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On the M-hypercyclicity of Cosine Function on Banach Spaces

A. Tajmouati, A. El Bakkali and A. Toukmati

abstract: In this paper we introduce and study the M -hypercyclicity of strongly
continuous cosine function on separable complex Banach space, and we give the
criteria for cosine function to be M-hypercyclic. We also prove that every separable
infinite dimensional complex Banach space admits a uniformly continuous cosine
function.
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1. Introduction

A sequence of bounded operators (Tn)n≥0 on Banach space X is called hyper-
cyclic if there exists a vector x ∈ X such that the {Tnx, n ≥ 0} is dense in X . We
note that (Tn)n≥0 is said to be topologically transitive if for every non-empty open
sets U and V of X , there exists n ∈ N such that T−1

n (U)∩V 6= ∅. In [14] has been
shown that in separable infinite dimensional Banach space X , (Tn)n≥0 is hyper-
cyclic if and only if it is topologically transitive, in this case the family (Tn)n≥0

has a dense set of hypercyclic vectors. When Tn := T n for some T ∈ B(X) and
for all n ∈ N , we say that T is hypercyclic. In this case, the set {T nx, n ≥ 0} is
known as the orbit of the element x by the operator T . Rolewicz [16] gave the first
example of a hypercyclic operator on a Banach space; he showed that if the back-
ward shift B on l2(N) then λB is hypercyclic if and only if |λ| > 1, he also proved
that in every separable infinite dimensional Banach space there exists a hypercyclic
operator, for the existence of hypercyclic operator had been studied by [1], [4] and
[5]. We recall that τ = (Tt)t≥0 ⊂ B(X) is a C0-semigroup if T0 = I, TtTs = Tt+s

for all t, s ≥ 0 and lim
t7→0

Ttx = x for all x ∈ X . Given an arbitrary C0-semigroup

τ = (Tt)t≥0 on Banach space X , it can be shown that Ax = lim
t7→0

Ttx− x

t
exists on

a dense subspace of X . The set of these x is the domain of A, that it is denoted by

D(A) = {x ∈ X/lim
t7→0

Ttx− x

t
exists}. Then A, is called the infinitesimal generator
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of τ , moreover, TtAx = ATtx for all x ∈ D(A) and t ≥ 0. Another important
property is provided by the point spectral mapping theorem for C0-semigroups. If
X is a Banach space, then for every x ∈ X and λ ∈ C, Ax = λx implies that
Ttx = eλtx for every t ≥ 0. In 1997 Desch and al [10] introduced and studied the
hypercyclicity of C0-semigroup. A C0-semigroup τ = (Tt)t≥0 is called hypercyclic
if there exists a vector x ∈ X such that Orb(τ , x) = {Ttx, t ≥ 0} is dense in X ,
they showed that if τ = (Tt)t≥0 is a C0-semigroup then for all t > 0 the operator
Tt has a dense range in X , and σp(T

∗
t ) = ∅, in [9] Conejero, A. Peris and Muller

proved that there is a relationship between hypercyclicity of τ = (Tt)t≥0 and hy-
percyclicity of every Tt for all t > 0 which is τ = (Tt)t≥0 hypercyclic if and only if
Tt is also for all t > 0. A discussion and references to earlier work on hypercyclic
semigroup can be found in [11] and [13].

2. Preliminaries

A cosine operator function on a Banach space X is a strongly continuous
C = (Ct)t∈R ⊂ B(X) satisfying C0 = I, and the d’Alembert function equation
2CtCs = Ct+s + Ct−s, for all t, s ∈ R, which implies Ct = C−t for all t ∈ R.
C = (Ct)t∈R is called strongly continuous if t 7→ Ct(x) for all x ∈ X is a continuous
function from R to X .The infinitesimal generator of a cosine function is defined by

Ax = 2lim
t7→0

(Ct − I)(x)

t2
for all x ∈ D(A) where:

D(A) = {x ∈ X/lim
t7→0

Ct(x)− x

t2
exists}. In [2] W. Arendt and al proved that

if A is a generator of cosine operator function, then A is a closed, densely de-
fined operator(D(A) = X), and there exists constants M > 0, w ≥ 0 such that
‖Ct‖≤ Mew|t| for all t ∈ R; moreover if z ∈ C such that Re(z) > w we have
z2 ∈ ρ(A). If lim

t7→0
‖Ct − I‖= 0 we say that C = (Ct)t∈R is uniformly continuous

cosine function, in this case the generator is a bounded operator A, and C admits

the following representation: Ct = I +
∑

n≥1

t2n

(2n!)
An for all t ∈ R, we note that

the cosine operator functions are associated with the solution of the second order

Cauchy problem: d2

dt2
u(t) = Au(t) t ∈ R;uk(0) = fk ∈ D(A), k = 0, 1, we mention

that the Cauchy problem is well posed if and only if A generates a cosine operator
function (Ct)t∈R, with the solution given by u(t) = Ctf0 +

∫ t

0 Cuf1du, t ∈ R, for
more details about this theory see [2]. For example if τ = (Tt)t≥0 is a C0-group on
Banach space X with generator B, it is easily to see that Ct =

1
2 (Tt + T−t) for all

t ∈ R, defines a cosine operator generated by A = B2.
In [7] A. Bonilla and P.J. Miana introduced and studied the hypercyclicity of a co-
sine operator function on a Banach space. A cosine operator function C = (Ct)t∈R

is hypercyclic if there exsits a vector x ∈ X such that {Ct(x), t ∈ R} is dense in
X ; the same authors gave the sufficient conditions for the hyperyclicity and topo-
logical mixing of a strongly continuous function, and showed that every infinite
dimensional complex Banach space admits a topologically mixing uniformly cosine
operator function. In [12] T. Kalmes gave the characterization for cosine opera-



On the M-hypercyclicity of Cosine Function on Banach Spaces 135

tor function generated by second order partial differential operator on lp(ω, µ) and
C0,ρ(ω) with ω ⊂ R

d is open, to be transitive and [8] the authors characterized
the cosine operator function generated by unilateral and bilateral weighted shift on
lp(N), and lp(Z) with 1 ≤ p ≤ ∞.
Let M be a closed subspace of Banach space X , and τ = (Tt)t≥0 be a C0-
semigroup, we say that τ is M -hypercyclic if there exists a vector x ∈ X such
that {Ttx, t ≥ 0} ∩M is dense in M . The M -hypercyclicity of C0-semigroups are
crucial for the investigation of hypercyclicity of C0-semigroups; we refer to [15],
[17], [18] for some references. The motivation for the study of M -hypercyclicity of
cosine operator function is inspired by the work of A. Bonilla and P.J. Miana [7].
In this work, we introduce and study the M -hypercyclicity of cosine operator func-
tion on separable complex Banach space, and we give the sufficient conditions for
the M -hypercyclicity and M -transitivity of strongly continuous cosine function, we
also prove that in every separable infinite dimensional complex Banach space X
there exists a M -hypercyclic uniformly continuous cosine function, with M is a
non-trivial closed subspace of X .

3. Main Results

Definition 3.1. Let (Ct)t∈R be a cosine function on separable Banach space X,
and M be a nonzero subspace of X, we say that (Ct)t∈R is M -hypercyclic if there
exists a vector x ∈ X, such that {Ctx, t ∈ R} ∩M is dense in M , in this case the
vector x ∈ X is called vector M -hypercyclic for (Ct)t∈R.

Remark 3.2. 1. If M = X it is clear that the above definition coincides with
the hypercyclicity of cosine function (Ct)t∈R.

2. Let (Ct)t∈R be a cosine function on Banach space X. Observe by taking t = 0
in the d’Alembert equation 2CtCs = Ct+s + Ct−s

we have Ct = C−t for all t ≥ 0, then (Ct)t∈R is M -hypercyclic if and only if
(Ct)t≥0 is M -hypercyclic.

