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Operational Shifted Hybrid Gegenbauer Functions Method for Solving

Multi-term Time Fractional Differential Equations

Nasibeh Seyedi and Habibollah Saeedi

abstract: In this paper, we propose an efficient operational formulation of spec-
tral tau method for solving multi-term time fractional differential equations with
initial-boundary conditions. The shifted hybrid Gegenbauer functions(SHGFs) op-
erational matrices of Riemann-Liouville fractional integral and Caputo fractional
derivatives are presented. By using these operational matrices, the shifted hybrid
Gegenbauer functions tau method for both temporal and spatial discretization are
presented, which allow us to introduce an efficient spectral method for solving such
problems. Finally, numerical results show good deal with the theoretical analysis.
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1. Introduction

Many phenomena in fluid mechanics, physics and other sciences can be de-
scribed successfully by models using mathematical tools from fractional calculus
[2,4,7,19,28]. Theory of derivatives and integrals with fractional order and some ap-
plications are given in [20]. In this paper, the following multi-term time fractional
partial differential equation will be considered:

P (Dt)u(x, t) = κ
∂2u(x, t)

∂x2
+ f(x, t), 0 < x < L, t > 0, (1.1)
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with the following initial and boundary conditions:

u(x, 0) = φ1(x),
∂u(x, 0)

∂t
= φ2(x), (1.2)

u(0, t) = ρ1(t), u(L, t) = ρ2(t). (1.3)

where P (Dt)u(x, t) = (Dα
t +

∑m

j=0 djD
αj

t )u(x, t), with 1 < αm < · · · < α1 < α < 2,

dj ≥ 0, j = 0, 1, . . . ,m. D
αj

t is the Caputo fractional derivative operator of order αj

with respect to variable t and the functions φ1(x), φ2(x), ρ1(t) and ρ2(t) are given.
The multi-term fractional differential equations have been widely studied in rheol-
ogy, mechanical models, and in many other areas [28]. In [7] an analytical solu-
tion of multi-term time-space fractional advection diffusion equations with mixed
boundary conditions on a finite domain has been given. Atanackovic et.al. [2],
analyzed diffusion wave equation with two fractional derivatives of different order
on bounded and unbounded spatial domains. A finite difference scheme in time has
been proposed for solving this equation in [1]. Also authors in [19], have presented
a numerical solution of linear multi-term fractional differential equations by using
piecewise polynomial collocation methods.
Operational matrices are used in several areas of numerical analysis, they also hold
particular importance for solving different kinds of problems in various subjects
such as differential equations, integro-differential equations, ordinary and partial
fractional differential equations, optimal control problems and etc [16,17,18,22,23,
24]. The present method in this paper is based on shifted hybrid Gegenbauer
functions.

In this section SHGFs are introdued by using Gegenbauer polynomials together
with block pulse function(BPFs), then they were used to constract operational
matrix of fractional integration and were applied to solve the Eqs.(1.1-1.3).

2. Preliminaries

In this section, first some basic properties of fractional calculus theory are
recalled, then the shifted hybrid Gegenbauer function is introducted.

2.1. Fractional calculus

Definition 2.1. The Rimann-Liouville fractional integral of order α ≥ 0 of func-
tion u (x, t) with respect to variable t is defined as:

I
α
x u(x, t) =

{

1
Γ(α)

∫ x

0
u (ξ, t) (x− ξ)α−1

dξ, if α > 0,

u(x, t), if α = 0.
(2.1)

Definition 2.2. The Caputo fractional derivatives of order α are respectively given
as:

D
α
xu(x, t) =

1

Γ(n− α)

∫ x

0

u(n)(ξ, t)

(x− ξ)α−n+1
dξ, (2.2)

where n− 1 < α ≤ n, n ∈ N .
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The operator Dα
x satisfies the following properties:

1. Dν
x(c1u(x, t) ± c2w(x, t)) = c1D

νu(x, t) ± c2D
νw(x, t),

2. Dν
xI

ν
xu(x, t) = u(x, t),

3. IνxD
ν
xu(x, t) = u(x, t) −

∑⌈ν⌉−1
i=0 u(i)(0+, t)xi

i!
,

4. D
ν
xx

β =

{

0, β < ν,
Γ(β+1)

Γ(β+1−ν)
xβ−ν , β ≥ ν.

