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Convergence of Approximate Solution of Mixed Hammerstein Type

Integral Equations

Monireh Nosrati Sahlan

abstract: In the present paper, a computational method for solving nonlinear
Volterra-Fredholm Hammerstein integral equations is proposed by using compactly
supported semiorthogonal cubic B-spline wavelets as basis functions. Dual functions
and Operational matrices of B-spline wavelets via Galerkin method are utilized to
reduce the computation of integral equations to some algebraic system, where in the
Galerkin method dual of B-spline wavelets are applied as weighting functions. The
method is computationally attractive, and applications are demonstrated through
illustrative examples.
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1. Introduction

The past two decades have been witnessing a strong interest among physicists,
engineers and mathematicians for the theory and numerical modeling of integral
equations. These equations are solved analytically; for example in [1] and the ref-
erences therein. Although proving existence and uniqueness of solution of integral
equation has been done lots of researches [2]- [5], but analytical solutions for those
often are not available. Nonlinear integral equations have been studied in relation
to physics, vehicular traffic, biology, the theory of optimal control, economics, etc.
Several numerical methods for approximating the solution of mixed Volterra-Fredholm
Hammerstein integral equations are known. In [6] a direct method based on new
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basis functions, derived from Block-Pulse functions, is presented for solving non-
linear type of these equations. Two dimensional mixed Volterra-Fredholm integral
equations of Urysohn type are solved by using some meshless methods in [7], and
variational iteration method in [8]. Also the numerical solution of Hammerstein
integral equations of mixed type by using Sinc-collocation method was introduced
in [9]. The methods in [10]- [13] transform a given integral equation into a sys-
tem of nonlinear equations, which has to be solved with some kind of an iterative
method.
Consider the second kind nonlinear Fredholm-Volterra-Hammerstein integral equa-
tion of the form

y(x) = f(x) +

∫ 1

0

K1(x, t)g1(t, y(t))dt +

∫ x

0

K2(x, t)g2(t, y(t))dt, (1.1)

0 ≤ x, t ≤ 1,

where f,K1 and K2 are known L2 functions, with g1(t, y(t)) and g2(t, y(t)) nonlin-
ear in y, the unknown function that to be determined.
In this paper, we use the semiorthogonal cubic B-spline wavelets for solving this
class of integral equations. Our method consists of reducing the given mixed inte-
gral equation to a set of algebraic equations by expanding the unknown function
by B-spline wavelets with unknown coefficients. Operational matrices via Galerkin
method are utilized to evaluate the unknown coefficients. Because of semiorthogo-
nality, having compact support and vanishing moments properties of these wavelets,
the operational matrices are very sparse.
The structure of this paper is arranged as follows. The main problem and brief his-
tory of some presented methods are expressed in section 1. Section 2 is devoted to
definition of cubic B-spline wavelets on bounded interval, function approximation
by using these wavelets and dual of cubic B-spline scaling functions and wavelets.
In section 3, the numerical method for solving Volterra-Fredholm Hammerstein
integral equation is purposed. In section 4 convergence and error analysis of the
method are discussed. In section 5, we report our numerical founds and compare
them with some other methods in solving these integral equations, and section 6
contains our conclusion.

2. Cubic B-spline scaling and wavelet functions

The general theory and basic concepts of the wavelet theory and MRA is given
in [14]- [19]. There are several ways to define B-splines. Typically, the m−th order
B-splines ϕm(t) is defined recursively by convolution

ϕ1(t) = χ[0,1](t), (2.1)

ϕm(t) =

∫ ∞

−∞

ϕm−1(t− x)ϕ1(x)dx =

∫ 1

0

ϕm−1(t− x)dx. (2.2)

Another recursive relation for B-spline scaling functions of orderm ≥ 2 is as follows

ϕm(t) =
t

m− 1
ϕm−1(t) +

m− t

m− 1
ϕm−1(t− 1), (2.3)
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and supp ϕm = [0,m]. Cubic B-Spline ϕ4(x) is derived from the recurrence (2.1)
and (2.2) as the case of m = 4 for general B-splines as follows [11]

ϕ4(x) =
1

6





x3 x ∈ [0, 1)
−3x3 + 12x2 − 12x+ 4 x ∈ [1, 2)
3x3 − 24x2 + 60x− 44 x ∈ [2, 3)
(4 − x)3 x ∈ [3, 4)
0 otherwise,

or in the other form

ϕ4(x) =

(
1

6

4∑

k=0

(
4
k

)
(−1)k(x− k)3+

)
χ[0,4](x), (2.4)

where

xn+ =

{
xn , x > 0
0 , x ≤ 0.

and its two-scale dilation equation defined as follows

ϕ4(x) =

4∑

k=0

1

8

(
4
k

)
ϕ4(2x− k).

