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abstract: The main aim of this paper is to prove, by using the topological degree
methods, the existence of solutions for nonlinear elliptic equation Au = f where
Au =

∑
|α|≤m(−1)|α|DαAα(x, u,∇u, ...,∇mu) is partial differential operators of

general divergence form and f ∈ W−m,p′(.)(Ω) with p(x) ∈ (1,∞).
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1. Introduction

Topological degree theory is one of the most effective tools in solving nonlinear
equations. Brouwer had published a degree theory in 1912 for continuous maps
defined in finite dimensional Euclidean space [4]. Leray and Schauder developed
the degree theory for compact operators in infinite dimensional Banach spaces
[12]. Since then numerous generalizations and applications have been investigated
in various ways of approach (see e.g. [7,15,16,19]). Browder introduced a topological
degree for nonlinear operators of monotone type in reflexive Banach spaces [5,6].
The theory was constructed later by Berkovits and Mustonen by using the Leray-
Schauder degree [1,2,3] which can be applied to partial differential operators of
general divergence form, i.e. to operators of the form

Au(x) =
∑

|α|≤m

(−1)|α|DαAα(x, u,∇u, ...,∇mu).
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If the functions Aα(x, ξ) satisfy the polynomial growth conditions with respect to
|ξ| and some analytical conditions, then the differential operator will generate a
mapping defined in a Sobolev space,

A : Wm,p
0 (Ω) → W−m,p′

(Ω),

which belongs to the class (S+) (see Page 5, item (iv) for the definition of this class
below).

Let Ω ⊂ R
N (N ≥ 1) be an open and bounded subset with the segment property

(i.e. there exist a locally finite open covering {Oi} of ∂Ω and corresponding vectors
{yi} such that for x ∈ Ω̄∩Oi, and 0 < t < 1, x+tyi ∈ Ω), A be a partial differential
operator of general divergence form

A(u) =
∑

|α|≤m

(−1)|α|DαAα(x, ξ(u))

defined on a subset of W
m,p(.)
0 (Ω) and f ∈ W−m,p′(.)(Ω) where 1

p(x) +
1

p′(x) = 1

( see below for the definitions of these spaces).
The goal of the paper is to prove the existence of solutions for nonlinear elliptic

equations with boundary value problems of the form

{

A(u) = f in Ω
Dαu(x) = 0 on ∂Ω for |α| ≤ m− 1.

(1.1)

by applying the topological degree theory.
Our paper is organized in the following way. The second section recalls some

preliminary definitions and results about Generalized Lebesgue and Sobolev spaces,
some classes of mappings of monotone type and defines a degree function in Sobolev
spaces with variables exponents. The last section defines a new monotonicity class
i.e. a class (MOD), presents some normalising maps and proves the existence of a
solution for the problem (1.1) using the degree theory.

The study of the nonlinear partial differential equations in this type of spaces
is strongly motivated by numerous phenomena of physics, namely the problems
related to non-Newtonian fluids of strongly inhomogeneous behavior with a high
ability of increasing their viscosity under a different stimulus, like the shear rate,
magnetic or electric field [14].

2. Preliminary definitions and results

In the sequel, we consider a naturel number N ≥ 1 and an open and bounded
domain Ω ⊂ R

N with segment property.

2.1. Generalized Lebesgue and Sobolev spaces

We recall in what follows some well Known properties of the generalized Lebesgue

and Sobolev spaces Lp(.)(Ω) and W
m,p(.)
0 (Ω) which can be found for instance in X.

Fan and D. Zhao [8] or O. Kováčik and J. Rákosńık [11]. In the sequel, we call
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exponent any measurable function: p : Ω → [1,+∞) and we set p− = ess inf
Ω

p and

p+ = ess sup
Ω

p.

For every exponent p(.) and for every measurable function u, we set

ρp(.)(u) =

∫

Ω

|u(x)|p(x) dx.

We define the variable exponent Lebesgue space

Lp(.)(Ω) = {u; u : Ω → R is measurable and ρp(.)(u) < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

||u||p(.) = inf{λ > 0/ρp(.)(
u

λ
) ≤ 1}.

We say that a sequence {un} ⊂ Lp(.)(Ω) converges to u ∈ Lp(.)(Ω) in the modular
sense, denote un → u(mod) in Lp(.), if there exists λ > 0 such that

ρp(.)(
un − u

λ
) → 0, when n → ∞.