(2.3)

2.2. Shifted hybrid Gegenbauer functions

We denote the orthogonal set of SHGFs by Lhij(x), i = 1, 2, . . . , n, j = 0, 1, . . . ,m−
1 and define:

Lhij(x) =

{

Cλ
j (2n x

L
− 2i+ 1), L i−1

n
≤ x < L i

n
,

0, otherwise,
(2.4)

where Cλ
j (x) are the Gegenbauer polynomials which are defined in [−1, 1] by the

following recursive relation:
Cλ

0 (x) = 1, Cλ
1 (x) = 2λx,

Cλ
m(x) = 1

m
[2x(m+ λ− 1)Cλ

m−1(x) − (m+ 2λ− 2)Cλ
m−2(x)], m = 2, 3, . . . .

The set of {Cm(x) : m = 0, 1, ...} in Hilbert space L2[−1, 1] is a complete

orthogonal system with respect to the weight function ωλ(z) = (1 − z2)λ−
1
2 , i.e.:

∫ 1

−1

C
λ
j (z)Cλ

k (z)ωλ(z)dz = h
λ
kδjk, h

λ
k =

22λΓ2(λ+ 1
2
)Γ(k + 2λ)

(2k + 2λ)k!Γ2(2λ)
. (2.5)

Lemma 2.3. The set of SHGFs hij(x), is a complete orthogonal system in

L2
ωλ
L

[0, 1] := {u : [0, L] → R|
∫ L

0
u2(x)ωλ

L(x)dx < ∞} with respect to weight function,

ω
λ
L(x) = (1 − (2n x

L
− 2i+ 1)2)λ−

1
2 , i.e:

∫ 1

0
Lhij(x)Lhpq(x)ω

λ
Ldx =

{

Lπ2−2λΓ(j+2λ)

nj!(j+λ)Γ2(λ)
, j = q,

0, j 6= q.

Proof: By using the change of variables t = 2n x
L
−2i+1 and applying the orthogonal

property in (2.5), we will have:

∫ 1

0
Lhij(x)Lhpq(x)ω

λ
L(x)dx =

∫ L i
n

L
i−1
n

C
λ
j (2n

x

L
− 2i+ 1)Cλ

q (2n
x

L
− 2i+ 1)

× (1 − (2n
x

L
− 2i+ 1)2)λ−

1
2 dx

=
L

2n

∫ 1

−1

C
λ
j (t)Cλ

q (t)ω(t)dt

=

{

Lπ2−2λΓ(j+2λ)

nj!(j+λ)Γ2(λ)
, j = q,

0, j 6= q.

✷
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The function u(x) ∈ L2
ωλ
L

[0, L], can be estimated by a unique function in the

space, n,mG
λ
L, where:

n,mG
λ
L := span{Lh

λ
ij(x), i = 0, 1, . . . , n, j = 0, 1, . . . , m} (2.6)

as:

u(x) ≃
n
∑

i=1

m−1
∑

j=0

cijLhij(x) = c
TΦn,m(x), (2.7)

where:

cij =
〈u(x),Lhij(x)〉ωλ

L

〈Lhij(x), Lhij(x)〉ωλ
L

, i = 1, 2, . . . ,∞, j = 0, 1, . . . ,∞, (2.8)

c =[c10, . . . , c1,m−1, c20, . . . , c2,m−1, . . . , cn0, . . . , cn,m−1]
T , (2.9)

LΦn,m(x) =[Lh10(x), . . . ,L h1,m−1(x),L h20(x), . . . , (2.10)

Lh2,m−1(x), . . . ,L hn0(x), . . . ,L hn,m−1(x)].

Similarly, a function of two independent variables u(x, t) ∈ ω
λ
LL

2[0, L]×ω
λ
LL

2[0, T ]

can be expaned in terms of SHGFs as:

u(x, t) ≃

n
∑

i1=1

m−1
∑

j1=0

n
∑

i2=1

m−1
∑

j2=0

ki1j1i2j2Lhi1,j1(x)Thi2,j2(t) =L ΦT
n,m(x)KT Φn,m(t), (2.11)

where K = [ki1j1i2j2 ](nm)×(nm) is the coefficient matrix and:

ki1j1i2j2 =
〈〈u(x, t), Lhi1,j1(x)〉ωλ

L
, Thi2,j2(t)〉ωλ

L

〈Lhi1,j1(x), Lhi1,j1(x)〉ωλ
L
〈Thi2,j2(t)Thi2,j2(t)〉ωλ

L

,

i1, i2 = 1, 2, . . . , n, j1, j2 = 0, 1, . . . ,m− 1.