Scaling functions can be used to expand any function in L2(R). These functions
are defined on the entire real lines, so that they could be outside of the domain of
the problem. The common strategy is to use as many translates as possible of the
generators supported inside the interval [0, 1] and construct boundary functions for
those generators that overlap the interval end. The construction will be done on a
minimal level J which is chosen such that the boundary functions on the right and
on the left do not overlap. In that way both ends of the interval can be treated
separately. In our setting this is satisfied for J ≥ 3.

Boundary adaptation

• Left boundary cubic B-spline scaling functions:
We define the boundary near functions at the left boundary by

φ3,k(x) = ϕ4(8x− k)χ[0,1](x), k = −3,−2,−1, (2.5)

and for other levels of J , we have

φJ,k(x) = ϕ4(2
Jx− k)χ[0,1](x), k = −3,−2,−1, J = 4, 5, . . . . (2.6)

• Right boundary cubic B-spline scaling functions:
For the right end of the interval, note that, by symmetry we have the following
relations

φ3,5(x) = φ3,−1(1− x), (2.7)
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φ3,6(x) = φ3,−2(1− x), (2.8)

φ3,7(x) = φ3,−3(1− x), (2.9)

and for other levels of J , we have

φJ,2J−k−3(x) = φ3,k(2
Jx− k), k = −3,−2,−1, J = 4, 5, . . . . (2.10)

Interior scalings

Five interior cubic B-spline scaling functions are chosen as

φ3,k(x) = ϕ4(8x− k)χ[0,1](x), k = 0, 1, 2, 3, 4, (2.11)

and for other levels of J , we get

φJ,k(x) = ϕ4(2
Jx− k)χ[0,1](x), k = 0, 1, ..., 2J − 4, J = 4, 5, . . . . (2.12)
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Figure 1: Inner and boundary cubic B-spline scaling functions

Two scale delation equation for cubic B-spline wavelet is given by:

ψ4(x) =

10∑

k=0

(−1)k

8

4∑

l=0

(
4
l

)
ϕ8(k − l + 1)ϕ4(2x− k). (2.13)

Other inner and boundary wavelets are made similarly [20]. Figure 3 is helpful to
get a geometric understanding of inner and boundary cubic B-spline wavelets.
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Figure 2: Cubic B-spline inner and boundary wavelets.
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2.1. Function approximation

A function f(x) defined over [0, 1] may be approximated by cubic B-spline
wavelets as

f(x) =

2j0−1∑

i=−3

cj0,iφj0,i(x) +

∞∑

j=j0

2j−4∑

k=−3

dj,kψj,k(x), (2.14)

where φj0,i
and ψj,k are scaling and wavelets functions, respectively. If the infinite

series in equation (2.14) is truncated, then it can be written as

f(x) ≃

2j0−1∑

i=−3

cj0,iφj0,i
(x) +

ju∑

j=j0

2j−4∑

k=−3

dj,kψj,k(x) = CTΥ(x), (2.15)

where C and Υ are 2(ju+1) + 3 column vectors given by

C =
(
cj0,−3, ..., cj0,2j0−1, dj0,−3, ..., dj0,2j0−4, ..., dju,−3, ..., dju,2ju−4

)T
, (2.16)

Υ =
(
φj0,−3, ..., φj0,2j0−1, ψj0,−3, ..., ψj0,2j0−4, ..., ψju,−3, ..., ψju,2ju−4

