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Variational Analysis to Fourth-order Impulsive Differential Equations

Saeid Shokooh

abstract: Applying two critical point theorems, we prove the existence of at least
three solutions for a one-dimensional fourth-order impulsive differential equation
with two real parameters.

Key Words:Ricceri variational principle, Three solutions, Fourth-order equa-
tions.

Contents

1 Introduction 151

2 Preliminaries 152

3 Main results 156

1. Introduction

Many dynamical systems describing models in applied sciences have an im-
pulsive dynamical behaviour due to abrupt changes at certain instants during the
evolution process. The rigorous mathematical description of these phenomena leads
to impulsive differential equations; they describe various processes of the real world
described by models that are subject to sudden changes in their states. Essentially,
impulsive differential equations correspond to a smooth evolution that may change
instantaneously or even abruptly, as happens in various applications that describe
mechanical or natural phenomena. These changes correspond to impulses in the
smooth system, such as for example in the model of a mechanical clock. Impulsive
differential equations also study models in physics, population dynamics, ecology,
industrial robotics, biotechnology, economics, optimal control, chaos theory. Asso-
ciated with this development, a theory of impulsive differential equations has been
given extensive attention. For an introduction of the basic theory of impulsive
differential equations in R

n, see [3], [8], and [13]. Some classical tools have been
used to study such problems in the literature, such as the coincidence degree theory
of Mawhin, the method of upper and lower solutions with the monotone iterative
technique, and some fixed point theorems in cones (see [7,9,12]).

Recently, the existence and multiplicity of solutions for impulsive boundary
value problems by using variational methods and critical point theory has been
considered and here we cite the papers [1,2,10,14,15,16,17,18,19].
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In this paper, motivated by the above facts and the recent paper [4], we consider
the fourth-order boundary value problem with impulsive effects















u′′′′(t)− (p(t)u′(t))′ + q(t)u(t) = λf(t, u(t)), t 6= tj , t ∈ [0, 1],
∆(u′′(tj)) = µI1j(u

′(tj)), j = 1, 2, . . . ,m,
−∆(u′′′(tj)) = µI2j(u(tj)), j = 1, 2, . . . ,m,
u(0) = u(1) = u′′(0) = u′′(1) = 0,

(1.1)

where λ ∈]0,+∞[, µ ∈]0,+∞[, f : [0, 1] × R → R, p, q ∈ L∞([0, 1]), I1j , I2j ∈
C(R;R) for 1 ≤ j ≤ m, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1, and the operator
∆ is defined as ∆(u(tj)) := u(t+j )− u(t−j ), where u(t

+
j ) and u(t−j ) denote the right

and the left limits, respectively, of u at tj .
By using variational methods, we show the existence of three solutions for this

problem. More precisely, by choosing µ in a suitable way and under a growth
condition on the nonlinear term we prove that (1.1) has at least three solutions for
every λ lying in a precise interval. In particular, we obtain two main theorems. In
the first one (Theorem 3.1) we require on the antiderivative of f both a growth more
then quadratic in a suitable interval and a growth less then quadratic at infinity,
and at the same time, on the impulses I1j and I1j , two asymptotic conditions are
required. In the second one (Theorem 3.5) we establish the existence of at least
three positive solutions uniformly bounded without asymptotic conditions on f ,
I1j and I2j .

2. Preliminaries

We now state two critical point theorems which are the main tools for the proofs
of our results. The first result has been obtained in [6] and it is a more precise
version of Theorem 3.2 of [5]. The second one has been established in [5].

Theorem 2.1 ( [6, Theorem 2.6]). Let X be a reflexive real Banach space; Φ :
X → R be a sequentially weakly lower semicontinuous, coercive and continuously
Gâteaux differentiable functional whose Gâteaux derivative admits a continuous
inverse on X∗, Ψ : X → R be a sequentially weakly upper semicontinuous, contin-
uously Gâteaux differentiable functional whose Gâteaux derivative is compact, such
that

Φ(0) = Ψ(0) = 0 .