3. SHGFs operational matrix of fractional integration

In this section, the operational matrix of Riemann-Liouville fractional integra-
tion for SHGFs will be interoduced.

Theorem 3.1. If LΦn,m(x) be the SHGFs vector and α > 0, then IαLΦn,m(x) ≃

P
α
LΦn,m(x), where the (mn)×(mn)-matrix P

α = [Pp,q ] is called SHGFs operational

matrix of fractional integration of order α and:

Pp,q =

⌈ j
2
⌉

∑

r=0

j−2r
∑

s=0

Er,s,p,q (γ1 − γ2) , i = 1, 2, . . . , n, j = 0, 1, . . . ,m− 1, (3.1)

such that:
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Er,s,p,q :=
(−1)rΓ(λ+ j − r)2j−2r+2λ+sns+1q!(q + λ)Γ(λ)

r!(j − 2r − s)!Γ(s+ 1 + α)LπΓ(q + 2λ)
,

γ1 =

∫ b

a

(−1)j−2r−s(t−
i− 1

n
)s+α

C
λ
q (2n

x

L
− 2p+ 1)ωp(x),

γ2 =

∫ d

c

(t−
i

n
)s+α

C
λ
q (2n

x

L
− 2p+ 1)ωp(x),

a := max{
p− 1

n
,
i− 1

n
}, b := max{

p

n
,
i− 1

n
}, c := max{

p− 1

n
,
i

n
}, d := max{

p

n
,
i

n
}.

Proof: Suppose that hij(x) is the l-th element of the vector LΦn,m(x). By applying

the operator Iα, we have:

I
α
hij(x) =

1

Γ(α)

∫ x

0

(x− t)α−1
hij(t)dt

=
1

Γ(α)
{xα−1 ∗ hij(x)}.

By taking Laplace transform from both sides of the above equation, we will have:

L[Iαhij(x)] =
1

Γ(α)
L[xα−1]L[hij(x)]

=
1

sα
L[hij(x)],

=
1

sα
L

[

C
λ
j (2n

x

L
− 2i+ 1)

(

U(x− L
i− 1

n
) − U(x− L

i

n
)

)]

,

where U(x) is the unit step function. thus:

L[Iαhij(x)] =
1

sα
L[Cλ

j (
2n

L
x− 1)]e−

i−1
n

s −
1

sα
L[Cλ

j (
2n

L
x+ 1)]e−

i
n
s

=

⌈ j
2
⌉

∑

r=0

j−2r
∑

m=0

(−1)mΓ(λ+ j − r)2j−2r+mnm

Γ(λ)r!(j − 2r)!(j − 2r −m)!Lm

(

(−1)j−2r−me−
i−1
n

s

sα+m+1
−

e−
i
n
s

sα+m+1

)

.

Now, by taking the inverse Laplace transform, we get:

I
α
hij(x) =

⌈ j
2
⌉

∑

r=0

j−2r
∑

m=0

[
(−1)mΓ(λ+ j − r)2j−2r+mnm

Γ(λ)r!(j − 2r)!(j − 2r −m)!Γ(m+ α+ 1)Lm

×

(

(−1)j−2r+m(x−
i− 1

n
)m+α

U(x− L
i− 1

n
) − (x−

i

n
)m+α

U(x− L
i

n
)

)

].
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However, for i = 1, . . . , n and j = 0, . . . ,m− 1 by approximating Iαhij(x), via

SHGFs, we have:

I
α
hij(x) ≃

n
∑

p=1

m−1
∑

q=0

Pp,qhp,q(x), (3.2)

so that:

Pp,q =
〈Iαhij(x), hp,q(x)〉ωp(x)

〈hp,q(x), hp,q(x)〉ωp(x)

=

∫ 1

0
Cλ

q (2n x
L
− 2p+ 1)

(

U(x− L p−1
n

) − U(x− L p

n
)
)

Iαhij(x)ωp(x)

Lπ2−2λΓ(q+2λ)

nq!(q+2λ)Γ2(λ)

=

⌈ j
2
⌉

∑

r=0

j−2r
∑

m=0

Er,s,p,q

(
∫ b

a

f1(x)dx−

∫ d

c

f2(x)dx

)

.