)T
, (2.17)

with

cj0,i =

∫ 1

0

f(x)φ̃j0,i
(x)dx , i = −3, ..., 2j0 − 1,

dj,k =

∫ 1

0

f(x)ψ̃j,k(x)dx , j = j0, ..., ju , k = −3, ..., 2ju − 4,

and ϕ̃j0,i
and ψ̃j,k are dual functions of ϕj0,i

, i = −3, ..., 2j0 − 1 and ψj,k, j =

j0, ..., ju, k = −3, ..., 2j − 4, respectively. These can be obtained by linear combi-

nations of ϕ
(3)
j0,i

and ψj,k. Let

φ(x) =
(
φj0,−3(x), φj0,−2(x), ..., φj0,7(x)

)T
, (2.18)

ψ(x) =
(
ψ3,−3(x), ..., ψ3,4(x), ..., ψ

()
ju,2ju−4(x)

)T
. (2.19)

Using equations (2.18)-(2.19) we get

∫ 1

0

ϕ(x)ϕT (x)dx = P1, (2.20)

where
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10

11

12

13

14

15

where

P1 =





































1
2016

43
13440

1
672

1
40320 0 0 0 0 0 0 0

43
13440

151
5040

59
2240

1
336

1
40320 0 0 0 0 0 0

1
672

59
2240

599
10080

397
13440

1
336

1
40320 0 0 0 0 0

1
40320

1
336

397
13440

151
2520

397
13440

1
336

1
40320 0 0 0 0

0 1
40320

1
336

397
13440

151
2520

397
13440

1
336

1
40320 0 0 0

0 0 1
40320

1
336

397
13440

151
2520

397
13440

1
336

1
40320 0 0

0 0 0 1
40320

1
336

397
13440

151
2520

397
13440

1
336

1
40320 0

0 0 0 0 1
40320

1
336

397
13440

151
2520

397
13440

1
336

1
40320

0 0 0 0 0 1
40320

1
336

397
13440

599
10800

59
2240

1
672

0 0 0 0 0 0 1
40320

1
336

59
2240

151
5040

43
13440

0 0 0 0 0 0 0 1
40320

1
672

43
13440

1
2016





































,

similarly for cubic B-spline wavelets, product matrix is:

dx
16 16

(2.21)

where and are 11 11 and (2 +1 8) (2 +1 8) matrices, respectively.
For = 3, is as follows

402
100000

14
10000

59
100000 100000 0 0 0 0

14
10000

52
10000

14
10000

59
100000 100000 0 0 0

59
100000

14
10000

52
10000

14
10000

59
100000 100000 0 0

100000
59

100000
14

10000
52

10000
15

10000
59

100000 100000

100000
59

100000
15

10000
52

10000
14

10000
59

100000 100000
0 0 100000

59
100000

14
10000

52
10000

14
10000

59
100000

0 0 0 100000
59

100000
14

10000
52

10000
14

10000
0 0 0 0 100000

59
100000

14
10000

402
100000

In greyscale plot of matrix, a darker color on an element indicates a larger magni-
tude. As is shown in the Figure 3, the product matrix of wavelet functions is very
sparse because of semiorthogonality, compact support properties of cubic B-spline
wavelet functions.
Suppose ˜ ) and ) are the dual functions of ) and ), respectively, given
by

) = [˜
(3) (3)

, ...,
(3)

)] (2.22)

) = [
(3)

, ...,
(3)

, ..., )] (2.23)

Using (2.18)-(2.23) we get

dx 11 dx +1

Figure 3: Inner and boundary cubic B-spline scaling functions

similarly for cubic B-spline wavelets, product matrix is:

∫ 1

0

ψ(x)ψT (x)dx = P2 =




H8×8
1
2H16×16

. . .
1

2ju−3H2ju×2ju


 , (2.21)

where P1 and P2 are 11× 11 and (2ju+1 − 8)× (2ju+1 − 8) matrices, respectively.
For ju = 3, H8×8 is as follows