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄) such that

(i) supΦ(x)≤r Ψ(x) < rΨ(x̄)/Φ(x̄),

(ii) for each λ in

Λr :=
]Φ(x̄)

Ψ(x̄)
,

r

supΦ(x)≤r Ψ(x)

[

,

the functional Φ− λΨ is coercive.

Then for each λ ∈ Λr the functional Φ−λΨ has at least three distinct critical points
in X.
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Theorem 2.2 ( [5, Theorem 3.2]). Let X be a reflexive real Banach space; Φ :
X → R be a convex, coercive and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact,
such that

inf
X

Φ = Φ(0) = Ψ(0) = 0 .

Assume that there exist two positive constants r1, r2 > 0 and x̄ ∈ X with 2r1 <
Φ(x̄) < r2

2 such that

(j)
supΦ(x)≤r1

Ψ(x)

r1
< 2

3
Ψ(x̄)
Φ(x̄) ,

(jj)
supΦ(x)≤r2

Ψ(x)

r2
< 1

3
Ψ(x̄)
Φ(x̄) ,

(jjj) for each λ in

Λ∗
r1,r2 :=

]3

2

Φ(x̄)

Ψ(x̄)
,min

{ r1
supΦ(x)≤r1 Ψ(x)

,
r2

2 supΦ(x)≤r2 Ψ(x)

}

[

and for every x1, x2 ∈ X, which are local minima for the functional Φ− λΨ,
and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has inft∈[0,1]Ψ(tx1+(1−t)x2) ≥
0.

Then for each λ ∈ Λ∗
r1,r2 the functional Φ − λΨ has at least three distinct critical

points which lie in Φ−1(]−∞, r2[).

Let us introduce some notation which will be used later. Assume that

min

{

p−

π2
,
q−

π4
,
p−

π2
+

q−

π4

}

> −1, (2.1)

where p− := ess infx∈[0,1] p(x) and q− := ess infx∈[0,1] q(x). Moreover, set

σ := min

{

p−

π2
,
q−

π4
,
p−

π2
+

q−

π4
, 0

}

,

δ :=
√
1 + σ.

Define

H1
0 ([0, 1]) :=

{

u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = u(1) = 0

}

,

H2([0, 1]) :=

{

u ∈ L2([0, 1]) : u′, u′′ ∈ L2([0, 1])

}

.

Let X := H2([0, 1])∩H1
0 ([0, 1]) be the Sobolev space endowed with the usual norm

defined as follows:

‖u‖X :=

(
∫ 1

0

|u′′(t)|2 dt
)1/2

.
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We recall the following Poincaré type inequalities (see, for instance, [11, Lemma
2.3]):

‖u′‖2L2([0,1]) ≤
1

π2
‖u′′‖2L2([0,1]), (2.2)

‖u‖2L2([0,1]) ≤
1

π4
‖u′′‖2L2([0,1]) (2.3)

for all u ∈ X . Therefore, taking into account (2.1)-(2.3), the norm

‖u‖ =

(
∫ 1

0

(|u′′(t)|2 + p(t)|u′(t)|2 + q(t)|u(t)|2)dt
)1/2

is equivalent to the usual norm, and, in particular,

‖u′′‖L2([0,1]) ≤
1

δ
‖u‖. (2.4)

For the norm in C1([0, 1]),

‖u‖∞ := max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
}

,

we have the following relation.

Proposition 2.3. Let u ∈ X . Then

‖u‖∞ ≤ 1

2πδ
‖u‖. (2.5)

Proof: Taking (2.2) and (2.4) into account, the conclusion follows from the well-
known inequality ‖u‖∞ ≤ 1

2‖u′‖L2([0,1]). ✷

Here and in the sequel f : [0, 1]× R → R is an L1-Carathéodory function. We
recall that f : [0, 1]× R → R is an L1-Carathéodory function if

(F1) (a) the mapping t 7−→ f(t, x) is measurable for every x ∈ R;

(b) the mapping x 7−→ f(t, x) is continuous for almost every t ∈ [0, 1];

(c) for every ̺ > 0 there exists a function l̺ ∈ L1([0, 1]) such that

sup
|x|≤̺

|f(t, x)| ≤ l̺(t)

for almost every t ∈ [0, 1].