We say that a bounded exponent p(.) is log-Hölder continuous on Ω if there exists
α > 0 such that

|p(x) − p(y)| ≤ α

log(e+ 1/|x− y|)
for all x, y ∈ Ω. Next, let m be a positive integer, we define

Wm,p(.)(Ω) = {u ∈ Lp(.)(Ω) : Dαu ∈ Lp(.)(Ω), |α| ≤ m},

with the norm
||u||m,p(.) =

∑

|α|≤m

||Dαu||p(.)

and W
m,p(.)
0 (Ω) as the closure of D(Ω) = C∞

0 (Ω) in Wm,p(.)(Ω).
We say that a sequence {un} ⊂ Wm,p(.)(Ω) converges to u ∈ Wm,p(.)(Ω) in the

modular sense, denote un → u(mod) in Wm,p(.), if there exists λ > 0 such that

ρp(.)(
Dαun −Dαu

λ
) → 0, when n → ∞,

for |α| ≤ m.
We define

W−m,p′(.)(Ω) = {g ∈ D
′(Ω) : g =

∑

|α|≤m

(−1)|α|Dαgα, where gα ∈ Lp′(.)(Ω)},

and we say that a sequence {un} ⊂ W−m,p′(.)(Ω) converges to u ∈ W−m,p′(.)(Ω)
in the modular sense, denote un → u(mod) in W−m,p′(.), if un and u have repre-
sentations

un =
∑

|α|≤m

(−1)|α|Dαg(n)α , u =
∑

|α|≤m

(−1)|α|Dαgα,
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such that g
(n)
α , gα ∈ Lp′(.)(Ω) and g

(n)
α → gα(mod) in Lp′(.) for all |α| ≤ m.

In what follows, we assume that p(.) is a log-Hölder continuous exponent such
that 1 < p− ≤ p(x) ≤ p+ < ∞. Under this assumption, we have:

1. Endowed with the Luxembourg norm, Lp(·)(Ω) is a Banach space [11, Theo-
rem 2.5], separable, reflexive [11, Corollary 2.7], uniformly convex and

[Lp(.)(Ω)]′ = Lp′(.)(Ω)

.

2. For every u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω) Hölder inequality holds [11, Theorem
2.1]

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

≤
(

1

p−
+

1

p′−

)

||u||p(.)||v||p′(.).

3. If p and q are variable exponents so that q(.) ≤ p(.) a.e. in Ω then there
exists the continuous embedding Lp(.)(Ω) → Lq(.)(Ω), whose norm does not
exceed |Ω|+ 1.

4. If (un) and u ∈ Lp(.)(Ω) then the following relations hold true

||u||p(.) > 1 ⇒ ||u||p
−

p(.) ≤ ρp(.)(u) ≤ ||u||p
+

p(.)

||u||p(.) < 1 ⇒ ||u||p
+

p(.) ≤ ρp(.)(u) ≤ ||u||p
−

p(.)

lim
n→∞

un = 0 in Lp(.)(Ω) ⇔ lim
n→∞

ρp(.)(un) = 0

5. The space (W
m,p(.)
0 (Ω), ‖ · ‖m,p(.)) is a Banach space separable and reflexive

and [W
m,p(.)
0 (Ω)]′ = W−m,p′(.)(Ω).

6. If q(.) is an exponent with q+ < ∞ then W
m,p(.)
0 (Ω) → Lq(.)(Ω) (continu-

ous embedding) if q(.) ≤ p⋆(.) = Np(.)
N−p(.) . Moreover we have the compact

embedding W
m,p(.)
0 (Ω) →֒ Lp(.)(Ω).

7. Norm convergence and modular convergence are equivalent.

Lemma 2.1. If {un} ⊂ Lp(.)(Ω), {vn} ⊂ Lp′(.)(Ω), un → u ∈ Lp(.)(Ω) in Lp(.)(Ω)
and vn → v a.e. and for the weak topology σ(Lp′(.), Lp(.)) with v ∈ Lp′(.)(Ω), then
unvn → uv in L1(Ω).

Lemma 2.2. If {un} ⊂ Lp(.)(Ω), un → u a.e. with ∈ Lp(.)(Ω) and un ⇀ u in
Lp(.)(Ω) and v ∈ Lp′(.)(Ω), then unv → uv in L1(Ω).

