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ABSTRACT: The main aim of this paper is to prove, by using the topological degree
methods, the existence of solutions for nonlinear elliptic equation Au = f where
Au = Z‘aKm(fl)‘a‘DaAa(:r,u, Vu,...,V™u) is partial differential operators of

general divergence form and f € W_m’p/(‘)(Q) with p(x) € (1, 00).
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1. Introduction

Topological degree theory is one of the most effective tools in solving nonlinear
equations. Brouwer had published a degree theory in 1912 for continuous maps
defined in finite dimensional Euclidean space [4]. Leray and Schauder developed
the degree theory for compact operators in infinite dimensional Banach spaces
[12]. Since then numerous generalizations and applications have been investigated
in various ways of approach (see e.g.[7,15,16,19]). Browder introduced a topological
degree for nonlinear operators of monotone type in reflexive Banach spaces [5,6].
The theory was constructed later by Berkovits and Mustonen by using the Leray-
Schauder degree [1,2,3] which can be applied to partial differential operators of
general divergence form, i.e. to operators of the form

Au(z) = Z (=Dl DA, (2, u, Vu, ..., V™).
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If the functions A, (z,§) satisfy the polynomial growth conditions with respect to
|¢] and some analytical conditions, then the differential operator will generate a
mapping defined in a Sobolev space,

A WP (Q) — W™ (),

which belongs to the class (Sy) (see Page 5, item (iv) for the definition of this class
below).

Let Q € RY (N > 1) be an open and bounded subset with the segment property
(i.e. there exist a locally finite open covering {O;} of 992 and corresponding vectors
{y;} such that for x € QNO;, and 0 < t < 1, z+ty; € Q), A be a partial differential
operator of general divergence form

Afw) = Y (=)D A (2, €(u))

lor|<m

defined on a subset of Wom’p(')(ﬂ) and f € WP ()(Q) where ﬁ + ﬁ =1
( see below for the definitions of these spaces).
The goal of the paper is to prove the existence of solutions for nonlinear elliptic

equations with boundary value problems of the form

A(u) = f in Q
{ Du(z) =0 on 09 for |a| <m —1. (1.1)

by applying the topological degree theory.

Our paper is organized in the following way. The second section recalls some
preliminary definitions and results about Generalized Lebesgue and Sobolev spaces,
some classes of mappings of monotone type and defines a degree function in Sobolev
spaces with variables exponents. The last section defines a new monotonicity class
i.e. a class (MOD), presents some normalising maps and proves the existence of a
solution for the problem (1.1) using the degree theory.

The study of the nonlinear partial differential equations in this type of spaces
is strongly motivated by numerous phenomena of physics, namely the problems
related to non-Newtonian fluids of strongly inhomogeneous behavior with a high
ability of increasing their viscosity under a different stimulus, like the shear rate,
magnetic or electric field [14].

2. Preliminary definitions and results

In the sequel, we consider a naturel number N > 1 and an open and bounded
domain Q C RY with segment property.

2.1. Generalized Lebesgue and Sobolev spaces

We recall in what follows some well Known properties of the generalized Lebesgue

and Sobolev spaces L) () and Wom’p(')(Q) which can be found for instance in X.
Fan and D. Zhao [8] or O. Kovacik and J. Rakosnik [11]. In the sequel, we call
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exponent any measurable function: p : Q@ — [1,400) and we set p~ = ess igf p and
pT = esssupp.
Q

For every exponent p(.) and for every measurable function u, we set

poi (1) = [ u@)P) e
We define the variable exponent Lebesgue space
LPO(Q) = {u; u: Q — R is measurable and Pp()(u) < oo}

We define a norm, the so-called Luzemburg norm, on this space by the formula
. U
oy = > 0/, (3) < 1)

We say that a sequence {u,} C LP()(Q) converges to u € LP1)(Q) in the modular
sense, denote u, — u(mod) in LPG) | if there exists A > 0 such that

pp(_)(un)\_u) — 0, when n — oo.

We say that a bounded exponent p(.) is log-Holder continuous on € if there exists

« > 0 such that o

e+ 1/[z—yl)
for all z,y € Q. Next, let m be a positive integer, we define

wmPO(Q) = {u e LPY(Q) : D e LPY(Q), |a| < m},

Ip(z) —p(y)| < oo

with the norm
o) = D 1D%ullp)

lal<m

and Wom’p(')(ﬂ) as the closure of D(Q) = C§°(Q) in W) (Q).
We say that a sequence {u,} € W™P()(Q) converges to u € W™P0)(Q) in the
modular sense, denote u, — u(mod) in W™PL) | if there exists A > 0 such that

D*u, — D*u

pp(_)(f) — 0, when n — oo,
for |a] < m.
We define
WP O@Q) ={geD'(Q)g= Y (-1)ID,, where go € LO(Q)},
la|<m

and we say that a sequence {u,} C W~™2()(Q) converges to u € W~"-#()(Q)
in the modular sense, denote u,, — u(mod) in WP () if u,, and u have repre-

sentations
Uy = Z (,1)\0¢|D0<g&")7 u = Z (fl)\a\Daga,

lal<m la|<m
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such that g{"”, g, € LP () and g ga(mod) in LP'O) for all |a] < m.
In what follows, we assume that p(.) is a log-Ho6lder continuous exponent such
that 1 < p~ < p(z) < pT < co. Under this assumption, we have:

1.