Corresponding to f we introduce the function F : [0, 1]× R → R as follows

F (t, x) :=

∫ x

0

f(t, ξ) dξ
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for all (t, x) ∈ [0, 1]× R.
We say that u ∈ C([0, 1]) is a classical solution of problem (1.1), if it satisfies the

equation in (1.1) a.e. on [0, 1] \ {t1, t2, . . . , tm}, the limits u′′(t+j ), u
′′(t−j ), u

′′′(t+j )

and u′′′(t−j ), 1 ≤ j ≤ m, exist, satisfy two impulsive conditions in (1.1) and the
boundary condition u(0) = u(1) = u′′(0) = u′′(1) = 0.
A weak solution of problem (1.1) is a function u ∈ X such that the equality

∫ 1

0

(

u′′(t)v′′(t) + p(t)u′(t)v′(t) + q(t)u(t)v(t)
)

dt =

−µ

m
∑

j=1

I2j(u(tj))v(tj)− µ

m
∑

j=1

I1j(u
′(tj))v

′(tj) + λ

∫ 1

0

f(t, u(t))v(t) dt

holds for all v ∈ X .
By the same argument as in the proof of [4, Lemma 2.3], we can prove the following
lemma.

Lemma 2.4. The function u ∈ X is a weak solution of problem (1.1) if and only
if u is a classical solution of problem (1.1).

Lemma 2.5. Assume that

(H1) there exist constants αi, βi > 0 and σi ∈ [0, 1[, i = 1, 2, such that

|Iij(x)| ≤ αi + βi|x|σi for all x ∈ R, i = 1, 2 and j = 1, 2, . . . ,m.

Then, for any u ∈ X, we have

∣

∣

∣

m
∑

j=1

∫ u′(tj)

0

I1j(x) dx
∣

∣

∣
≤ m

(

α1‖u‖∞ +
β1

σ1 + 1
‖u‖σ1+1

∞

)

(2.6)

and
∣

∣

∣

m
∑

j=1

∫ u(tj)

0

I2j(x) dx
∣

∣

∣
≤ m

(

α2‖u‖∞ +
β2

σ2 + 1
‖u‖σ2+1

∞

)

. (2.7)

Proof: Thanks to (H1), we deduce

∣

∣

∣

∫ u′(tj)

0

I1j(x) dx
∣

∣

∣
≤ α1|u′(tj)|+

β1

σ1 + 1
|u′(tj)|σ1+1

and
∣

∣

∣

∫ u(tj)

0

I2j(x) dx
∣

∣

∣
≤ α2|u(tj)|+

β2

σ2 + 1
|u(tj)|σ2+1.

Thus (2.6) and (2.7) are obtained. ✷

Finally, put

k :=
27δ2π2

1024
(

1 + ‖p‖∞

π2 + ‖q‖∞

π4

) , Γi,c :=
αi

c
+
( βi

σi + 1

)

cσi−1,

where αi, βi and σi, i = 1, 2, are given by (H1) and c is a positive constant.
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3. Main results

We state our main results as follows:

Theorem 3.1. Suppose that (F1) and (H1) are satisfied. Furthermore, assume
that there exist two positive constants c and d with c < 32

3
√
3π

d such that

(A1) F (t, ξ) ≥ 0 for all (t, ξ) ∈
(

[0, 3
8 ] ∪ [ 58 , 1]

)

× [0, d];

(A2)
∫ 1

0 max|ξ|≤c F (t, ξ) dt

c2
< k

∫ 5/8

3/8
F (t, d) dt

d2
;

(A3)

lim sup
|ξ|→+∞

supt∈[0,1] F (t, ξ)

ξ2
≤ π2

4

∫ 1

0
max|ξ|≤c F (t, ξ) dt

c2
.