Lemma 2.3. If {un} ⊂ Lp(.)(Ω) with un → u in Lp(.)(Ω), then
∫

Ω

|un(x)|p(x) dx →
∫

Ω

|u(x)|p(x) dx.
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Lemma 2.4. [9,17]

(i) If {un} ⊂ L1(Ω) with un → u a.e. with u ∈ L1(Ω), un, u ≥ 0 a.e. and
∫

Ω un(x) dx →
∫

Ω u(x) dx , then un → u in L1(Ω).

(ii) If {un} ⊂ L1(Ω) with un → u a.e. with u ∈ L1(Ω),
∫

Ω un(x) dx →
∫

Ω u(x) dx
, and un(x) ≥ −h(x) a.e. for some h ∈ L1(Ω) , then un → u in L1(Ω).

Lemma 2.5. (i) If {un} ⊂ Lp(.)(Ω) with un → u a.e. with u ∈ Lp(.)(Ω), un, u ≥ 0
a.e. and |cun(x)|p(x) ≤ h(x) a.e. for some h ∈ L1(Ω) and c > 0 then un → u
in Lp(.)(Ω).

(ii) If {un} ⊂ Lp(.)(Ω) with un → u ∈ Lp(.)(Ω), then there exists a subsequence
{un′}, c > 0 and h ∈ L1(Ω) such that un′(x) → u(x) a.e.
and |cun′(x)|p(x) ≤ h(x) a.e.

2.2. Some classes of mappings of monotone type

Let Y = W
m,p(.)
0 (Ω) and Z = Y ∗ = W−m,p′(.)(Ω) and a mapping F : DF ⊂

Y → Z.

(i) F is bounded, denote F ∈ (BD), if the set F (A) ⊂ Z is bounded when A ⊂ DF

is bounded.

(ii) F is strongly quasibounded , denote F ∈ (QB) , if the conditions
{un} ⊂ DF bounded and limsupn→∞〈F (un), un − ū〉 is bounded from above
for some ū ∈ Y0

imply that {F (un)} is bounded in Z .

(iii) f is continuous , denote F ∈ (CONT ) , if the conditions {un} ⊂ DF , u ∈ DF

and ‖un − u‖Y → 0
imply that ‖F (un)− F (u)‖Z → 0 .

(iv) F is of the class (S+), denote F ∈ (S+),if the conditions
{un} ⊂ DF , un ⇀ u ∈ Y in Y and limsupn→∞〈F (un), un − u〉 ≤ 0
imply that u ∈ DF , and ‖un − u‖Y → 0 .

(v) F is pseudomonotone, F ∈ (PM) , if the conditions
{un} ⊂ DF , un ⇀ u in Y , F (un) ⇀ z in Z and
limsupn→∞〈F (un), un〉 ≤ 〈z, u〉
imply that u ∈ DF , z = F (u) and 〈F (un), un〉 → 〈F (u), u〉.

(vi) F is of the class (MOD), denote F ∈ (MOD), if the conditions
{un} ⊂ DF , un ⇀ u in Y , F (un) ⇀ z in Z and
limsupn→∞〈F (un), un〉 ≤ 〈z, u〉
imply that u ∈ DF , z = F (u) and there exists a subsequence {un′} such
that un′ → u (mod) in Y and F (un′) → F (u) (mod) in Z.

Theorem 2.6. (i) (S+) ∩ (CONT ) ⊂ (MOD).

(ii) (MOD) ⊂ (PM).

Proof. The same as in [17, Theorem 3.1]. ✷
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2.3. Degree theory in Generalized Sobolev spaces

Let Y = W
m,p(.)
0 (Ω) and Z = Y ∗ = W−m,p′(.)(Ω). We define the class F of

admissible mappings and the class H of admissible homotopies as follows:
F : DF ⊂ Y → Z belongs to F , if

(a) F is a strongly quasibounded mapping of the class (MOD).
F : DF ⊂ Y → Z belongs to Fa , if F ∈ F and the following conditions hold:

(b) if {un} ⊂ DF is bounded , tn → 0+ and 〈tnF (un), un − ū〉 is bounded from
above for some ū ∈ Y , then {tnF (un)} ⊂ Z is bounded,

(c) if {un} ⊂ DF , un ⇀ u ∈ Y ,tn → 0+ , tnF (un) ⇀ z ∈ Z and
limsup〈tnF (un), un〉 ≤ 〈z, u〉 , then 〈tnF (un), un〉 → 〈z, u〉 ,

(d) if {un} ⊂ DF , un → u in Y , tn → 0+, tnF (un) ⇀ z in Z and
limsup〈tnF (un), un〉 ≤ 〈z, u〉 , then tnF (un) → 0 in Z.