7.

Endowed with the Luxembourg norm, LP()(€) is a Banach space [11, Theo-
rem 2.5], separable, reflexive [11, Corollary 2.7], uniformly convex and

[LP(»)(Q)]/ — LP’(»)(Q)

For every u € L) (Q) and v € LP')(Q) Holder inequality holds [11, Theorem

2.1]
1 1
wdr| < | — + —— ||U||p(,)||v||p’(»)'
Q p p

If p and ¢ are variable exponents so that ¢(.) < p(.) a.e. in Q then there
exists the continuous embedding LP()(Q) — L0)(Q), whose norm does not
exceed Q] + 1.

If (up,) and u € LPO)(Q) then the following relations hold true

.
lullpy > 1 = 1l < oy (u) < [full?,

. )
lullpy <1 = 1l < oy (w) < [full?,

lim u, =0in LFMY(Q) < nh_}rrgo Pp(y(Un) =0

n—oo

The space (Wén’p(')(ﬂ), |l - [lm.p(.)) is @ Banach space separable and reflexive
and [W,""Y(Q)) = W' O(Q).

If ¢(.) is an exponent with ¢* < oo then Wom’p(')(ﬂ) — L1O)(Q) (continu-
ous embedding) if ¢(.) < p*(.) = ]\Z,\CL;'()_). Moreover we have the compact
embedding WP (Q) < LrO)(Q).

Norm convergence and modular convergence are equivalent.

Lemma 2.1. If {u,} € LPO(Q), {v,} € LPO(Q),u,, — u € LPO(Q) in LPO(Q)
and v, = v a.e. and for the weak topology o(LP (), LPO)) with v € LP (')(Q), then
UnVp — uv in LY(Q).

Lemma 2.2. If {u,} € LPO(Q),u, — u a.e. with € LP(Q) and u, — u in
LPO(Q) and v € LP' ) (Q), then u,v — uv in LY(Q).

Lemma 2.3. If {u,} C LP")(Q) with u, — u in LPO)(Q), then

/ |t (2)|P®) dz — / |u(a) [P d.
Q Q
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Lemma 2.4. [9,17]

(i) If {un} € LY Q) with u, — u ae. with u € LY(Q), up,u > 0 a.e. and
Joun(x)de — [ u(z)dz , then u, — u in L*(Q).

(ii) If {un} C LY() with up — u a.e. with u € L'(Q), [, un(z)dz — [, u(z)dx
, and up(x) > —h(x) a.e. for some h € LY (Q) , then up, — u in L*(Q).
Lemma 2.5. (i) If {u,} C LPO(Q) with u, — u a.e. withu € LPO(Q), up,u > 0
a.e. and |cu,(x)|P®) < h(x) a.e. for some h € LY(Q) and ¢ > 0 then u, — u

in LPO)(Q).

(ii) If {u,} C LPO(Q) with u, — u € LPC)(Q), then there exists a subsequence
{tn'},c >0 and h € LY(Q) such that u, (z) — u(x) a.e.
and |cun: (2)|P) < h(z) a.e.

2.2. Some classes of mappings of monotone type

Let Y = Wom’p(')(Q) and Z = Y* = W= ()(Q) and a mapping F : D C
Y = Z.

(i) F is bounded, denote F' € (BD), if the set F'(A) C Z is bounded when A C Dp
is bounded.

(ii) F is strongly quasibounded , denote F' € (QB) , if the conditions
{un} C Dp bounded and limsup,—co(F (un), u, — @) is bounded from above

for some u € Y
imply that {F(uy)} is bounded in Z .

(iii) f is continuous , denote F' € (CONT) , if the conditions {u,} C Dp ,u € Dp
and ||u, —ully — 0
imply that ||F(u,) — F(u)|]|z = 0.

(iv) F is of the class (S4), denote F' € (S4),if the conditions
{un} C Dp, up, = uw €Y inY and limsup,—oo(F(tn), t, —u) <0
imply that w € Dp , and ||u, — ully — 0.

(v) F is pseudomonotone, F' € (PM) , if the conditions
{un} C Dp, up, ~uinY , F(u,) — z in Z and
limsupn— oo (F(Un ), un) < (z,u)
imply that w € Dp , z = F(u) and (F(up), un) — (F(u),u).

(vi) F is of the class (MOD), denote F' € (MOD), if the conditions
{un} C Dp, up ~uinY , F(u,) = zin Z and
Limsupn— oo (F(tn ), un) < (z,u)
imply that u € Dp , z = F(u) and there exists a subsequence {u,} such
that u,, — u (mod) in Y and F(u,/) — F(u) (mod) in Z.

Theorem 2.6. (i) (S4+)N(CONT) C (MOD).
(ii) (MOD) C (PM).
Proof. The same as in [17, Theorem 3.1]. O
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2.3. Degree theory in Generalized Sobolev spaces

Let Y = W*(Q) and Z = Y* = W= ()(Q). We define the class F of
admissible mappings and the class H of admissible homotopies as follows:
F:Dp CY — Z belongs to I | if

(a) F is a strongly quasibounded mapping of the class (M OD).
F:Dp CY — Z belongs to 3¢ | if ' € F and the following conditions hold:

(b) if {un} C Dp is bounded , ¢, — 07 and (¢, F(up), u, — @) is bounded from
above for some @ € Y, then {t,F(u,)} C Z is bounded,

—z € Z and
S Un) = {2, u)

(c) if {un} C Dp,up ~u€eY jt, = 0%,
limsup(t, F(un), un) < (z,u) , then (

Un
Un

tnF (un)
tnF (un)

(d) if {un} C Dp, up > uin Y, t, = 0% ¢, F(u,) — z in Z and
limsup(tp F(un), un) < (z,u) , then t, F(uy) — 0 in Z.