Example 3.3. If (At)t∈R is a hypercyclic cosine function on Banach space X, then
Ct := At ⊕ I for all t ∈ R is M -hypercyclic cosine function with M = X ⊕ {0}.
Indeed firstly we prove that (Ct)t≥0 is cosine function on X⊕X. Let x⊕y ∈ X⊕X
we have:

2CtCs(x ⊕ y) = 2Ct(As ⊕ I)(x⊕ y) = 2Ct(Asx⊕ y)

= 2(At ⊕ I)(Asx⊕ y) = 2(AtAsx⊕ y)

= 2AtAsx⊕ 2y = At+s(x) +At−s(x)⊕ 2y

= (At+s(x) ⊕ y) + (At−s(x) ⊕ y) = Ct+s(x ⊕ y) + Ct−s(x⊕ y)

= (Ct+s + Ct−s)(x⊕ y)

for all t ≥ s ≥ 0 then 2CtCs = Ct+s + Ct−s, and we have: C0 = A0 ⊕ I = I ⊕ I =
IX⊕X

finally (Ct)t≥0 is a cosine function on X ⊕ X, since (At)t≥0 is hypercyclic , let
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x ∈ X be a hypercyclic vector of (At)t≥0 then {Atx, t ≥ 0} is dense in X, then
{Ct(x ⊕ 0); t ≥ 0} = {Atx; t ≥ 0} ⊕ {0} is dense in M = X ⊕ {0}, wich implies
that x⊕ 0 is M -hypercyclic vector for (Ct)t≥0, but not hypercyclic on X ⊕X.
In general if (At)t∈R and (Bt)t∈R be two hypercyclic cosines function on Banach
space X, then Ct := At ⊕Bt; ∀t ∈ R is a hypercyclic cosine function on X ⊕X.

Example 3.4. If (Tt)t∈R is C0-group on Banach space X, then Ct =
1
2 (Tt+T−t)⊕I

for all t ∈ R is M -hypercyclic cosine function with M = X ⊕ {0}.

Definition 3.5. Let (Ct)t∈R be a strongly continuous cosine function on separable
Banach space X, and M be a nonzero subspace of X, (Ct)t∈R is called M -transitive
if for every non-empty sets U, V of M there exists t ∈ R, such that C−1

t (U) ∩ V
contains a non-empty open set of M .

Remark 3.6. By Ct = C−t for all t ∈ R, then (Ct)t∈R is M -transitive if and only
if (Ct)t≥0 is also.

Theorem 3.7. Let (Ct)t≥0 be a strongly continuous cosine function on separable
Banach space, and M be a nonzero subspace of X, then the following conditions
are equivalent:

1. (Ct)t≥0 is M -transitive.

2. For every non-empty open sets U and V of M , there exists t > 0 such that
C−1

t (U) ∩ V is non-empty open set of M .

3. For every non-empty open sets U and V of M , there exists t > 0 such that
C−1

t (U) ∩ V is non-empty and Ct(M) ⊂ M .

Proof: (2) ⇔ (1) is clear.
(3) ⇒ (2). Let U and V be non-empty open subsets of M , by (3) there is t0 ≥ 0
such that C−1

t0
(U) ∩ V 6= φ and Ct0(M) ⊂ M

Since Ct0|M : M −→ M is continuous, then C−1
t0

(U) is open in M , therefore

C−1
t0

(U) ∩ V is non-empty open of M .
(1) ⇒ (3). Let U and V be two non-empty open subsets of M . By (1) there
exists t0 ≥ 0 such that C−1

t0
(U) ∩ V contains a non-empty open W of M , it gives

W ⊂ C−1
t0

(U) ∩ V and C−1
t0

(U) ∩ V 6= φ.
Next, we prove that Ct0(M) ⊂ M .
Let x ∈ M , we have W ⊂ C−1

t0
(U) ∩ V , this implies that Ct0(W ) ⊂ U ⊂ M . Let

x0 ∈ W , since W is open of M then for all r small enough we have x0 + rx ∈ W ,
therefore Ct0(x0+rx) = Ct0x0+rCt0x ∈ Ct0(W ) ⊂ M . From Ct0x0 ∈ M it follows
that Ct0x ∈ M .
We then conclude that Ct0(M) ⊂ M . ✷