The homotopy H : DH → Z belongs to H, if H is a strongly quasibounded
homotopy of the class (MOD).

Lemma 2.7. If F,G ∈ Fa, then H(t, u) = tF (u) + (1− t)G(u) belongs to H with

DHt
=







DF ∩DG, if 0 < t < 1
DG, if t = 0
DF , if t = 1.

Proof. The same as in [17, p.30,31] ✷

Theorem 2.8. For F ∈ F , G ⊂ Y open and bounded in Y , f ∈ Z and
f 6∈ F (∂Y G) there exists an integer d(F,G, f) (which is the degree function) satis-
fying the conditions:

1. (Existence) if d(F,G, f) 6= 0 , then f ∈ F (G),

2. (Additivity) if G1, G2 ∈ G are open and bounded, f 6∈ F (Ḡ \ (G1 ∪G2)),
G1 ∩G2 = Ø , then

d(F,G, f) = d(F,G1, f) + d(F,G2, f),

3. (Homotopy invariance) if H ∈ H,f ∈ Z and f 6∈ H([0, 1]× ∂Y G),then

d(H(t, .), G, f) = constant for all t ∈ [0, 1],

4. (Normalization) There exists a normalising map K ∈ Fa such that if
f ∈ Z,f 6∈ K(∂Y G) and f ∈ K(G), then

d(K,G, f) = 1.
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Any mapping K ∈ Fa satisfying

〈K(u), u〉 > 0, when u 6= 0, and K(0) = 0

can be chosen as a normalising map.

Proof. The construction of the degree function is the same as in [17] where we

consider (W
m,p(.)
0 ,W

m,p(.)
0 ,W−m,p′(.),W−m,p′(.)) as a complementary system. ✷

Using the conditions (1)−(4) for the degree function, we can deduce, as in [17],
some standard properties of the degree.

Proposition 2.9. Let F, T ∈ Fa, G ⊂ Y open and bounded in Y , F/∂Y G = T/∂Y G
and f ∈ Z. If f 6∈ F (∂Y G), then d(F,G, f) = d(T,G, f).

Proposition 2.10. If F ∈ F and G ⊂ Y is an open and bounded in Y , then
d(F,G, .) is constant on each open component in Z of the open set Z \ F (∂Y G).

Proposition 2.11. Let F ∈ F, G ⊂ Y open and bounded in Y and u0 ∈ G. Define
a mapping s : Y → Y, s(u) = u− u0. If 0 6∈ F (∂Y G), then

d(F,G, 0) = d(Fos−1, s(G), 0).

3. Differential Operators in Generalized Sobolev Spaces

3.1. Mapping of class (MOD)

Let m be a positif integer. Denote
N1 =

∑

|α|≤m−1 1 , N2 =
∑

|α|=m 1 and N0 = N1 +N2. Let Aα(x, ξ) be functions
which satisfy the conditions:

(A1) Aα : Ω× R
N0 → R is a Caratheodory function for all |α| ≤ m.

(A2) There exist an exponent q(.), (q(x) ∈ (1,∞) with q << p
(i.e. infx∈Ω(p(x) − q(x)) > 0), aα ∈ Lp′(.)(Ω) and constants c1, c2 > 0 such
that:

|Aα(x, ξ)| ≤ aα(x) + c1
∑

|β|=m |c2ξβ |p(x)−1 + c1
∑

|β|<m |c2ξβ |
p(x)

q′(x)

when |α| = m,

|Aα(x, ξ)| ≤ aα(x) + c1
∑

|β|=m |c2ξβ |
q(x)

p′(x) + c1
∑

|β|<m |c2ξβ |p(x)−1

when |α| < m,
for all ξ ∈ R

N0 and a.e. x ∈ Ω.