The homotopy H : Dy — Z belongs to H, if H is a strongly quasibounded
homotopy of the class (MOD).

Lemma 2.7. If F,G € 3%, then H(t,u) = tF(u) + (1 — t)G(u) belongs to H with
DrNDg, if0<t<1
Dy, = D¢, ift=0
Dp, ift=1.

Proof. The same as in [17, p.30,31] O

Theorem 2.8. For F €3 , G CY open and bounded in'Y, f € Z and
f & F(0yQG) there exists an integer d(F,G, f) (which is the degree function) satis-
fying the conditions:

1. (Existence) if d(F,G, f) #0 , then f € F(G),

2. (Additivity) if G1,Ga € G are open and bounded, f ¢ F(G \ (G1 U G2)),
G1 QGQ :® B then

d(FaGaf) :d(FaGlaf)+d(FaG2af)a
3. (Homotopy invariance) if H € H,f € Z and f ¢ H([0,1] X Oy G),then
d(H(t,.),G, ) = constant for all t € [0, 1],

. (Normalization) There exists a normalising map K € F* such that 1
g 14

fezZ,f¢ K@OyG) and f € K(G), then

d(K,G, f)=1.



TOPOLOGICAL DEGREE METHODS FOR PARTIAL DIFFERENTIAL OPERATORS 45

Any mapping K € F* satisfying
(K(u),u) >0, when u # 0, and K(0) =0
can be chosen as a mormalising map.

Proof. The construction of the degree function is the same as in [17] where we
consider (Wén’p('), Wgn’p('), W‘m’p,('), W‘m’p,(')) as a complementary system. O

Using the conditions (1) — (4) for the degree function, we can deduce, as in [17],
some standard properties of the degree.

Proposition 2.9. Let F,T € 3* G CY open and bounded inY , F/0yG =T /0y G
and f € Z. If f ¢ F(8yG), then d(F,G, f) = d(T, G, f).

Proposition 2.10. If F € F and G C Y is an open and bounded in Y, then
d(F,G,.) is constant on each open component in Z of the open set Z \ F(dyG).

Proposition 2.11. Let FF € F, G C Y open and bounded in'Y and ug € G. Define
a mapping $: Y =Y, s(u) =u—wug. If 0 & F(dyG), then

d(F,G,0) = d(Fos™', s(@),0).
3. Differential Operators in Generalized Sobolev Spaces
3.1. Mapping of class (MOD)

Let m be a positif integer. Denote
N; = Z|a‘<m71 1, Ny = Z|a\:m 1 and Ng = Ny + Na. Let A, (z,€) be functions
which satisfy the conditions:

(A1) Ay Q x RN — R is a Caratheodory function for all |a| < m.

(A3) There exist an exponent ¢(.), (¢(z) € (1,00) with ¢ << p
(ie. infreq(p(z) — q(x)) > 0), an € LP)(Q) and constants c1,c2 > 0 such

that:

p(z)
Ao (2,€)] < aa () + 1 3512 le2€al?P 7 + €1 3 51 i 02657
when |a| = m,

a(e)
[Aa(2,6)| < aa(x) + 613 g1 €265 7@ + €130 g1y le2€ P01
when |a| < m,
for all £ € RN and a.e. x € €.

(A3) Z\M:m(A&(zanap) - Aa(xvnvp/))'(pa - p:)z) >0ae x€ Qa for all n S RNl
and p, p' € RN, p # p'.
(A4) There exist functions b, € L? )(Q) for |a| = m, b € L}(Q) constants
dy,dy > 0 and some fixed element ¢ € Wom’p(')(ﬂ) such that:
Y Aa@, O, — D)) 2 dr Y |dL P = Y ba(@)é, — blx)
lal=m |a]=m |a]=m

for a.e. x € Q and all £ € RMo,
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We denote in the following &(u) = (D%u)|q|<pm and n(u) = (Du)|aj<m-
Define a mapping A : Wgn’p(')(ﬂ) — WP ()(Q) by

(A(u),v) = Z /Q An(z,&(u)) D% (x) dz for all v € Wén’p(')(ﬂ). (3.1)

lal<m

Assume that the conditions (A;) — (A4) hold, then the operator A defined by (3.1)
is continuous and of class (S4) (the proof is the same as in [10, Proposition 27]).
By theorem 2.6, T' € (M OD) and consequently A is pseudomonotone.

Lemma 3.1. Assume that the conditions (A1) — (As) hold. If the sequence
{un} C Wén’p(')(Q) is bounded, {t,} C [0,1] and {{t, A(un),un—u)} is bounded for
some U € W(;n’p(')(Q) , then the sequence {tnAq(x,&(un))} is bounded in LY ()

for all |a| < m.

