = 0}. Then
Mi +

∑

1≤j≤p−16∈H

MiRj is a proper Zp-submodule of M over R, a contradiction.

Therefore miRj = MiRj = Mi+j and ∀j ∈ Zp. Let D be the commuting ring of
R0 on Mk considered an R0-module. So for all d ∈ D, r0 ∈ R0, and mk ∈ Mk,

mkr0d = mkdr0.

Given d ∈ D we wish to extend it’s action to Mk+α for each 1 ≤ α ≤ p− 1. Fix a
nonzero mk ∈ Mk. Since mkRα = Mk+α for each 1 ≤ α ≤ p − 1, define an action
of D on Mk+α by

mkrαd := mkdrα for any d ∈ D and rα ∈ Rα, 1 ≤ α ≤ p− 1.

We must show that this action is well-defined, namely, that if mkrj = 0, then
nk+j = mkdrj = 0 where 1 ≤ j ≤ p− 1. If nk+j 6= 0 for some 1 ≤ j ≤ p− 1, then

nk+jRα = Mk+j+α for each 1 ≤ α ≤ p− 1.

Now let 1 ≤ j ≤ p− 1 with mkrj = 0, then nk+jRp−j = Mk and mk = nk+jsp−j

for some sp−j ∈ Rp−j . Therefore mk = nk+jsp−j = (mkdrj)sp−j = mk(rjsp−j)d =
(mkrj)sp−jd = 0, a contradiction. Thus the action is well-defined. Note that the
computation (for 1 ≤ j ≤ p − 1) shows that d commutes with all sp−j ∈ Rp−j on
Mk+j . To complete the proof we show that d commutes with Rα on Mk+j for any
α 6= p− j. By definition, d commutes with all of Rα on Mk for all 1 ≤ α ≤ p− 1.
First we prove that d commutes with R0 on Mk+j . For all r0 ∈ R0, rj ∈ Rj , and
d ∈ D

(mkrj)dr0 = (mkrjd)r0 = (mkd)(rjr0)

= mk(rjr0)d

= (mkrj)r0d,

so d commutes with R0 on Mk+j , and for all r′α ∈ Rα, rj ∈ Rj , and d ∈ D where
α 6= p− j we have

(mkrj)dr
′
α = (mkrjd)r

′
α = (mkd)(rjr

′
α)

= mk(rjr
′
α)d

= (mkrj)r
′
αd,

so also d commutes with all of Rα on Mk+j for any α 6= p − j, and hence D

commutes with R on M . Thus we can identify D with C0. ✷
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Following [10] we prefer to have the commuting Zp-ring act on the left and the
endomorphism Zp-ring act on the right. We do this by letting the opposite Zp-ring
of C (Cop) act on the left via

civk = (−1)ikvkci.

Let M be a Zp-module over a Zp-ring R, then the annihilator of M over R, which
is denoted by AnnRM , is AnnRM = {r ∈ R : Mr = 0}. One can easily check
that AnnRM is a Zp-ideal of R.

Definition 3.4. Let M be a Zp-module over a Zp-ring R, then M is a faithful
module over R if AnnRM = {0}.

The Zp-ring R is a (right) primitive if it has a faithful irreducible Zp-module.
If M is a faithful irreducible (right) Zp-module over R, we may consider M as
a left Zp-module over ∆ = EndRM , then ∆ ∼= Cop, where C is the commuting
Zp-ring of R on M . Now R is said to be dense on M if for every positive inte-
ger n and choice of v(1,i), v(2,i), · · · , v(n,i) ∈ Mi linearly independent over ∆ and
w(1,k), w(2,k), · · · , w(n,k) ∈ Mk there is an element r(p−1)i+k ∈ R(p−1)i+k such that
v(l,i)r(p−1)i+k = w(l,k) for all l = 1, 2, ..., n.

Lemma 3.5. Let R =
p−1
⊕

i=0

Ri be a primitive Zp-ring, let M =
p−1
⊕

i=0

Mi be a faithful

irreducible Zp-module over R, let ∆ = EndRM (action of ∆ on the left). Then for
any ∆-linearly independent elements v(1,i), v(2,i), · · · , v(n,i) ∈ Mi there is a homo-
geneous element r ∈ R such that v(1,i)r 6= 0, v(2,i)r = · · · = v(n,i)r = 0.