H8×8 =




402
100000

14
10000

−59
100000

−8
100000 0 0 0 0

14
10000

52
10000

14
10000

−59
100000

−8
100000 0 0 0

−59
100000

14
10000

52
10000

14
10000

−59
100000

−8
100000 0 0

−8
100000

−59
100000

14
10000

52
10000

15
10000

−59
100000

−8
100000 0

0 −8
100000

−59
100000

15
10000

52
10000

14
10000

−59
100000

−8
100000

0 0 −8
100000

−59
100000

14
10000

52
10000

14
10000

−59
100000

0 0 0 −8
100000

−59
100000

14
10000

52
10000

14
10000

0 0 0 0 −8
100000

−59
100000

14
10000

402
100000




1 5 10 16

1

5

10

16

1 5 10 16

1

5

10
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Figure 4: Graylevel matrix of the H16×16
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In greyscale plot of matrix, a darker color on an element indicates a larger
magnitude. As is shown in the Figure 3, the product matrix of wavelet functions
is very sparse because of semiorthogonality, compact support properties of cubic
B-spline wavelet functions.
Suppose ϕ̃(x) and ψ̃(x) are the dual functions of ϕ(x) and ψ(x), respectively, given
by

φ̃(x) = [φ̃
(3)

4,−3(x), φ̃
(3)

4,−2(x), ..., φ̃
(3)

4,7(x)]
T , (2.22)

ψ̃(x) = [ψ̃
(3)

4,−3(x), ..., ψ̃
(3)

4,4(x), ..., ψ̃
(ju)

4,2ju−4(x)]
T . (2.23)

Using (2.18)-(2.23) we get

∫ 1

0

ϕ̃(x)ϕT (x)dx = I11,

∫ 1

0

ψ̃(x)ψT (x)dx = I2ju+1−8.

where I11 and I2ju+1−8 are 11× 11 and (2ju+1 − 8)× (2ju+1 − 8) identity matrices,
respectively.
Thus we get

ϕ̃ = P−1
1 ϕ, ψ̃ = P−1

2 ψ.

3. Wavelet Galerkin Method for solving mixed integral equations

In this section, we solve the integral equation of the form (1) by using opera-
tional matrix of cubic B-spline wavelets. The unknown functions in equation (1.1)
can be expanded in term of the selected scaling and wavelet functions as equation
(2.15)

y(x) = CTΥ(x), (3.1)

g1(x, y(x)) = Z1(x) = AT
1 Υ(x), (3.2)

g2(x, y(x)) = Z2(x) = AT
2 Υ(x), (3.3)

where Υ(x) is defined in (2.17) and C,A1 and A2 are (2
ju+1+3)×1 unknown vectors

defined similarly C in (2.16). The known functions in equation (1.1), f(x),K1(x, t)

and K2(x, t), can be expanded by B-spline dual wavelets Υ̃ given by

Υ̃ =
(
ϕ̃
(3)
j0,−3, ..., ϕ̃

(3)

j0,2j0−1
, ψ̃j0,−3, ..., ψ̃j0,2j0−4, ..., ψ̃ju,−3, ..., ψ̃ju,2ju−4

)T
, (3.4)

that is
f(x) = DT Υ̃(x), (3.5)

K1(x, t) = Υ̃T (t)E1Υ̃(x), (3.6)

K2(x, t) = Υ̃T (t)E2Υ̃(x), (3.7)

where

El =

(∫ 1

0

(∫ 1

0

Kl(x, t)Υi(t)dt

)
Υj(x)dx

)

i,j

,
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l = 1, 2, i, j = 1, 2, ..., 2ju+1 + 3,

and Υi is the i − th element of the column vector Υ. Using equations (3.2)-(3.3)
and (3.6)-(3.7) we get

∫ 1

0

K1(x, t)g1(t, y(t))dt =

∫ 1

0

AT
1 Υ(t)Υ̃T (t)E1Υ̃(x)dt = AT

1 E1Υ̃(x), (3.8)

∫ 1

0

K2(x, t)g2(t, y(t))dt =

∫ x

0

AT
2 Υ(t)Υ̃T (t)E2Υ̃(x)dt = AT

2 PxE2Υ̃(x), (3.9)

and Px is functional matrix defined as

Px =

∫ x

0

Υ(t)Υ̃T (t)dt

By substituting (3.1), (3.5) and (3.8)-(3.9) in equation (1.1), we have

CTΥ(x) = DT Υ̃(x) +AT
1 E1Υ̃(x) +AT

2 PxE2Υ̃(x), (3.10)

by multiplying (3.10) by ΥT (x) and integrating from 0 to 1, we get

CT

∫ 1

0

Υ(x)ΥT (x)dx = DT

∫ 1

0

ΥT (x)Υ̃(x)dx +AT
1 E1

∫ 1

0

ΥT (x)Υ̃(x)dx

+AT
2

∫ 1

0

ΥT (x)PxE2Υ̃(x)dx, (3.11)