(A3)
∑

|α|=m(Aα(x, η, ρ)− Aα(x, η, ρ
′)).(ρα − ρ′α) > 0 a.e. x ∈ Ω, for all η ∈ R

N1

and ρ, ρ′ ∈ R
N2 , ρ 6= ρ′.

(A4) There exist functions bα ∈ Lp′(.)(Ω) for |α| = m, b ∈ L1(Ω) constants

d1, d2 > 0 and some fixed element φ ∈ W
m,p(.)
0 (Ω) such that:

∑

|α|=m

Aα(x, ξ)(ξα −Dαφ(x)) ≥ d1
∑

|α|=m

|d2ξα|p(x) −
∑

|α|=m

bα(x)ξα − b(x)

for a.e. x ∈ Ω and all ξ ∈ R
N0 .
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We denote in the following ξ(u) = (Dαu)|α|≤m and η(u) = (Dαu)|α|<m.

Define a mapping A : W
m,p(.)
0 (Ω) → W−m,p′(.)(Ω) by

〈A(u), v〉 =
∑

|α|≤m

∫

Ω

Aα(x, ξ(u))D
αv(x) dx for all v ∈ W

m,p(.)
0 (Ω). (3.1)

Assume that the conditions (A1)− (A4) hold, then the operator A defined by (3.1)
is continuous and of class (S+) (the proof is the same as in [10, Proposition 27]).
By theorem 2.6, T ∈ (MOD) and consequently A is pseudomonotone.

Lemma 3.1. Assume that the conditions (A1)− (A3) hold. If the sequence

{un} ⊂ W
m,p(.)
0 (Ω) is bounded, {tn} ⊂ [0, 1] and {〈tnA(un), un− ū〉} is bounded for

some ū ∈ W
m,p(.)
0 (Ω) , then the sequence {tnAα(x, ξ(un))} is bounded in Lp′(.)(Ω)

for all |α| ≤ m.

Proof. For |α| < m we use the fact that q << p, which implies that for every ǫ > 0
there exists a constant k(ǫ) such that |t|q(x) ≤ k(ǫ)|ǫt|p(x) for all t > 0. Therefore,
by (A2)

tn|Aα(x, ξ(un))| ≤ aα(x) + c1
∑

|β|=m

|k(ǫ)|ǫc2Dβ(un)|p(x)|
1

p′(x)

+c1
∑

|β|<m

|c2Dβ(un)|p(x)−1.

When ǫ is sufficiently small, ‖ǫc2Dβ(un)‖p(.) ≤ 1 uniformly for all |β| ≤ m,

‖|k(ǫ)|ǫc2Dβ(un)|p(x)|
1

p′(x) ‖p′(.) ≤ 1 + k(ǫ)

∫

Ω

|ǫc2Dβ(un)|p(x) dx

and

‖|c2Dβ(un)|p(x)−1‖p′(.) ≤ 1 +

∫

Ω

|c2Dβ(un)|p(x) dx

We conclude that

‖tnAα(x, ξ(un))‖p′(.) ≤ ‖aα(x)‖p′(.) + c1
∑

|β|=m

(1 + k(ǫ))‖ǫc2Dβ(un)‖p(.)

+ c1
∑

|β|<m

(1 +

∫

Ω

|c2Dβ(un)|p(x) dx)

≤ cst.

To show the same property for |α| = m, let w = (wα) ∈ (Lp(.)(Ω))N2 , by condition
(A3) we have

tn
∑

|α|=m

(Aα(x, ξ(un))−Aα(x, η(un), w))(D
α(un)− wα) ≥ 0.
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for all x ∈ Ω and hence

∫

Ω

∑

|α|=m

tnAα(x, ξ(un))(wα −Dαū) dx ≤

〈tnA(un), un − ū〉 −
∫

Ω

∑

|α|<m

tnAα(x, ξ(un))(D
αun −Dαū) dx

+

∫

Ω

∑

|α|=m

tnAα(x, η(un), w)(wα −Dαun) dx (3.2)

The first term on the right remains bounded by the hypothesis of Lemma and the
second one remains bounded by virtue of the previous argument. Moreover, by
(A2),

‖Aα(x, η(un), w)‖p′(.) ≤‖aα‖p′(.) + c1
∑

|β|=m

‖|c2wβ |p(x)−1‖p′(.)