✷

4. Description of the method

Consider Eq.(1.1). Suppose that:

f(x, t) ≃ LΦT
n,m(x)F TΦn,m(t), (4.1)

and:
∂2u(x, t)

∂x2
≃ LΦT

n,m(x)OT Φn,m(t), (4.2)

where ΦL,m(x) and ΦT,m(t) are SHGFs in terms of x and t, respectively. F

and O are known and unknown coefficients matrices. By applying the operator
Iαx on (4.2) and using property (2.3), we get:

u(x, t) − u(0, t) −
∂u(0, t)

∂x
x ≃ LΦT

n,m(x)(xP2)TOT Φn,m(t). (4.3)

Utilizing the boundary conditions (1.3), we have:

u(x, t) ≃LΦ
T
n,m(x)(xP2)

TOTΦn,m(t) + p1(t)

+
x

L

(

p1(t)− p2(t)− LΦ
T
n,m(L)(xP2)

TOTΦn,m(t)
)

. (4.4)

If we assume that:

p1(t)
x

L
(p1(t) − p2(t)) ≃ LΦT

n,m(x)ST Φn,m(t),
x

L
= LΦT

n,m(x)X, (4.5)

then, Eq.(4.4) can be rewritten as:

u(x, t) ≃ LΦT
n,m(x)

(

P
T
x2O + S −XLΦT

n,m(L)P T
x2O

)

T Φn,m(t). (4.6)
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By substituting Eqs.(4.1),(4.2) and Eq.(4.6) into Eq.(1.1) and applying the
operator Iαt on it, we get:

u(x, t) − u(x, 0) −
∂u(x, 0)

∂t
t+

n
∑

i=1

diI
α−αi

(

u(x, t) − u(x, 0) −
∂u(x, 0)

∂t
t

)

≃ I
α(LΦT

n,m(x)OT Φn,m(t)) + I
α(LΦT

n,m(x)F T Φn,m(t)). (4.7)

Using initial condition (1.2) and substituting Eq.(4.6) into Eq.(4.7), we have:

LΦT
n,m(x)

(

P
T
x2O + S −XLΦT

n,m(L)P T
x2O

)

T Φn,m(t)

≃L ΦT
n,m(x)

(

OPα + FPα −

n
∑

i=1

diOPα−αi
+G

)

T Φn,m(t), (4.8)

where G is the coefficients matrix of the function g(x, t), which is defined as
follows:

g(x, t) = φL,m(x) + ψ(x)t−

n
∑

i=1

di

(

φL,m(x)
tα−αi

Γ(α− αi + 1)
+ ψ(x)

tα−αi+1

Γ(α− αi + +2)

)

.

(4.9)

By applying the orthogonal property of SHGFs, we achieve the following linear
matrix system of equations:

P
T
x2O+S−XΦT

L,m(L)P T
x2O−OPα−FPα+

n
∑

i=1

di(P
T
x2O+S−XΦT

L,m(L)P T
x2O)Pα−αi

−G = 0.

(4.10)

Actually, equation (4.10) is a Sylvester system as AO+OB+C = 0 , where A,

B and C are as the following:

A = P T
x2 −XΦT (L)P T

x2,

B = −Pα(I +
∑n

i=1 Pα−αi
)−1,

C =
(
∑n

i=1 SPα−αi
− FPα −G

) (

I +
∑n

i=1 Pα−αi

)−1
.

Some algorithms for the numerical solution of Sylvester equations can be find in
[10,11,12].