Then for every λ in

Λ :=





2δ2π2d2

k
∫ 5/8

3/8
F (t, d) dt

,
2δ2π2c2

∫ 1

0
max|ξ|≤c F (t, ξ) dt



 ,

there exists

ρ :=
1

2m
min

{

2δ2π2c2 − λ
∫ 1

0
max|ξ|≤c F (t, ξ) dt

c2Γ1,c
,

2δ2π2c2 − λ
∫ 1

0 max|ξ|≤c F (t, ξ) dt

c2Γ2,c
,

kλ
∫ 5/8

3/8
F (t, d) dt− 2δ2π2d2

d2Γ1,(d/
√
k)

,

kλ
∫ 5/8

3/8
F (t, d) dt− 2δ2π2d2

d2Γ2,(d/
√
k)

}

such that for each µ ∈ [0, ρ[ the problem (1.1) has at least three distinct classical
solutions.

Proof: First, we observe that due to (A2) the interval Λ is non-empty and, conse-
quently, one has ρ > 0. Now, fix λ and µ as in the conclusion. Our aim is to apply
Theorem 2.1. For each u ∈ X , let the functionals Φ,Ψ : X → R be defined by

Φ(u) :=
1

2
‖u‖2,

Ψ(u) :=

∫ 1

0

F (t, u(t)) dt− µ

λ

m
∑

j=1

∫ u′(tj)

0

I1j(x) dx − µ

λ

m
∑

j=1

∫ u(tj)

0

I2j(x) dx,
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and put
Eλ,µ(u) := Φ(u)− λΨ(u), u ∈ X.

Using the property of f and the continuity of Iij , j = 1, 2, . . . ,m and i = 1, 2, we
obtain that Φ,Ψ ∈ C1(X,R) and for any v ∈ X , we have

Φ′(u)(v) =

∫ 1

0

(

u′′(t)v′′(t) + p(t)u′(t)v′(t) + q(t)u(t)v(t)
)

dt

and

Ψ′(u)(v) =

∫ 1

0

f(t, u(t))v(t) dt+−µ

λ

m
∑

j=1

I1j(u
′(tj))v

′(tj)−
µ

λ

m
∑

j=1

I2j(u(tj))v(tj).

So, with standard arguments, we deduce that the critical points of the functional
Eλ,µ are the weak solutions of problem (1.1) and so they are classical. We will
verify (i) and (ii) of Theorem 2.1. Put r = 2(δπc)2. Taking (2.5) into account, for
every u ∈ X such that Φ(u) ≤ r, one has maxt∈[0,1] |u(t)| ≤ c. Consequently, from
Lemma 2.5, it follows that

sup
Φ(u)≤r

Ψ(u) ≤
∫ 1

0

max
|ξ|≤c

F (t, ξ) dt+
µ

λ
m
(

α1c

+
β1

σ1 + 1
cσ1+1

)

+
µ

λ
m
(

α2c+
β2

σ2 + 1
cσ2+1

)

;

that is,

supΦ(u)≤r Ψ(u)

r
≤ 1

2δ2π2

[

∫ 1

0
max|ξ|≤c F (t, ξ) dt

c2
+

µ

λ
mΓ1,c +

µ

λ
mΓ2,c

]

.

Hence, bearing in mind that µ < ρ, one has

supΦ(u)≤r Ψ(u)

r
<

1

λ
. (3.1)

Put

v̄(t) =











− 64d
9 (t2 − 3

4 t), t ∈ [0, 3
8 [,

d, t ∈ [ 38 ,
5
8 ],

− 64d
9 (t2 − 5

4 t+
1
4 ), t ∈] 58 , 1].