Proof. For |a| < m we use the fact that ¢ << p, which implies that for every ¢ > 0
there exists a constant k(e) such that [t|7®) < k(e)|et|P®) for all t > 0. Therefore,
by (Az)

tlAa(2,€(un))] < aale)+e Y () leca D (1) P17
|Bl=m

“+c Z |02Dﬂ(un)|p(w)_1.
[Bl<m

When e is sufficiently small, |[ecoD? (uy)||,(.) < 1 uniformly for all |3] < m,

_1
1 (e)leca D (un) [P 76 [y < 1+ k(e)/ leca D (un) P dee
Q

and
lle2D? () PO~ |y <1+ /Q |ea DP (u,,) [P da

We conclude that
[tnAa(@, €un))llp () < llaa(@)llp) +er Y 1+ k(e)lecaD? (w0
|B|=m

te Yy, (1+/ o D (u,)[P®) dux)

18]<m @
< cst.

To show the same property for |a| = m, let w = (w,) € (LP)(Q))N2, by condition
(A3) we have

tn Z (Aa(z,&(un)) — Aalz,n(un), w)) (D (up) — wa) = 0.

|a]=m
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for all z € 2 and hence

/Q Z tnAa(z,{(un))(wa — D) dz <

lee|=m

(tnA(tn), un — @) — /Q > tnAa(,&(un))(Duy, — D*u) da
laj<m

+/§ > tnAa(z,n(un), w)(we — D*uy) da (3.2)

Yigl=
lee|=m

The first term on the right remains bounded by the hypothesis of Lemma and the
second one remains bounded by virtue of the previous argument. Moreover, by

(AQ)a
[ Aa (@, n(un), ) () Slaallyey +e1 D IHeaws P
|Bl=m
_1
ter Y [1k(e)leca DPun P[5 |-
B<m
where

lleaws P gy < 1t [ Jeaws?® do < const
Q
for all |3| = 1, since wg € L), Moreover,
|||k(6)|602Dﬂun|p(m)|ﬁ ey <14 k:(e)/ leco DPu, [P < const,
Q

when e is made sufficiently small. Thus we have shown that {A.(z,n(u,),w)

is bounded in L?'()(£2), which implies that the third term on the right in (3.2) is
also bounded. By the theorem of Banach-Steinhaus, the sequence {t,, A, (2, &(uy,))}
remains bounded in L ()(Q) for every |a| = m. O

Lemma 3.2. Assume that the conditions (A1) — (A3) hold. If the sequence
{un} € WIPIQ), up — w e WY in WIPO {13 € [0,1] , t, — t € ]0,1]
tnAa (2, E(un)) = tAo(x, E(w)(o(LP'O, LPO)) in LV O(Q) and

tn Z Ap (2, &(un)) D%y — t Z Ag(2,&(u)) D% in L' (),

lal<m laj<m

then tnAa(z,&(un)) = tAa(z, () in LPO(Q) for all |a| < m.
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Proof. When | A, (z,&(un(2)))| > an(z), we have from the condition that
|tn|AOt('r7 f(un(:c)))D — tna’&(z> |p'(z)
A

tnAoz .T,f Unp $))) lnc z)—1p'(z)—
<| ( )\( ( | x | Z |cQD'6un(ac)|p( ) 1|p( )—1

[Bl<m

tnAa(z, §(un(®))), tac )| 5y
| ( )\( ( |><| /\1 Z |C2Dﬂun($)|P( )lp(m)

IN

[B]<m
C2

by tn|Aa (2, €(un))) D un ()], (3.3)

|Bl<m

IN

when A > 0 is large enough. On the other hand , if |A, (2, &(un(2)))| < an(x) , we
have

|tn|Aa($a§(un($)))| — tnaa () |p/(m) < |tnaa($) |p/(z)_

A A
Therefore
tnlAa (2, §(un(2)))] — thaa(z) ) < tnaa () p'(z)
| ! e < inteld),
Coly,
+QT Z |Aa($a‘£(“n($)))D6“n($)|
|BI<m

ae. = € Q, when A > 0 is large enough. If |f] < m — 1, then, by the com-
pact imbedding Wol’p(')(ﬂ) — LPO(Q), DPu, — DPuin LP) By Lemma 2.1,
tnAa(z,E(un)) DPuy — tA (2, €(u))DPu in LY(S2), when |3] <m — 1.

Let |a|,|8] = m be arbitrary. Denote p' = (0,0,...,0,%,0,...,0), where

Dﬂun(m) the
A

is the a'"¢ coordinate of the vector p’. By condition (As),

tn Z (Ay (@, n(un), p(un)) — Ay (2, m(un), £p") (D (un) F P;) =0,

[v|=m

and hence

S (A (0, ) Dt & 5 A 0, 20 Dty >

[v[=m
D2 (Ay @ m(un), £0) D7 () F 2 A (0,6 Do (34)
[v]=m

Let |v4| = |v9| = m be arbitrary. Then

C _
Ay, (@0 (un), £0) D2 | < fas, () er] T D un PO ey D7 0 (@)]| D72,
5| <m—1

(3.5)
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p(w) . .
where v)(z) = |caD%uy,(2)| @ . Using Lemma 2.5, we obtain D%u,, — D°u a.e.

and |coD%u, [P®) < b for all |§| < m — 1 a.e. for some h € L'(Q) and for some
subsequence {u, }. We have v and v’ = |02D5u(x)|% belong to the space
LYOQ), 08, = 0% ae. and [v8,|7®) < |ea DO, [P*) < b ace.