+ c1
∑

β<m

‖|k(ǫ)|ǫc2Dβun|p(x)|
1

p′(x) ‖p′(.).

where

‖|c2wβ |p(x)−1‖p′(.) ≤ 1 +

∫

Ω

|c2wβ |p(x) dx ≤ const

for all |β| = 1, since wβ ∈ Lp(.). Moreover,

‖|k(ǫ)|ǫc2Dβun|p(x)|
1

p′(x) ‖p′(.) ≤ 1 + k(ǫ)

∫

Ω

|ǫc2Dβun|p(x) ≤ const,

when ǫ is made sufficiently small. Thus we have shown that {Aα(x, η(un), w)}
is bounded in Lp′(.)(Ω), which implies that the third term on the right in (3.2) is
also bounded. By the theorem of Banach-Steinhaus, the sequence {tnAα(x, ξ(un))}
remains bounded in Lp′(.)(Ω) for every |α| = m. ✷

Lemma 3.2. Assume that the conditions (A1)− (A3) hold. If the sequence

{un} ⊂ W
m,p(.)
0 (Ω), un → u ∈ W

m,p(.)
0 in W

m,p(.)
0 , {tn} ⊂ [0, 1] , tn → t ∈ [0, 1] ,

tnAα(x, ξ(un)) → tAα(x, ξ(u))(σ(L
p′(.), Lp(.)) in Lp′(.)(Ω) and

tn
∑

|α|≤m

Aα(x, ξ(un))D
αun → t

∑

|α|≤m

Aα(x, ξ(u))D
αu in L1(Ω),

then tnAα(x, ξ(un)) → tAα(x, ξ(u)) in Lp′(.)(Ω) for all |α| ≤ m.
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Proof. When |Aα(x, ξ(un(x)))| ≥ aα(x), we have from the condition that

| tn|Aα(x, ξ(un(x)))|) − tnaα(x)

λ
|p′(x)

≤ | tnAα(x, ξ(un(x)))

λ
| × | tnc1

λ

∑

|β|≤m

|c2Dβun(x)|p(x)−1|p′(x)−1

≤ | tnAα(x, ξ(un(x)))

λ
| × | tnc1

λ

∑

|β|≤m

|c2Dβun(x)|p(x)|
1

p(x)

≤ c2
λ

∑

|β|≤m

tn|Aα(x, ξ(un)))D
βun(x)|, (3.3)

when λ > 0 is large enough. On the other hand , if |Aα(x, ξ(un(x)))| < aα(x) , we
have

| tn|Aα(x, ξ(un(x)))| − tnaα(x)

λ
|p′(x) ≤ | tnaα(x)

λ
|p′(x).

Therefore

| tn|Aα(x, ξ(un(x)))| − tnaα(x)

λ
|p′(x) ≤ | tnaα(x)

λ
|p′(x)

+
c2tn
λ

∑

|β|≤m

|Aα(x, ξ(un(x)))D
βun(x)|

a.e. x ∈ Ω, when λ > 0 is large enough. If |β| ≤ m − 1, then, by the com-

pact imbedding W
1,p(.)
0 (Ω) →֒ Lp(.)(Ω), Dβun → Dβu in Lp(.).By Lemma 2.1,

tnAα(x, ξ(un))D
βun → tAα(x, ξ(u))D

βu in L1(Ω), when |β| ≤ m− 1.

Let |α|, |β| = m be arbitrary. Denote ρ′ = (0, 0, ..., 0, D
βun(x)
λ

, 0, ..., 0), where
Dβun(x)

λ
is the αthe coordinate of the vector ρ′. By condition (A3),

tn
∑

|γ|=m

(Aγ(x, η(un), ρ(un))−Aγ(x, η(un),±ρ′))(Dγ(un)∓ ρ′γ) ≥ 0,

and hence

tn
∑

|γ|=m

(Aγ(x, ξ(un))D
γun)±

tn
λ
Aα(x, η(un),±ρ′)Dβun ≥

tn
∑

|γ|=m

(Aγ(x, η(un),±ρ′)Dγ(un)∓
tn
λ
Aα(x, ξ(un))D

βun. (3.4)