5. Error analysis

In this section, an upper bound of the shifted hybrid Gegenbauer approxima-
tion will be given. Also, by using the presented equations in previous section, we
introduce a process for estimating the error function when the method is used to
solve the main problem,(1.1)-(1.3).
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5.1. Error bound

suppose that:

⊓λ
m,n := span{Lhi1,j1(x)Thi2,j2(t), i1, 12 = 1, 2, . . . , n, j1, j2 = 0, 1, . . . ,m− 1},

We assume that um,n(x, t) ∈ ⊓λ
m,n is the best approximation of u(x, t), i.e:

∀vm,n(x, t) ∈ ⊓λ
m,n, ‖u(x, t) − um,n(x, t)‖∞ ≤ ‖u(x, t) − vm,n(x, t)‖∞. (5.1)

If vm,n(x, t) denotes the interpolating polynomial for u(x, t) at points (xr, ts)
where xr are the roots of Lhi1,m(x), while ts are the roots of Lhi2,m(t), then:

u(x, t) − vm,n(x, t) =
∂mu(η, t)

∂xm(m)!

m−1∏

r=0

(x − xi) +
∂mu(x, µ)

∂xm(m)!

m−1∏

s=0

(t − tj)

−
∂2mu(η′, µ′)

∂xm∂tm(m)!(m)!

m−1∏

r=0

(x − xr)

m−1∏

s=0

(t − ts),

where η, η′ ∈ [0, L] and µ, µ′ ∈ [0, T ], and we obtain:

‖u(x, t) − vm,n(x, t)‖∞ ≤ max(x,t)∈I |
∂mu(η, t)

∂xm
|
‖
∏m−1

r=0 (x − xr)‖∞

(m)!

+ max(x,t)∈I |
∂mu(x, µ)

∂xm
|
‖
∏m−1

s=0 (t − ts)‖∞

(m)!

+ max(x,t)∈I |
∂2mu(η′, µ′)

∂xm∂tm
|
‖
∏m−1

r=0 (x − xr)‖∞‖
∏m−1

s=0 (t − ts)‖∞

m!m!
.

Since u(x, t) is a smooth function on u(x, t) ∈ [0, L]× [0, T ], then there exist the
constants c1, c2 and c3, such that:

max(x,t)∈I |
∂mu(η, t)

∂xm
| ≤ c1, max(x,t)∈I |

∂mu(x, µ)

∂xm
| ≤ c2, max(x,t)∈I |

∂2mu(η′, µ′)

∂xm∂tm
| ≤ c3.

(5.2)
Now, Let x := zL, then z ∈ [0, L] and we get:

minxr∈[0,L]max0≤x≤L|
m
∏

r=0

(x− xi)| = minzi∈[0,1]max0≤z≤1|
m
∏

r=0

 L(z − zr)|

= L
m
minzi∈[0,1]max0≤z≤1|

m−1
∏

r=0

(z − zr)|

≤ L
m
, (5.3)

where zis are the roots of hλ
i1,m

(z). Then by using Eqs.(5.2),(5.3), we have:

‖u(x, t) − vm,n(x, t)‖∞ ≤ c1

(

Lm

m!

)

+ c2

(

Tm

m!

)

+ c3

(

LmTm

(m!)2

)

.
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5.2. Estimation of the error function

Suppos that the function um,n(x, t) ∈ ⊓λ
m,n is the approximate solution of the

main problem (1.1)-(1.3), which is obtained by using the presented method. First,
we name:

em,n(x, t) := u(x, t) − um,n(x, t), (5.4)

as the error function where u(x, t) is the exact solution of Eq.(1.1). Hence,
um,n(x, t) satisfies the following problem:

P (Dt)um,n(x, t) − k
∂2um,n(x, t)

∂x2
= f(x, t) +Rm,n(x, t), (5.5)

with the following initial and boundary conditions:

um,n(x, 0) ≃ φ(x),
∂um,n(x, t)

∂t
|t=0 ≃ ψ(x), um,n(0, t) ≃ p1(t), um,n(L, t) ≃ p2(t),

(5.6)

Here, Rm,n(x, t) is the residual function which is obtained by substituting the
approximate solution um,n(x, t) into Eq.(1.1).