g, — 0% in L90). Hence ’Ug/ — 0% in
Lo, By contradiction argument, vi — 0% in LP'C) and DY2u,, — D72y in LPC).
Consequently, a,, D72u, — aoD72u in L' by Lemma 2.2 and v D72u,, — v° D72
in L' by Lemma 2.1. Moreover,

By using the Lemma 2.5 we can see that v

|%D5un|p(l)_1|DV2un| < |%D5un|p(l)_1|D5un| n |%D’qunlp(1)—1|D’qun|
< Pepsy pe 4 22 pry, pe)
co A o' A

< hs+hy€LN(Q),

when ) is large enough, because D?u,, — DPu and D2u,, — D72y in LP(). Hence,
by (3.5),
|A’Y1 (.’I/',T](Un), ip/)D’y2u7L| S h S Ll

and we obtain from (3.4)
tal Aa (@, €(un)) DPun| < o € L.
Consequently, we can find that
ul Aa (@, €@n))| — tna(@) = t1Aa(z, E()] - taa(z) in 7O
by using lemma 2.5 and (3.3). Which implies that
tn A (2, E(un)) = tAq(x, E(u)) in LP'O)(Q)

for every |a| < m. O

Lemma 3.3. Assume that the conditions (A1) — (As) hold. If the sequence
{un} C Wé"’p(')(Q), D%, — D%u € LPY) a.e. and D%u, — D%u in LPM)(Q) for
all |of <m, {t,} C[0,1], t, =t € [0,1],

tn Ao (2,€(un)) = tAa(x, §(u)) (o (L7 ), LPO))

in LP"O(Q) for all |a| < m and (tyA(uy), uy) — (tA(u),u), then

tn Z An (2, &(un)) D%y — t Z Ay (z,&(u)) D

loe|<m lor|<m

in LY(82).
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Proof. Denote fy(z) = tn 34— Aa(,€(un () Duy(z) and
f@) =320 =m Aa(@,&(u(z)) Du(z).
It is enough to prove that f, — f in L'(Q) for a subsequence. By lemma 2.1,
aaD%uy, — an D% in LY(Q), when || = m.Consequently, for every |a| = m,
there exists h, € L*(Q) such that |a,(z)D%u,(7)| < ha(x) a.e. for a subsequence.
Denote v (x) = |02D5un(x)|% and v%(z) = |02Dﬂu(x)|%, when B8] < m.
On account of compactness of the embedding Wol’p(')(Q) — LPO)(Q), we have
DPu, — DPu in LPO)(Q), when |3| < m — 1, which implies by lemma 2.3 and 2.5
that

[ e P [

and
102, (2)|7 @ = 0P (2)]7 ) ae.

for some subsequence. By lemma 2.4, |US,|‘1/(I) — |0P|7@) in LY(Q), and so for
avery |3| < m there must exist hg € L' such that

05 (2)]7 ™) < hg() ae.
Therefore v (z)] < |hﬂ($)|ﬁ e LYO(Q) ¢ L'(R). Condition (As) implies that

128 Z (Aa(z,ﬁ(un)vp(un)) - Aa(z,ﬁ(un)v(—)))Daun > 0.

lal=m
Consequently,
fn(l') Z Z tnAa(z,n(un),()))Daun(z)
|a]=m
>ty 3 (Jaa@Dun(@) +e1 Y leaDPun (@) 7))
la|=m |B|<m
> = 3 (ha(@)+a Y |hs(@)|7ET) = —h(z) € L}(9).
la|=m [B|<m

Since D*u,, — D%u in LP() for |a| < m, we know from Lemma 2.1 that

tn Y, Aa(@,&(un)) D%y =1 > Aalx,£(u)) D

|a|<m |a] <m

in L(Q). Moreover, the assumption {t, A(u,),u,) — (tA(u),u) implies that

/an(x)dxﬁ/ﬂf(x)dac.

By lemma 2.4, f,, — f in L'(Q), which completes the proof. O
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Lemma 3.4. Assume that the conditions (A1) — (As) hold. If the sequence
{un} C WP(Q), up = w in WPHD(Q), {t.} C [0,1], tn — ¢,

tnA(uyn) — z € WP O(Q)(a(W=m#' O WPy i w=mp' ()(Q) and
limsup(t, A(uy ), un) < (z,u), then

(tn Aun ), un) — (z,u).

Proof. By lemma 3.1, the sequence {t, Ay (2, &(uy)} is bounded in L ()(Q) for all
|a] < m. We can thus assume that

tnAa(@, E(un)) = ha € LY O(Q)(o(LP'O), LPO)) in LV O (Q)

for |a| < m. It is clear that

(z,w) = lim{t, A(un),w)
= lim Z (x,&(up))D%w(x) da
|a<m/
£ o

for all w € Wgn’p(')(Q). By the compact embedding Wol’p(')(Q) — LPU)(Q), we
have
D%u,, — D% in LP") for |a| < m.