Let |γ1| = |γ2| = m be arbitrary. Then

|Aγ1
(x, η(un),±ρ′)Dγ2un| ≤ [aγ1

(x)+c1|
c2
λ
Dβun|p(x)−1+c1

∑

|δ|≤m−1

vδn(x)]|Dγ2un|,

(3.5)
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where vδn(x) = |c2Dδun(x)|
p(x)

q′(x) . Using Lemma 2.5, we obtain Dδun′ → Dδu a.e.
and |c2Dδun′ |p(x) ≤ h for all |δ| ≤ m − 1 a.e. for some h ∈ L1(Ω) and for some

subsequence {un′}. We have vδn and vδ = |c2Dδu(x)|
p(x)

q′(x) belong to the space
Lq′(.)(Ω), vδn′ → vδ a.e. and |vδn′ |q′(x) ≤ |c2Dδun′ |p(x) ≤ h a.e.

By using the Lemma 2.5 we can see that vδn′ → vδ in Lq′(.). Hence vδn′ → vδ in

Lp′(.). By contradiction argument, vδn → vδ in Lp′(.) and Dγ2un ⇀ Dγ2u in Lp(.).
Consequently, aγ1

Dγ2un → aαD
γ2u in L1 by Lemma 2.2 and vδnD

γ2un → vδDγ2u
in L1 by Lemma 2.1. Moreover,

|c2
λ
Dβun|p(x)−1|Dγ2un| ≤ |c2

λ
Dβun|p(x)−1|Dβun|+ |c2

λ
Dγ2un|p(x)−1|Dγ2un|

≤ 2λ

c2
|c2
λ
Dβun|p(x) +

2λ

c2
|c2
λ
Dγ2un|p(x)

≤ hβ + hγ ∈ L1(Ω),

when λ is large enough, because Dβun → Dβu and Dγ2un → Dγ2u in Lp(.). Hence,
by (3.5),

|Aγ1
(x, η(un),±ρ′)Dγ2un| ≤ h ∈ L1

and we obtain from (3.4)

tn|Aα(x, ξ(un))D
βun| ≤ h1 ∈ L1.

Consequently, we can find that

tn|Aα(x, ξ(un))| − tnaα(x) → t|Aα(x, ξ(u))| − taα(x) in Lp′(.)

by using lemma 2.5 and (3.3). Which implies that

tnAα(x, ξ(un)) → tAα(x, ξ(u)) in Lp′(.)(Ω)

for every |α| ≤ m. ✷

Lemma 3.3. Assume that the conditions (A1)− (A3) hold. If the sequence

{un} ⊂ W
m,p(.)
0 (Ω), Dαun → Dαu ∈ Lp(.) a.e. and Dαun ⇀ Dαu in Lp(.)(Ω) for

all |α| ≤ m, {tn} ⊂ [0, 1], tn → t ∈ [0, 1],

tnAα(x, ξ(un)) → tAα(x, ξ(u))(σ(L
p′(.), Lp(.))

in Lp′(.)(Ω) for all |α| ≤ m and 〈tnA(un), un〉 → 〈tA(u), u〉, then

tn
∑

|α|≤m

Aα(x, ξ(un))D
αun → t

∑

|α|≤m

Aα(x, ξ(u))D
αu

in L1(Ω).
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Proof. Denote fn(x) = tn
∑

|α|=m Aα(x, ξ(un(x))D
αun(x) and

f(x) = t
∑

|α|=mAα(x, ξ(u(x))D
αu(x).

It is enough to prove that fn → f in L1(Ω) for a subsequence. By lemma 2.1,
aαD

αun → aαD
αu in L1(Ω), when |α| = m.Consequently, for every |α| = m,

there exists hα ∈ L1(Ω) such that |aα(x)Dαun(x)| ≤ hα(x) a.e. for a subsequence.

Denote vβn(x) = |c2Dβun(x)|
p(x)

q′(x) and vβ(x) = |c2Dβu(x)|
p(x)

q′(x) , when |β| < m.

On account of compactness of the embedding W
1,p(.)
0 (Ω) →֒ Lp(.)(Ω), we have

Dβun → Dβu in Lp(.)(Ω), when |β| ≤ m− 1, which implies by lemma 2.3 and 2.5
that

‖|vβn|q
′(x)‖1 → ‖|vβ|q′(x)‖1

and
|vβn′(x)|q

′(x) → |vβ(x)|q′(x) a.e.

for some subsequence. By lemma 2.4, |vβn′ |q
′(x) → |vβ |q′(x) in L1(Ω), and so for

avery |β| < m there must exist hβ ∈ L1 such that

|vβn(x)|q
′(x) ≤ hβ(x) a.e.