Now, let us subtract Eqs.(1.1),(1.2) from Eqs.(5.5),(5.6), respectively. Hence,
we obtain the error problem as follows:

P (Dt)em,n(x, t) − k
∂2em,n(x, t)

∂x2
= −Rm,n(x, t), (5.7)

with the homogeneous conditions:

em,n(x, 0) =
∂em,n(x, t)

∂t
|t=0 = 0, em,n(0, t) = em,n(L, t) = 0. (5.8)

Finally, we solve the error problem Eqs.(5.7),(5.8) in the same way as presented in Section
(4) and thus we will find the following approximation:

ǫm,n(x, t) =
n
∑

i1=1

m−1
∑

j1=0

n
∑

i2=1

m−1
∑

j2=0

a
∗
i1,j1,i2,j2Lhi1,j1(x)Thi2,j2(t) (5.9)

= H
T (x)A∗

H(t), (5.10)

for the error function em,n(x, t). We note that if the exact solution of the problem (1.1)
is unknown, then the maximum absolute error can be estimated approximately by using:

Em,n(x, t) = max{ǫm,n(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ T}. (5.11)

6. Numerical results and comparisons

In this section we examine the method described in the previous sections by some
examples.

Example1. Consider the following time fractional partial differential equation:

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
+

(

2t2−α

Γ(3 − α)

)

x
2 − 2t2, 0 < x < 1, 0 < t < 1,
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u(0, t) = 0, u(1, t) = t2 & u(x, 0) = 0, ut(x, 0) = 0,

where u(x, t) = x2t2 is the exact solution, and 1 ≤ α < 2 and β = 2. The approximate
solutions are obtained β, m = 4, n = 1 and λ = 0.5 for a fixed α in a specified time.
Figure 2 shows the error for m = 4, n = 1 and λ = 0.5 for α = 1.5 and β = 2. Table 1
shows the error in t = 0.2. Figure 1 shows the approximate solutions at moment t = 0.2
for β = 2, β = 1.8 and β = 1.4 that m = 4, n = 1 and λ = 0.5. Actully, if β −→ 2,
then we get closer to the exact solution.

x error error error EOC

x β = 1.4 β = 1.8 β = 2 β = 2
0 0.5e-3 0.3e-3 -0.090e-10 18.3466
0.1 0.5e-3 1e-3 0.141e-10 18.0228
0.2 1.1e-3 0.6e-3 0.288e-10 17.5076
0.3 0.9e-3 0.5e-3 0.364e-10 17.3386
0.4 0.9e-3 0.4e-3 0.382e-10 17.3618
0.5 0.6e-3 0.2e-3 0.355e-10 17.3567
0.6 0.2e-3 -0.0e-3 0.296e-10 17.4878
0.7 -0.3e-3 -0.2e-3 0.218e-10 17.7084
0.8 -0.7e-3 -0.2e-3 0.134e-10 17.0595
0.9 -0.6e-3 -0.2e-3 0.057e-10 18.6761

Table 1: The eror function for m = 4, n = 1 and different β in example 1.

Therefore EOC in the table1 is the estimated order of convergence such that
EOC = log |e|

log 1
M

, we expect that e ∝ ( 1
M

)r, so r = log |e|

log 1
M

.

Figure 1: Approximate solution for m = 4, n = 1 and α = 1.5 in ex. 1.
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Figure 2: The eror function for m = 4, n = 1 and α = 1.4 in ex. 1.

Example2. Consider the following time fractional partial differential equation:

∂αu(x, t)

∂tα
+
∂α1u(x, t)

∂tα1
=
∂2u(x, t)

∂x2
+ f(x, t), 0 ≤ t, x ≤ 1,

u(x, 0) = 0, ∂u(x,0)
∂t

= 0 , u(0, t) = 0, u(1, t) = 0,
Such that u(x, t) = sin(πx)t3 is the exact solution, where 1 ≤ α < 2 and f(x, t) is as
follows:

f(x, t) =

(

6

Γ(4 − α)
t
3−α +

6

Γ(4 − α1)
t
3−α1

)

sin(πx) + π
2
t
3
sin(πx).

The procedure for α = 1.5, λ = 0.5 presents the error function value at moment t = 0.2
for m = 4 and different n. The results show that the larger n is the smaller error we
have, so we get closer to the exact solution.

Figure 3: The error function for m = 4, n = 1 in moment t = 0.2 in ex.2.
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Figure 4: The error function for m = 4, n = 2 in moment t = 0.2 in ex.2.

Figure 5: The error function for m = 4, n = 4 in moment t = 0.2 in ex.2.

Figure 6: The error function for m = 4, n = 8 in moment t = 0.2 in ex.2.
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