Lemma 3.8. Let (Ct)t≥0 be a strongly continuous cosine function on a separable
Banach space X, and M be a nonzero subspace of X. If (Ct)t≥0 is M -transitive,
then (Ct)t≥0 has a dense set in M of M -hypercyclic vectors.
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Proof: Denote by Hc(C,M) the set of all M -hypercyclic vectors of C = (Ct)t∈R,
and since X is separable let (Bk)k≥0 be a countable open basis for the relative
topology of M . We have x ∈ Hc(C,M) if and only if Orb(C, x) ∩M is dense in M
if and only if for each k ≥ 0; there are t ≥ 0 such that Ctx ∈ Bk, if and only if

x ∈
⋂

k≥0

⋃

t≥0

C−1
t (Bk).(*)

then Hc(C,M) =
⋂

k≥0

⋃

t≥0

C−1
t (Bk). But C is M -transitive, then by theorem 3-7,

for each k,m ≥ 0 there exists t = tk,m ≥ 0 such that C−1
t (Bk)

⋂
Bm is non-

empty open set, hence the set Ak =
⋃

m≥0

C−1
t (Bk) ∩ Bm is non-empty and open

set. Furthermore, for all k ≥ 0;Ak is dense in M , and by Baire category theorem

we have that
⋂

k≥0

Ak =
⋂

k≥0

⋃

m≥0

C−1
t (Bk) ∩ Bm is dense in M , by (*) we have that

Hc(C,M) =
⋂

k≥0

⋃

t≥0

C−1
t (Bk) is also dense in M . ✷

Theorem 3.9. Let (Ct)t≥0 be a strongly continuous cosine function on a separable
Banach space X, and M be a nonzero subspace of X, if (Ct)t≥0 is M -transitive,
then (Ct)t≥0 is M -hypercyclic.

Criteria of M-hypercyclicity of cosine function

In general it is difficult to find the M -hypercyclic vectors of cosine function, on
Banach space, so we look for the criteria of M -hypercyclicity for cosine function.

Theorem 3.10. Let (Ct)t∈R be a strongly continuous cosine function on separable
Banach space X, and M be a subspace of X, suppose that there is D0 and D1 two
dense set in M , and an increasing positively sequence (tn)n≥0 such that:

• (i) Ctnx → 0 for all x ∈ D0.

• (ii) For all y ∈ D1, there is a sequence (xn)n ⊂ M , such that xn → 0 and
Ctnxn → y.

• (iii) Ctn(M) ⊂ M .
Then (Ct)t≥0 is M -transitive, it is M -hypercyclic.

Proof: Let U and V be two non-empty open set in M , we prove that there is t ∈ R

such that C−1
t (U) ∩ V 6= ∅ and Ct(M) ⊂ M .

Since D0 and D1 are dense in M then V ∩D0 6= ∅ and D1∩U 6= ∅. Let a ∈ U ∩D1

and b ∈ D0 ∩ V , hence there is ǫ > 0 such that B(a, ǫ) ⊂ U and B(b, ǫ) ⊂ V . From
b ∈ D0 and a ∈ D1, we have Ctn → b and there exists (xn)n ⊂ M such that xn → 0
and Ctnxn → a.
Consequently there exists N ∈ N such that: ‖xn‖ < ǫ, ‖Ctn(xn) − a‖ < ǫ

2 and
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‖Ctn(b)‖ < ǫ
2 for all n ≥ N .

Therefore ‖b+ xn − b‖ = ‖xn‖ < ǫ ⇒ b+ xn ∈ B(b, ǫ) ⊂ V ⇒ b+ xn ∈ V .
On the other hand
‖Ctn(b+xn)−a‖ = ‖Ctn(b)+Ctn(xn)−a‖ ≤ ‖Ctn(b)‖+‖Ctn(xn)−a‖ < ǫ

2 +
ǫ
2 = ǫ

this implies that Ctn(b+ xn) ∈ B(a, ǫ) ⊂ U then Ctn(b + xn) ∈ U
hence b+xn ∈ C−1

tn
(U). We obtain that b+xn ∈ C−1

tn
(U)∩V and C−1

tn
(U)∩V 6= ∅,

since Ctn(M) ⊂ M then (Ct)t≥0 is M -transitive.
Let (Ct)t∈R be a strongly continuous cosine function on Banach space X , and (tn)
be a sequence of positive real we put: X0 := {x ∈ X/ lim

n7→+∞
Ctnx = 0}

and X∞ := {y ∈ X/∃un 7→ 0; lim
n7→+∞

Ctn(un) = y}.