therefore
CTP = DT +AT

1 E1 +AT
2 Λ, (3.12)

in which P is a (2ju+1 + 3)× (2ju+1 + 3) square matrix given by

P =

(
P1

P2

)
,

where P1 and P2 are defined in equations (2.20)-(2.21), and

Λ =

∫ 1

0

ΥT (x)PxE2Υ̃(x)dx.

To find the solution y(x), we first collocate the following equations

g1(x,C
TΥ(x)) = AT

1 Υ(x), (3.13)

g2(x,C
TΥ(x)) = AT

2 Υ(x), (3.14)

in the collocation points

xm =
m

2(ju+1) + 3
, m = 1, 2, ..., 2(ju+1) + 3,

equation (3.12) generates a set of 2 × (2ju+1 + 3) algebraic equations. The total
number of unknowns for vectors C,A1 and A2 in equation (3.12) is 3× (2ju+1+3).
These can be obtained by using equations (3.13) and (3.14).
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4. Convergence and error estimate

In this section, we discuss about convergence and error bounds of introduced
method and by recalling some relevant theorems, we prove the main theorem of
this paper.

Theorem 4.1. ( [11]) We assume that f ∈ C4[0, 1] is represented by cubic B-spline
wavelets as equation (2.15), where ψ has 4 vanishing moments, then

|dj,k| ≤ αβ
2−5j

4!
, (4.1)

where α = max |f (4)(t)|t∈[0,1] and β =
∫ 1

0 |x4ψ̃4(x)|dx.

Theorem 4.2. ( [11]) Consider the previous theorem assume that ej(x) be error
of approximation in Vj , then

|ej(x)| = O(2−4j).

Thus, order of error depend on the level j. Obviously, for larger level of j, the
error of approximation will be smaller.

Theorem 4.3. ( [21]- [22]) For the m−th order B-spline wavelet the approximation
error decreases with the m−th power of the scale 2j,

‖f − Pjf‖ ≤ C2−jm‖f (m)‖.

Specifically we can derive the following asymptotic relation [23],

lim
j→∞

‖f − Pjf‖ = Cm2−jm‖f (m)‖,

where the constant Cm is the same for all spline wavelet transforms of a given order
m, and is given by

Cm =

√
B2m

(2m)!
.

where B2m is Bernouilli’s number of order 2m.

In the above theorem, ‖f‖ defined as

‖f‖ =

(∫ 1

0

f2(x)dx

) 1
2

.

Theorem 4.4. Assume K1,K2 ∈ L2 in two dimensional rectangle [0, 1] × [0, 1]
and g1, g2 ∈ C ([0, 1]× [0, 1]). If y and yj are the exact and approximate solution
(obtained by m−order B-spline wavelet) of equation (1.1), respectively, then

‖y(x)− yj(x)‖ ≤ B2−jm‖y(m)‖.
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Proof: From equation (1.1) we get

‖y(x)− yj(x)‖ ≤

∥∥∥∥
∫ 1

0

K1(x, t) (g1(t, y(t))− g1(t, Pjy(t))) dt

∥∥∥∥

+

∥∥∥∥
∫ x

0

K2(x, t) (g2(t, y(t))− g2(t, Pjy(t))) dt

∥∥∥∥ , (4.2)

by Cauchy Schwartz inequality the first part of right hand integral can be written
as
∥∥∥∥
∫ 1