Clearly v̄ ∈ X . Moreover, taking (2.2), (2.3) and (2.4) into account, one has

4096

27
δ2d2 ≤ ‖v̄‖2 ≤ 4096

27

(

1 +
‖p‖∞
π2

+
‖q‖∞
π4

)

d2 =
4δ2π2

k
d2. (3.2)

So, from c < 32
3
√
3π

d, we obtain r < Φ(v̄). Moreover, again from the previous

inequality, we have

Φ(v̄) <
2δ2π2

k
d2.
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Now, due to Lemma 2.5, (A1), (2.5) and (3.2) one has

Ψ(v̄) ≥
∫ 5/8

3/8

F (t, d) dt − µ

λ
m
(

α1‖v̄‖∞ +
β1

σ1 + 1
‖v̄‖σ1+1

∞

)

− µ

λ
m
(

α2‖v̄‖∞ +
β2

σ2 + 1
‖v̄‖σ2+1

∞

)

≥
∫ 5/8

3/8

F (t, d) dt − µ

λ

md2

k
Γ1,(d/

√
k) −

µ

λ

md2

k
Γ2,(d/

√
k).

So, we obtain

Ψ(v̄)

Φ(v̄)
≥

k
∫ 5/8

3/8 F (t, d) dt− µ
λmd2Γ1,(d/

√
k) −

µ
λmd2Γ2,(d/

√
k)

2(δπd)2
.

Since µ < ρ, one has
Ψ(v̄)

Φ(v̄)
>

1

λ
. (3.3)

Therefore, from (3.1) and (3.3), condition (i) of Theorem 2.1 is fulfilled. Now, to
prove the coercivity of the functional Φ− λΨ, due to (A3), we have

lim sup
|ξ|→+∞

supt∈[0,1] F (t, ξ)

ξ2
<

(π4δ2

2

) 1

λ
.

So, we can fix ε > 0 satisfying

lim sup
|ξ|→+∞

supt∈[0,1] F (t, ξ)

ξ2
< ε <

(π4δ2

2

) 1

λ
.

Then, there exists a positive constant h such that

F (t, ξ) ≤ ε|ξ|2 + h, ∀t ∈ [0, 1], ξ ∈ R .

Taking into account Lemma 2.5, (2.3), (2.4) and (2.5), it follows that

Φ(u)− λΨ(u)

≥ 1

2
‖u‖2 − λε‖u‖2L2[0,1] − λh− µm

[ α1

2δπ
‖u‖+ β1

σ1 + 1

( 1

2δπ

)σ1+1

‖u‖σ1+1
]

− µm
[ α2

2δπ
‖u‖+ β2

σ2 + 1

( 1

2δπ

)σ2+1

‖u‖σ2+1
]

≥
(1

2
− λε

1

δ2π4

)

‖u‖2 − λh− µm
[ α1

2δπ
‖u‖+ β1

σ1 + 1

( 1

2δπ

)σ1+1

‖u‖σ1+1
]

− µm
[ α2

2δπ
‖u‖+ β2

σ2 + 1

( 1

2δπ

)σ2+1

‖u‖σ2+1
]
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for all u ∈ X . So, the functional Φ − λΨ is coercive. Now, the conclusion of
Theorem 2.1 can be used. It follows that, for every

λ ∈ Λ ⊆
]Φ(v̄)

Ψ(v̄)
,

r

supΦ(u)≤r Ψ(u)

[

,

the functional Φ−λΨ has at least three distinct critical points in X , which are the
weak solutions of the problem (1.1). This completes the proof. ✷

Corollary 3.2. Suppose that (H1) holds. Let θ ∈ L1([0, 1]) be a non-negative and

non-zero function and let l : R → R be a continuous function. Put θ0 :=
∫ 5/8

3/8
θ(t)dt,

‖θ‖1 :=
∫ 1

0
θ(t) dt and L(ξ) =

∫ ξ

0
l(x)dx for all ξ ∈ R, and assume that there exist

two positive constants c and d with c < 32
3
√
3π

d such that

(A1’) L(ξ) ≥ 0 for all ξ ∈ [0, d];

(A2’)
max|ξ|≤c L(ξ)

c2
<

27π2θ0
1024‖θ‖1

L(d)

d2
;

(A3’) lim sup|ξ|→+∞ L(ξ)/ξ2 ≤ 0.