Proof: We prove it by induction on n, the case n = 1 is trivial. Assuming the
result is proven for n − 1, let J = {r ∈ R : v(3,i)r = · · · = v(n,i)r = 0} be
the right annihilator of v(3,i), ..., v(n,i). By induction hypothesis v(1,i)J 6= 0 and
v(2,i)J 6= 0, and by irreducibility of M , M = v(1,i)J = v(2,i)J . If there is an
homogeneous element r ∈ J with v(2,i)r = 0 6= v(1,i)r, we are done. Otherwise,
the map Ψ : M = v(2,i)J → Mv(1,i)J such that Ψ(v(2,i)r) = v(1,i)r for any r ∈ J
is well defined and belongs to ∆, so that Ψ = d for some homogeneous element
d ∈ ∆. Then (v(1,i) − dv(2,i))J = 0, so by induction hypothesis, v(1,i) − dv(2,i) ∈
∆v(3,i) + · · ·+∆v(n,i), a contradiction. ✷

Corollary 3.6. (DENSITY THEOREM)

Let R =
p−1
⊕

i=0

Ri be a primitive Zp-ring, let M =
p−1
⊕

i=0

Mi be a faithful irreducible Zp-

module over R, let ∆ = EndRM (action of ∆ on the left). Then for any ∆-linearly
independent elements v(1,i), v(2,i), · · · , v(n,i) ∈ Mi and for any elements

w(1,k), w(2,k), · · · , w(n,k) ∈ Mk

there is an element r(p−1)i+k ∈ R(p−1)i+k such that v(q,i)r(p−1)i+k = w(q,k) for all
q = 1, 2, ..., n.
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A (right) Zp-ideal is a (right) Zp-submodule of the Zp-ring R considered as
a (right) Zp-submodule over R. An associative Zp-ring is (right) Artinian if it
satisfies the descending condition on right Zp-ideals. Now, we have the following
result about Artinian simple associative Zp-rings.

Theorem 3.7. If A =
p−1
⊕

i=0

Ai is an artinian simple associative Zp-ring, then (as a

Zp-ring) A ∼= EndDV , where V is a finite dimensional Zp-space over an associative
Zp-algebra D.

Proof: Let I =
p−1
⊕

i=0

Ii be a nonzero minimal right Zp-ideal of A. By minimality, I

is an irreducible Zp-module of A, that is IA = I. Since A is simple, I is a faithful
Zp-module over A. Therefore A is a primitive Zp-ring with faithful irreducible
Zp-module M = I. M is a left Zp-module over D = Cop ∼= EndAM , where C is the
commuting Zp-ring of A on M . Thus by DENSITY THEOREM, A is isomorphic
to a dense Zp-subring of the Zp-ring EndDM . If M is infinite dimensional over
D0, then so must Mi for at least one i ∈ Zp. Let v(1,i), v(2,i), ..., v(n,i), ... be an

infinite sequence of linearly independent elements of Mi. For Vj =
j
∑

k=1

Dv(k,i) the

annihilators AnnVj =
p−1
⊕

k=0

AnnkVj , where AnnkVj = {bk ∈ Ak : Vjbk = 0}, form a

properly infinite descending chain of right Zp-ideals ofA, a contradiction. Therefore

dimD0
M is finite, say n, and, by density theorem, A ∼= EndDM =

p−1
⊕

i=0

EndiM . ✷

So by Theorem 3.7, if A is an artinian simple associative Zp-ring, then (as a
ring) A ∼= Mn(D), where D is an associative division Zp-algebra.

In the next theorem we show that any two faithful irreducible (right) Zp-modules
over a primitive Zp-ring R are isomorphic.

Theorem 3.8. Let R be a primitive Zp-ring having a minimal right Zp-ideal. Then
any two faithful irreducible (right) Zp-modules over R are isomorphic.

Proof: Let I be a minimal right Zp-ideal of R and let M be a faithful irreducible
Zp-module over R, then the faithfulness of M ensures that miI 6= {0} for some
mi ∈ Mi. Since miI is a nonzero Zp-submodule of the irreducible Zp-module M , it
must be all of M . Since the annihilator of mi in I is a right Zp-ideal of R properly
contained in I, it is {0} and the map b 7→ mib, b ∈ I, is a Zp-isomorphism over R
of I onto M . Thus every faithful irreducible Zp-module over R is isomorphic to I.

✷

Note that by [15, Theorem 4], if A ∼= Mn(D), then n and D are unique up to
isomorphism.
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We say that a Zp-ring R is semiprime if it has no nonzero nilpotent Zp-ideals, and
that it is prime if for any nonzero Zp-ideals I, J , the product IJ 6= {0}. Easy
computations imply the following lemma.