> [idaletwptn s [ ha@pt

|al<m |al<m

Hence

Moreover, by the assumption,
hmsupZ/tA z{unDun§Z/hDo‘
la|<m la|<m
Therefore
hmsupZ/tA z{unDun§Z/hDo‘
o= o=
So that it is enough to prove that
hmmfZ/tA (x,&(un))D unZZ/hDO‘
o= o=

Denote
Qi = {z € Q/|D%(x)|] <k for all o] =m}
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and
1, when z € Q

Ey(x) = { 0 , otherwise.

By condition (A3) we have

/Q Z (@, n(un), Ex(x)p(u)) — Aa(@,§(un))][Ek (2) D — Dupn] = 0.
|er|=
Consequently,
/ Z tnAa(z,&(un))D%un > / Z tnAa(z,n(un), Bx(z)p(w))Ex(z) Dy
la|= la|=

+f D oo, E(un) B (x)D

le|=

+ [ 30 tudalenfun). Bu(w)o() D (36

|e|=m
By compact embedding, D%u,, — DPu a.e. and |caDPu, (z)[P(*) < h(z) a.e for

some h € L*(Q) and for |3| < m — 1 for some subsequence. Consequently,

p(x) ’
(|2 DP iy ()] 7@ )7 @) < h(z)ae.

By lemma 2.5,
p(x) p(x)
|02D5un/ ()] 4@ — |02Dﬂu($)|Q’<I)

in Lq/(')(Q). Since ¢ << p, we have

p(x)

E e 8
|caDPtp ()| 7@ — |coDPu(x)| @

in L')(Q). By (As),we obtain

p(x)
Ao (2, 0(un), Br(@)n(w)] < aa(@)+er Y |eakP 4er > oD un|v@),
|Bl=m [B]|<m—1

for || = m. Now the right-hand side converges in L?')(Q) and the left-hand side
converges a.e.,so that it is easy to deduce that the left-hand side also converges in
LP"()(Q). The first term on the right in (3.6) therefore tend towards

/ Z tAs(z,n(u), Ex(x)n(u)Ey () D"u,
Q

lee|=

and the third term on the right in (3.6) will tend towards

/Zmzn B(w)p(u) D™,

lo|=
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when n approaches infinity. Consequently,

liminf/Q Z tnAa(z,&(un))D%un > liminf/Qaz_:mtnAa(xyf(un))Ek(x)Da

la|=m

+f tAa (@, 1(u),0) D" u
A\, ‘QZ:

= Z/QkhaDu

|a|=m

+f tAa(,7(u),0) D",

as Ey(x)Du € LPO)(Q). Letting k — oo we prove the lemma, since
hoD%u € LY () and tA, (z,n(u),0) D% € LY(Q) for |a| = m.
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d

In the sequel we shall use the following well-known fact: if u,, — v in LP()(Q)

and u, — w a.e. in , then v = w a.e. in Q.

Lemma 3.5. Assume that the conditions (A1) — (A4) hold. If the sequence
{un} C Wg"P(Q), wp — w e WPH(Q) in WY (),
Alun) = z € WP (@) (o (W2 O WPy in w=m#'O(Q) and

limsup(A(un), un) < (z,u), then u, — u in Wom’p(')(ﬂ) for some subsequence.

Proof. We deduce as in [13] that D%u,(xz) — D%u(z) a.e. for |a| < m and for

some subsequence. According to lemma 3.1 we may assume that
A2, E(un)) — wo(z)(o(LP W, LPO)) in LV
for every |a| < m. Since

Aa(@,§(un)) = Az, (u)) ae.,

we know that w, (2) = Ay (x,&(u)) a.e. A is pseudomonotone.
Hence
z = A(u) and (A(un), un) = (A(u),u).

By lemma 3.3,
Z An(z, & (un)) Dy — Z Ap(z,&(u)) D
lal<m lal<m
in L1(Q), and by condition (A4),
di Y |d2D%un(@)/P <Y Aa(w, Eun (@) D un (@)

la|=m |al=m

- Z Aa (2, &(un(2)) D" p(2)

lal=m

+ Y ba(z)Dun(z) + b(a).

lee|=m
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The right hand side converges in L!(2) in accordance with Lemma 2.1. Lemma
2.5 implies D%u,, — D%u in LPM)(Q) for all |a| = m. By compact embedding,
D%u,, — D*u in LP1), when |a| < m, which completes the proof. |

Theorem 3.6. If the conditions (A1) — (A4) hold, then the mapping A defined by
(3.1) belong to the class F*.

Proof. Strong quasiboundedness and condition b) of class F* follow immediately
from Lemma 3.1.

Lemma 3.4 implies condition ¢), and condition d) follows from lemmas 3.4, 3.3 and
3.2. Suppose that

{un} € WIP(Q), un — uw in WP(Q), Aun) — 2 € Z(a(W=mP' O WwPHy)
in W2 ()(Q) and limsup, . (A(tn), un) < (z,u).

By pseudomonotonicity, z = A(u) and (A(un), un) — (A(u),u). If (A4) holds,
then, by Lemma 3.5, u,, — u in Wgn’p(')(Q) for some subsequence. Choosing
t, = 1in Lemma 3.3 and Lemma 3.2 we may deduce that A(u,) — A(u) (mod) in
W2 ()(Q). Hence A € (MOD). O

3.2. Normalising maps

Let Y = Wgn’p(')(ﬂ), Z = WP ()(Q). We start with an abstract existence
theorem.