Then for every

λ ∈
]

2048d2

27θ0L(d)
,

2π2c2

‖θ‖1max|ξ|≤c L(ξ)

[

,

there exists

ρ :=
1

2m
min

{

2π2c2 − λ‖θ‖1max|ξ|≤c L(ξ)

c2Γ1,c
,
2π2c2 − λ‖θ‖1 max|ξ|≤c L(ξ)

c2Γ2,c
,

27λπ2θ0

1024 L(d)− 2π2d2

d2Γ1,(d/
√
k)

,
27λπ2θ0
1024 L(d)− 2π2d2

d2Γ2,(d/
√
k)

}

such that for each µ ∈ [0, ρ[ the problem














u′′′′(t) = λθ(t)l(u(t)), t 6= tj , t ∈ [0, 1],
∆(u′′(tj)) = µI1j(u

′(tj)), j = 1, 2, . . . ,m,
−∆(u′′′(tj)) = µI2j(u(tj)), j = 1, 2, . . . ,m,
u(0) = u(1) = u′′(0) = u′′(1) = 0

(3.4)

has at least three classical solutions.

The proof of the above corollary follows from Theorem 3.1 by choosing f(t, x) =
θ(t)l(x) for all (t, x) ∈ [0, 1]× R and taking into account that k = 27π2/1024.

Remark 3.3. Clearly, if l is non-negative then assumption (A1’) is verified and
(A2’) becomes

L(c)

c2
<

27π2

1024

θ0
‖θ‖1

L(d)

d2
.
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Now, we state a result without asymptotic conditions on Iij .

Lemma 3.4. Suppose that (F1) is satisfied. Moreover, assume that f(t, x) ≥ 0 for
all (t, x) ∈ [0, 1]× R and Iij(x) ≤ 0 for all x ∈ R, j = 1, . . . ,m and i = 1, 2. If u
is a classical solution of (1.1) then u(t) ≥ 0 for all t ∈ [0, 1].

Proof: If u is a classical solution of (1.1) then

∫ 1

0

u′′′′(t)v(t)−
∫ 1

0

(p(t)u′(t))′v(t) dt+

∫ 1

0

q(t)u(t)v(t) dt

− λ

∫ 1

0

f(t, u(t))v(t) dt = 0

for all v ∈ X . Let v(t) = max{−u(t), 0} for all t ∈ [0, 1]; clearly v ∈ X and we have

0 =

m
∑

j=0

∫ tj+1

tj

u′′′′(t)v(t) dt −
∫ 1

0

(p(t)u′(t))′v(t) dt+

∫ 1

0

q(t)u(t)v(t) dt

− λ

∫ 1

0

f(t, u(t))v(t) dt

=

m
∑

j=0

u′′′(t)v(t)
∣

∣

tj+1

tj
−

m
∑

j=0

u′′(t)v′(t)
∣

∣

tj+1

tj
+

∫ 1

0

u′′(t)v′′(t) dt

−
∫ 1

0

(p(t)u′(t))′v(t) dt+

∫ 1

0

q(t)u(t)v(t) dt − λ

∫ 1

0

f(t, u(t))v(t) dt

= −
m
∑

j=0

∆u′′′(tj)v(tj) +
m
∑

j=0

∆u′′(tj)v
′(tj) +

∫ 1

0

u′′(t)v′′(t) dt

+

∫ 1

0

p(t)u′(t)v′(t) dt+

∫ 1

0

q(t)u(t)v(t) dt − λ

∫ 1

0

f(t, u(t))v(t) dt

=

m
∑

j=0

I2j(u(tj))v(tj) +

m
∑

j=0

I1j(u
′(tj))v

′(tj)−
∫ 1

0

(v′′(t))2 dt

−
∫ 1

0

p(t)(v′(t))2 dt−
∫ 1

0

q(t)(v(t))2 dt− λ

∫ 1

0

f(t, u(t))v(t) dt

≤ −‖v‖2 .