Lemma 3.9. Let R be a Zp-ring, and let i, j ∈ Zp. Then
(1) If R is a primitive, then R is a prime.
(2) If R is a prime with a minimal one sided Zp-ideal, then it is a primitive.
(3) R is semiprime if and only if aiRai 6= {0} for all 0 6= ai ∈ Ri.
(4) R is prime if and only if aiRbj 6= {0} for all 0 6= ai ∈ Ri, 0 6= bj ∈ Rj.

Now, we have the following result about primitive Zp-rings with a minimal one
sided Zp-ideal.

Theorem 3.10. Let R be a semiprime Zp-ring. Then
(i) If I is a minimal right Zp-ideal of R, then there is an idempotent e ∈ I0 such
that I = eR. Moreover, for any homogeneous element x ∈ I with xI 6= {0}, there
exists an idempotent e = e2 ∈ I0 such that I = eR and ex = xe = x.
(ii) If e is a nonzero idempotent element of R0 and eR = I is a minimal right Zp-
ideal of R, then eRe is a division Zp-ring, which is isomorphic to the Zp-algebra
∆ = EndRI (acting from the left).
(iii) If e is a nonzero idempotent element of R0 such that eRe is a division Zp-ring,
then eR is a minimal right Zp-ideal of R.
(iv) If a is a homogeneous element in R such that aR is a minimal right Zp-ideal
of R, then Ra is a minimal left Zp-ideal of R.

Proof: (i) Since R is semiprime I2 6= {0}, so by minimality I2 = I and there
is a nonzero homogeneous element x in I such that xI 6= {0}. Again, since I is
minimal xI = I, and hence there is an element e ∈ I0 such that x = xe. Take
J = {a ∈ I : xa = 0}. Then J is a right Zp-ideal of R strictly contained in I,
so J = {0}. Since e2 − e ∈ J , we conclude that e is a nonzero idempotent of I0,
and since 0 6= eI ⊆ I, the minimality of I forces I = eI, as desired. In particular
ey = y for any y ∈ I. That is I = eR.
(ii) Note that if x is an homogeneous element of R such that exe 6= 0, then 0 6=
exeR ⊆ eR so exeR = eR by minimality. Therefore there exists an homogeneous
element y ∈ R such that exey = e, so (exe)(eye) = e, which is the unity of the
Zp-algebra eRe. Therefore, any nonzero homogeneous element of eRe has a right
inverse. This is enough to insure that eRe is a division Zp-algebra. Besides, the
linear map eRe → EndR(I) given by exe 7→ λexe, where λexe : I → I is defined
by λexe(z) = exez for any z ∈ I, is easily shown to be a Zp-isomorphism, since
for any homogeneous element f in EndR(I), ea = f(e) = f(e2) = eae for some
homogeneous element a ∈ R, and so for any z = ez ∈ I, f(z) = f(ez) = f(e)z =
eaez = λeae(z). Note that this is valid even if R is not semiprime.
(iii) Suppose e = e2 ∈ R0 such that eRe is a division Zp-algebra, and let I be a
nonzero right Zp-ideal contained in eR. Let x be a nonzero homogeneous element
of I, so x = ex. Let y ∈ R such that exye 6= 0 (note that if exRe = {0}, then
(RexR)2 = {0}, contradicting the semiprimeness of R), since eRe is a division
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Zp-algebra, there is another homogeneous element z such that xyeze = exyeze =
(exye)(eze) = e. In particular, e ∈ xR and eR ⊆ xR ⊆ I, so I = eR. This shows
that eR is a minimal right Zp-ideal.
(iv) Suppose that a is an homogeneous element such that aR is a minimal right
Zp-ideal. As in (i), let e be an idempotent such that ae = ea = a and aR = eR.
By (ii) eRe is a division Zp-algebra, and by symmetry, item (iii) shows that Re is a
minimal left Zp-ideal. But R

2a 6= {0}, and Ra = (Re)a is a homomorphic image of
the irreducible left Zp-module Re, so it is irreducible too. That is, Ra is a minimal
left Zp-ideal. ✷

Corollary 3.11. Let R be a semiprime Zp-ring, and let a be a homogeneous el-
ement in R. Then aR is a minimal right Zp-ideal of R if and only if Ra is a
minimal left Zp-ideal of R.

A Zp-involution of a central simple associative Zp-algebra A is a graded additive
map ∗ : A → A such that

a∗∗ = a and (aαbβ)
∗ = (−1)αβb∗βa

∗
α ∀aα ∈ Aα, bβ ∈ Aβ .

In [5] we classified the properties of Zp-involution defined on primitive Zp-algebras
having a minimal one sided Zp-ideal.
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