Theorem 3.7. Let G C Y be open and bounded inY,0€ G, f € Z and I € F°.
Suppose that there exists a normalising map K € F* such that K(0) = 0 and
(K(u),u) >b>0 for all u € Oy G. Choose a constant a > 0 such that

(K (w).)
“S LB TR W

If (F(u) — f,u) + || F(u) = flla > 0 for all u € Oy G, then d(F,G, f) = 1.
Proof. We may assume that f = 0. Since (K (u),u) > b > 0 for all u € Iy G, it is

clear that 0 ¢ K (dy G). Define by
H(t,u) =tF(u) + (1 —t) K (u).

a homotopy which belong to the class H by Lemma 2.7. We show that H (¢,u) # 0
for all t € [0,1],u € Oy G. If 0 € H([0,1] x Iy G), then

tF(u)+(1—t)K(u)=0
for some u € Oy G and ¢ € [0,1]. It is clear that ¢ # 0. Thus
tE ()] = (1 =) K )],

implying
1—

1 F@)
bt K@
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On the other hand,
t{(F(u),u) + (1 —t)(K(u),u) =0,

and therefore

(F(u),u) =(1- %)(K(u),u) = —[|F(u)]| (K (u), u)

W < —[|F(u)]la,

which is a contradiction. Hence H(t,u) # 0 for all ¢ € [0,1] and u € dyG. By
homotopy invariance,

d(F,G,0) = f(K,G,0).
Since 0 € K(G), we have d(K,G,0) = 1. O
Corollary 3.8. Let G C Y be open and bounded in Y, u € G, f € Z and F € F°.

Suppose that there exists a normalising map K € F* such that
K(u) = K(u+a)— K(u) is also a normalising map in the class F* and

(K(u) — K(a),u—1a)>b>0 for all u € Oy G.
Choose a constant a > 0 such that

e (K(u) - K(u),u —u)
oS B KW = K@)

If (F(u) — f,u—u) + ||F(u) — flla > 0 for all uw € Oy G, then d(F,G, f) = 1.

Proof. We may assume that f = 0. It follows from the above assumptions that the
degree d(F, G, 0) is defined. Define s(u) = u — 4. Then, by property 2.11,

d(F,G,0) = d(Fos™!,s(@),0).

Let u € dy s(G) be arbitrary. Denote u = u’ — @, where v’ € dy G.

Now (K (u),u) = (K(v') — K(u),u’ — @) > b >0 and

(K(w)u) _ (K(W) - K(@,u—n) _
||K(U)|| B | K (v) — K(a)| >a > 0.

Moreover,
(Fos™!(u),u) + [|[Fos™ (u)lla = (F(u'),u" — @) + ||F()]|a.
Therefore the assumptions of Theorem 3.7 hold. Hence
d(Fos™'(u),s(G),0) = 1.

d

Next we shall present two mappings of class F*, which can be used as normal-
ising maps.
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Theorem 3.9. The mapping K : Wom’p(')(Q) — WP O(Q) defined by

(Ku,v) = Z / |D%u(2)|P®) " sgnDu(x) D (x) da: for all v € W(;n’p(')(Q),
Q

lee|=m

belongs to the class T, (K (u),u) > 0 for u € Wom’p(')(Q), u#0 and K(0) = 0.

Proof. Denote Ay (x,1,p) = |pg|P® " 1sgnp, when |a] = m and A, (z,n,p) = 0
when |a] < m — 1. The mappings A, are clearly continuous with respect to 7
and p. Hence condition (A;) is satisfied. It is obvious that condition (As) holds.
Since the function |p, [P(*)~1sgnp,, is strictly increasing, we obtain condition (Ajz).
Condition (A4) is reduced to

> Aa@,8)Le = D €W,
|a]=m |a]=m
when we choose ¢ = 0,b, = b= 0 and d; = dy = 1. Moreover,

(K (u),uy = Z /Q|D0‘u(x)|p(z)_1sgnDo‘u(x)Dau(ac)dac

la]=m

= Y / |Du(x)|P™) dx > 0,
Q

laj=m

and the equality holds if and only if D%u(x) = 0 a.e. for every |a| = m , which
implies that u = 0. O

Theorem 3.10. The mapping, so-called p(.)-Laplacian,
KWy P(Q) » wir'0()

defined by
K(u) = =0y (u) = —div(|Vu(z) [P =2 Vu(z)).
i.€.
(Ku,v) = | |Vu(z)|P®2Vu(z).Vo(z)dz for all v e Wol’p(')(Q),
Q

belongs to the class F*, (K (u),u) > 0 for u € Wol’p(')(Q), u#0 and K(0) =0.