In [7] Antonio Bonilla and Pero J. Miana, proved that if there is tn 7→ +∞ such
that X0 and X∞ are dense, then (Ct)t≥0 is a hypercyclic cosine function. ✷

Theorem 3.11. Let (Ct)t≥0 be a strongly continuous cosine function on separable
Banach space X, and Mbe a nonzero subspace of X, if there exists a sequence of
positive real (tn); tn 7→ +∞ such that X0 ∩M and X∞ ∩M are dense in M and
Ctn(M) ⊂ M , then (Ct)t≥0 is M -transitive in particular it is M -hypercyclic.

Proof: It is sufficient to take: D0 = X0 ∩M and D1 = X∞ ∩M. ✷

Corollary 3.12. Let (Ct)t≥0 be a strongly continuous cosine function on a sepa-
rable Banach space X, if there exists a sequence of real (tn); tn 7→ +∞ such that
X1 = {x ∈ X/ lim

n7→+∞
Ctn(x) = lim

n7→+∞
C2tn(x) = 0} ∩M is dense in M

and Ctn(M) ⊂ M , then (Ct)t≥0 is a M -transitive cosine function.

Proof: we prove that X1 ∩M ⊂ X0 ∩M and X1 ∩M ⊂ X∞ ∩M
Let y ∈ X1 ∩M then y ∈ X1 and y ∈ M , we define xn = 2Ctn(y) we have xn 7→ 0
and
Ctn(xn) = Ctn(2Ctn(y)) = 2CtnCtn(y) = C2tn(y) + y 7→ y then X1 ∩M ⊂ X0 ∩M
and X1 ∩M ⊂ X∞ ∩M , since X1 ∩M dense in M , then X0 ∩ M and X∞ ∩M
are also dense in M and since Ctn(M) ⊂ M then (Ct)t≥0 is M -transitive. In [2,
proposition 3.14.6] Arendt and al showed that if (Ct)t∈R is a strongly continuous
cosine function on Banach space X , such that lim

t7→∞
Ct(x) = 0, then x = 0. In [6],

A. Bpbrowski and W. Chojnacki generalized this result by showing: if lim
t7→∞

Ct(x)

exists for all x ∈ X then Ct = I for all t ∈ R, based on this we obtain the following
result. ✷

Corollary 3.13. Let (Ct)t∈R be a strongly continuous cosine function on Banach
space X, if lim

t7→∞
Ct(x) exists for all x ∈ X, then (Ct)t∈R is not M -hypercyclic for

any M subspace of X, in particular it is not hypercyclic.

The existence of M-hypercyclic cosine function
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It is natural to ask about the existence of M -hypercyclic cosine function on a
separable Banach space.

Lemma 3.14. [3] If E is a dense subset of Banach space X, then there exists a
non-trivial closed subspace M of X, such that E ∩M is dense in M .

Proposition 3.15. If (Ct)t≥0 is a hypercyclic strongly continuous cosine function
on Banach space X, then (Ct)t≥0 is M -hypercyclic cosine function with M is a
non-trivial closed subspace of X.

Remark 3.16. Every hypercyclic strongly continuous cosine function is M -hyper-
cyclic for M is non-trivial closed subspace of X, but there exists a M -hypercyclic
cosine function, that is not hypercyclic on X see example 1.

Theorem 3.17. [7] Every separable infinite dimensional complex Banach space X
admits a topologically mixing (hypercyclic) uniformly continuous cosine function.

Corollary 3.18. Every separable infinite dimensional complex Banach space X,
admits a M -hypercyclic uniformly continuous cosine function with M is a non-
trivial closed subspace of X.
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