0

K1(x, t) (g1(t, y(t))− g1(t, Pjy(t))) dt

∥∥∥∥ ≤

M1

(∫ 1

0

(g1(t, y(t))− g1(t, Pjy(t)))
2
dt

) 1
2

, (4.3)

where (∫ 1

0

(K1(x, t))
2
dt

) 1
2

≤M1,

on the other hand by the mean value theorem we can write

g1(t, y)− g1(t, Pjy) ≤ A1|y(t)− Pjy(t)|, (4.4)

where
A1 = sup{|g12(t, s1(t))|, 0 ≤ t ≤ 1},

and g12 is the derivative of g1 respect to the second variable, also

∫ x

0

K2(x, t) (g2(t, y(t)) − g2(t, Pjy(t))) dt

≤

∫ x

0

|K2(x, t)|.|g2(t, y(t))− g2(t, Pjy(t))|dt

≤M2

∫ x

0

|g2(t, y(t))− g2(t, Pjy(t))|dt, (4.5)

where M2 = sup{|K2(x, t)|, 0 ≤ x, t ≤ 1}. On the other hand

|g2(t, y(t))− g2(t, Pjy(t))| ≤ A2|y(t)− Pjy(t)|, (4.6)

with
A2 = sup{|g22(t, s2(t))|, 0 ≤ t ≤ 1},

where g22 is the derivative of g2 respect to the second variable. Substituting equa-
tions (4.3)-(4.6) and pervious theorem in equation (40) we get:

‖y(x)− yj(x)‖ ≤ (M1A1 +M2A2)C2
−jm‖y(m)‖,

putting B = (M1A1 +M2A2)C, proof is completed. ✷
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Proposition 4.5. It is interesting to point out that if the functions gi(t, y), i = 1, 2
satisfies in Lipschitz condition, that is there exist Lipschitz constants Li, i = 1, 2
such that

|gi(t, y1)− gi(t, y2)| ≤ Li |y1 − y2| , i = 1, 2,

the pervious theorem is proved easily without applying mean value theorem.

5. Illustrative example

In this section, for showing the accuracy and efficiency of the described methods
we present some examples. The solution of y(x) is obtained by the methods in
section 3 at the octave level j0 = 3 and at the levels ju = 3, 4, 5 and are compared
with the results of some other methods. In tables the absolute errors are defined
as follows

‖e(y)‖ = |y(x)− y∗(x)|, i = 1, 2, ..., n,

where y and y∗ are the exact and approximated solutions, respectively.

Example 5.1. [13] Consider the equation

y(x) =
−1

30
x6 +

1

3
x4 − x2 +

5

3
x−

5

4
+

∫ x

0

(x− t)(y(t)2)dt+

∫ 1

0

(x+ t)y(t)dt, (5.1)

with the exact solution u(x) = x2 − 2. Table 1 presents exact and approximation
solution for u(x), obtained by the method in section 4 at the octave level j0 = 3
and at the levels ju = 3, 4, 5.

R.H.F: approximated solution by rationalized Haar functions [13].

Table 1: Absolute error of approximated solution of example 5.1 in some mesh
points.

Approximate R.H.F
x ju = 3 ju = 4 ju = 5 k = 16
0 1.06581× 10−11 1.13602× 10−14 3.40015× 10−17 2.57781× 10−8

0.1 1.11022× 10−12 8.77127× 10−16 1.40205× 10−18 1.99002× 10−8

0.2 1.77636× 10−12 1.99740× 10−15 1.30671× 10−18 2.30778× 10−7

0.3 1.99843× 10−12 4.03042× 10−16 4.45810× 10−18 6.11075× 10−8

0.4 8.88178× 10−12 4.50442× 10−16 2.89237× 10−18 1.12964× 10−8

0.5 4.44089× 10−12 3.11159× 10−16 1.55224× 10−18 1.56604× 10−8

0.6 2.22045× 10−12 2.23901× 10−16 6.66325× 10−18 3.41414× 10−8

0.7 0.56133× 10−12 1.33227× 10−15 3.33187× 10−18 9.00214× 10−7

0.8 6.66134× 10−11 6.76284× 10−16 3.10862× 10−17 3.71096× 10−8

0.9 0.00556× 10−11 0.00970× 10−18 9.21414× 10−20 8.88241× 10−9

1 0.01048× 10−12 3.10862× 10−15 2.96970× 10−18 5.10047× 10−8
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Example 5.2. [9] Consider the following Hammerstein mixed integral equation

y(x) = x− (9e− 24)x4 −
x10

4
+

∫ x

0

x6t(y(t))2dt+

∫ 1

0

(xt)4ey(t)dt, (5.2)

with the exact solution y(x) = x. Table 2 presents exact and approximation solution
for y(x), obtained by the method in section 4 at the octave level j0 = 3 and at the
levels ju = 3, 4, 5.