Proof. Denote A;(z,n,p) = |p|P®~2p;,i =1,2,..., N, when p # 0, A;(x,n,0) = 0.
Since |A;(z,1m, p)| < |p[P®) 1, the function A; is continuous with respect to 1 and
p. Hence condition (A;) is satisfied. Condition (As) is easily seen to hold. Let
f(t) = [tP® =1/t when t # 0, f(0) = 0. The function f(t)t is strictly increasing
in [0, 00), which gives

(fUeDlol = £ DI Dol = 16']) > 0,
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when p, p’ € RV2 |p| # |p’|. Hence

N

ST1UeDe + FU0 DR = 1 el + FURDlolle| > 0.

i=1
By the Cauchy-Schwarz inequality, |p||p’| > Z —1 P;P;, Implying

N N

ST1UeDe + FU0 DR = S I Uel) + £/ DIpsss > 0.

i=1 i=1

Consequently,
N

> [ Uehes = (10 DRNP; — i) > 0,

i=1

when |p| # |p/|. If |p| = |p/|, we have equality in the Cauchy-Schwarz inequality
only if p = p/, and hence strict inequality follows. Therefore condition (As) holds.
Condition (A4) follows as in Theorem 3.9. Moreover,

(w0 = [ [Tu@) ds =0,
Q
and equality holds only if Vu(x) = 0 a.e., which implies that u =0 a.e. O

The previous theorems imply the existence of a normalising map in Sobolev
space with variables exponents which satisfy the conditions of the previous section.
We shall equip the space Y = W(;"’p(')(ﬂ) with the norm

lully = | > l1Dmul
|a|=

Let G € WJ""(Q) be open and bounded in W) () and 0 € G. Since the set
Oy G is closed, we have

inf ||ul]ly > 0.

Iy G

uedy

We may therefore choose a constant ¢ € R such that

0<c<— inf ||ully.

v/ Ny ueoy G

Moreover, we have

¢ < Z [Dull5 ) —e

lo|=

1
—sz mas {[[Dull? )} -

= max [|D%ull,)}

IN
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for some € > 0 and for all u € 0y G. Define a mapping K € F¢,
D%y
Ku(@)= 3 (-1 (P por-1 g peue)),
|a=m
Let u € Oy G and [|[DYul|,)y = max|qj=p, [ DYu||p). Now

(K (u)u) = Z/|D“ po= 22U, g,

le|=

> /ID U o)

o=

> / | [P da
|Da0u||p( )y — €
>
Moreover,
D x « «
Il = (Kw.o) = s 3 / | 22 )1 g1 D () D0 ()
[lv]ly <1 lv ||Y<1
D* u( ) (z)—1 e
< sup 2 N=——=1""""" Ml ) ID" |l
Iolly <1 ‘o; c () p(.)
Du(x)  pz)—
< 2 Y RDpey,
[a|=m
Consequently,
D“uz T
<K(u)au> > CZ\M me ( )|p( )d.CC
- Doy .
1K@z ~ 2%, |||—|p )
If ||| 224@d p(@)=1)| ) <1 for all |a] = m, then
KWz = 2N2 = 2N2
! u(z) Do)
Du(x) ) — Mu(T) ) —
max ||I7|”( My = Hlflp( Ty > 1

for some |a1| = m, then we obtain
/ |M|p(w) dz :/ ||M|p(z)—l|p/(w) dr > H|M|p(w)—l||p,()
0 C Q C C

Hence

(K(u),u) > cz|a\:m fﬂ|w|p(m) dx > Cf |M|p(m) dx > c
1K @)llz ™~ 237, I 22 @1~ 2N | BB pta) 1)),y — 2N
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In other words, we have constructed a normalising map K for which the conditions

of this section hold. For example, if G = Br(0), we may choose ¢ = 2\2\[—2,
b= _ R

2\/ T 4N>\/N>

and

Ku(z)= Y (~1)*lD*(] [P~ sgn D u(x))

laf<m

D%u(x)

in Theorem 3.7. While, if G = Br(@) for some @ € W, ’p('), we may choose a, b
and ¢ as above and

Ku(z) = Z(—1)|Q‘Da(|MV(I)ASQHDQU@)))
o] <m
+ Z \Q\D‘l D%(z)w(x)*lsgnDaﬂ(x))
la]<m

in Corollary 3.8.

3.3. Existence results

Theorem 3.11. Assume that the conditions (A1) — (A4) hold. Define the mapping
A asin (3.1). Let f €¢ W=P ()(Q). If

liminf (A(u) — f,u— @) > 0 for some u € Wom’p(')(ﬂ), (3.7)

lullm py—>o0

then the problem (1.1) is almost solvable, i.e., f € A(W, ’p( )( Q). If

liminf (A(u) — f,u—a) >0 for some u € Wén’p(')(ﬂ), (3.8)

lullm pcy—>o0

then the problem (1.1) is solvable, i.e., f € A(W, ’p( )(Q))
Proof. Suppose first that (3.7) holds. By theorem 3.6, A € F*. If

inf Alu) — fiu—u) + ||A ) <0 forall R >0,
it (A = o) A —

then, by (3.7), there exists a sequence {u,} C Wo™)(Q) such that unllm,p) —
oo and ||A(u,) — f|| = 0. Hence f € A(Wom’p(')(Q)).Suppose that

(A~ =)+ A — f

Asindicated in the previous section, there exists a normalising map K satisfying the

assumptions of Corollary 3.8 with b = 2\;% and a = ﬁ. Denote Bgr(a) =

{u € W"*Y(Q)/|lu — ally < R}. By Corollary 3.8, d(A, Bg(u),f) = 1. By

) > 0 for some R > 0.
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property (1) of the degree function, f € A(Bgr(@)) C A(Wgn’p(')(ﬂ)). If (3.8)
holds, then we clearly have

R
inf Alu) — f,u—u) + ||A(u) — f||———==) > 0 for some R > 0,
”ufa”w(.):RG (u) = f )+ 1AW = Fly =)
and proceeding as above we obtain f € A(Wgn’p(')(Q)). O
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