So v(t) = 0 for t ∈ [0, 1]. ✷

Put

ℑi,c :=

m
∑

j=1

min
|ξ|≤c

∫ ξ

0

Iij(x) dx for all c > 0, i = 1, 2.

Our other main result is as follows.
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Theorem 3.5. Suppose that (F1) is satisfied. Furthermore, assume that there exist

three positive constants c1, c2 and d with 3
√
3π

32 c1 < d <
√

k
2 c2 such that

(B1) f(t, x) ≥ 0 for all (t, x) ∈ [0, 1]× [0, c2];

(B2)
∫ 1

0 F (t, c1) dt

c21
<

2

3
k

∫ 5/8

3/8
F (t, d) dt

d2
;

(B3)
∫ 1

0 F (t, c2) dt

c22
<

k

3

∫ 5/8

3/8
F (t, d) dt

d2
.

Let

Λ′ :=
] 3δ2π2d2

k
∫ 5/8

3/8
F (t, d) dt

, δ2π2 min
{ 2c21
∫ 1

0
F (t, c1) dt

,
c22

∫ 1

0
F (t, c2) dt

}[

.

Then for every λ ∈ Λ′ and for every negative continuous function Iij , j = 1, . . . ,m,
i = 1, 2, there exists

ρ∗ :=
1

2
min

{

λ
∫ 1

0
F (t, c1) dt− 2δ2π2c21

ℑ1,c1

,
λ
∫ 1

0
F (t, c1) dt− 2δ2π2c21

ℑ2,c1

,

λ
∫ 1

0
F (t, c2) dt− δ2π2c22

ℑ1,c2

,
λ
∫ 1

0
F (t, c2) dt− δ2π2c22

ℑ1,c2

}

such that for each µ ∈]0, ρ∗[ the problem (1.1) has at least three classical solutions
uν , ν = 1, 2, 3, such that 0 < ‖uν‖∞ ≤ c2.

Proof: Without loss of generality, we can assume f(t, x) ≥ 0 for all (t, x) ∈ [0, 1]×
R. Fix λ, Iij and µ as in the conclusion and take X,Φ and Ψ as in the proof of
Theorem 3.1. Put v̄ as in Theorem 3.1, r1 = 2δ2π2c21 and r2 = 2δ2π2c22. Therefore,
one has 2r1 < Φ(v̄) < r2

2 and since µ < ρ∗, one has

1

r1
sup

Φ(u)<r1

Ψ(u) ≤ 1

2δ2π2c21

(

∫ 1

0

F (t, c1) dt−
µ

λ
ℑ1,c1 −

µ

λ
ℑ2,c2

)

<
1

λ
<

k

3δ2π2

∫ 5/8

3/8 F (t, d) dt

d2

≤ 2

3

Ψ(v̄)

Φ(v̄)
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and

2

r2
sup

Φ(u)<r2

Ψ(u) ≤ 1

δ2π2c22

(

∫ 1

0

F (t, c2) dt−
µ

λ
ℑ1,c2 −

µ

λ
ℑ2,c2

)

<
1

λ
<

k

3δ2π2

∫ 5/8

3/8 F (t, d) dt

d2

≤ 2

3

Ψ(v̄)

Φ(v̄)
.

Therefore, conditions (j) and (jj) of Theorem 2.2 are satisfied. Finally, let u1 and u2

be two local minima for Φ−λΨ. Then, u1 and u2 are critical points for Φ−λΨ, and
so, they are weak solutions for the problem (1.1). Hence, owing to Lemma 3.4, we
obtain u1(t) ≥ 0 and u2(t) ≥ 0 for all t ∈ [0, 1]. So, one has Ψ(su1 +(1− s)u2) ≥ 0
for all s ∈ [0, 1]. From Theorem 2.2 the functional Φ−λΨ has at least three distinct
critical points which are weak solutions of (1.1). This completes the proof. ✷
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