Table 2: Absolute error of approximated solution of example 5.2 in some mesh
points.

Approximate method of [13]
x ju = 3 ju = 4 ju = 5 N = 40
0 4.75751× 10−10 1.00613× 10−14 1.13671× 10−17 4.26507× 10−9

0.1 3.66244× 10−12 8.88178× 10−16 9.07992× 10−18 4.78324× 10−10

0.2 4.05714× 10−11 1.99841× 10−15 6.00290× 10−18 3.54412× 10−10

0.3 5.33248× 10−12 4.44077× 10−16 2.84681× 10−17 2.07448× 10−10

0.4 1.94287× 10−12 2.24411× 10−16 2.34385× 10−18 8.89832× 10−10

0.5 3.23034× 10−12 1.33202× 10−16 6.46881× 10−18 1.49235× 10−10

0.6 6.90763× 10−12 6.55246× 10−16 1.15758× 10−18 8.91652× 10−11

0.7 7.01489× 10−11 3.10862× 10−15 2.27790× 10−19 3.17143× 10−10

0.8 7.15560× 10−12 5.38140× 10−16 8.78201× 10−18 6.58024× 10−10

0.9 8.31266× 10−14 9.11465× 10−18 3.77429× 10−18 5.80147× 10−10

1 2.77863× 10−12 4.11379× 10−15 5.95221× 10−17 3.06546× 10−9

Example 5.3. Consider the following nonlinear Volterra-Fredholm integral equa-
tion

y(x) = f(x) +

∫ x

0

x cos(t)ey(t)dt+

∫ 1

0

x2(sec(t)− tan(t)) ln(y(t) + 1)dt,

where

f(x) = sin(x)− xesin(x) − x2 ln(sin(x) + 1),

and the exact solution is y(x) = sin(x). Table 3 presents exact and approximation
solution for y(x), obtained by the method in section 4 at the octave level j0 = 3 and
at the levels ju = 3, 4, 5.
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Table 3: Absolute error of approximated solution of example 5.3 in some mesh
points.

Approximate Method of [9]
x ju = 3 ju = 4 ju = 5 N = 40
0 3.04287× 10−6 2.44521× 10−8 1.51481× 10−11 2.46125× 10−4

0.1 1.95598× 10−6 2.89498× 10−8 2.53926× 10−10 6.71201× 10−4

0.2 2.88767× 10−6 3.42211× 10−8 6.24372× 10−10 3.81486× 10−4

0.3 1.59772× 10−6 4.82214× 10−8 9.45887× 10−10 3.78134× 10−4

0.4 3.45769× 10−6 6.60250× 10−9 9.28540× 10−10 3.60240× 10−4

0.5 8.80046× 10−6 1.71297× 10−7 2.59991× 10−10 8.23781× 10−4

0.6 8.69603× 10−6 4.73955× 10−8 8.47478× 10−10 4.70605× 10−4

0.7 4.46514× 10−6 1.22893× 10−7 1.60627× 10−10 4.66149× 10−4

0.8 6.60243× 10−7 2.19079× 10−7 1.58502× 10−11 1.10355× 10−4

0.9 8.82928× 10−6 9.74502× 10−8 1.06722× 10−10 1.81691× 10−4

1 1.71244× 10−5 7.17162× 10−8 2.63742× 10−9 1.18294× 10−3

6. Conclusions

In this paper, we proposed an advanced numerical model in solving nonlinear
Fredholm-Volterra Hammerstein integral equation of the second kind by means
of semi orthogonal compactly supported spline wavelets via operational matrices
of these wavelets and Galerkin method. Because of some properties of B-spline
wavelets such as semiorthogonality, having compact support and vanishing mo-
ments, the operational matrices of the method is so sparse (as operational matrix
of product in section 2, H16×16) and therefore the purposed approach cause to sig-
nificant reduction in memory requirement and computational time in the program-
ming of method. On the other hand, as we can see in examples, in comparison with
some other methods, the introduced method has good accuracy. The approach can
be extended to nonlinear integro-differential equation with little additional work.
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