Therefore |vβn(x)| ≤ |hβ(x)|
1

q′(x) ∈ Lq′(.)(Ω) ⊂ L1(Ω). Condition (A3) implies that

tn
∑

|α|=m

(Aα(x, η(un), ρ(un))−Aα(x, η(un), 0̄))D
αun ≥ 0.

Consequently,

fn(x) ≥
∑

|α|=m

tnAα(x, η(un), 0̄))D
αun(x)

≥ −tn
∑

|α|=m

(|aα(x)Dαun(x)| + c1
∑

|β|<m

|c2Dβun(x)|
p(x)

q′(x) )

≥ −
∑

|α|=m

(hα(x) + c1
∑

|β|<m

|hβ(x)|
1

q′(x) ) = −h(x) ∈ L1(Ω).

Since Dαun → Dαu in Lp(.) for |α| < m, we know from Lemma 2.1 that

tn
∑

|α|<m

Aα(x, ξ(un))D
αun → t

∑

|α|<m

Aα(x, ξ(u))D
αu

in L1(Ω). Moreover, the assumption 〈tnA(un), un〉 → 〈tA(u), u〉 implies that

∫

Ω

fn(x) dx →
∫

Ω

f(x) dx.

By lemma 2.4, fn → f in L1(Ω), which completes the proof. ✷
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Lemma 3.4. Assume that the conditions (A1)− (A3) hold. If the sequence

{un} ⊂ W
m,p(.)
0 (Ω), un ⇀ u in W

m,p(.)
0 (Ω), {tn} ⊂ [0, 1], tn → t,

tnA(un) → z ∈ W−m,p′(.)(Ω)(σ(W−m,p′(.),W
m,p(x)
0 ) in W−m,p′(.)(Ω) and

limsup〈tnA(un), un〉 ≤ 〈z, u〉, then

〈tnA(un), un〉 → 〈z, u〉.

Proof. By lemma 3.1, the sequence {tnAα(x, ξ(un)} is bounded in Lp′(.)(Ω) for all
|α| ≤ m. We can thus assume that

tnAα(x, ξ(un)) → hα ∈ Lp′(.)(Ω)(σ(Lp′(.), Lp(.))) in Lp′(.)(Ω)

for |α| ≤ m. It is clear that

〈z, w〉 = lim〈tnA(un), w〉

= lim
∑

|α|≤m

∫

Ω

tnAα(x, ξ(un))D
αw(x) dx

=
∑

|α|≤m

∫

Ω

hα(x)D
αw(x) dx

for all w ∈ W
m,p(.)
0 (Ω). By the compact embedding W

1,p(.)
0 (Ω) →֒ Lp(.)(Ω), we

have
Dαun → Dαu in Lp(.) for |α| < m.

Hence
∑

|α|<m

∫

Ω

tnAα(x, ξ(un))D
αun →

∑

|α|<m

∫

Ω

hα(x)D
αu.

Moreover, by the assumption,

lim sup
∑

|α|≤m

∫

Ω

tnAα(x, ξ(un))D
αun ≤

∑

|α|≤m

∫

Ω

hαD
αu.

Therefore

lim sup
∑

|α|=m

∫

Ω

tnAα(x, ξ(un))D
αun ≤

∑

|α|=m

∫

Ω

hαD
αu,

So that it is enough to prove that

lim inf
∑

|α|=m

∫

Ω

tnAα(x, ξ(un))D
αun ≥

∑

|α|=m

∫

Ω

hαD
αu.

Denote
Ωk = {x ∈ Ω/|Dαu(x)| ≤ k for all |α| = m}
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and

Ek(x) =

{

1 , when x ∈ Ωk

0 , otherwise.

By condition (A3) we have

∫

Ω

∑

|α|=m

tn[Aα(x, η(un), Ek(x)ρ(u))−Aα(x, ξ(un))].[Ek(x)D
αu−Dαun] ≥ 0.

Consequently,
∫
Ω

∑
|α|=m

tnAα(x, ξ(un))D
α
un ≥ −

∫
Ω

∑
|α|=m

tnAα(x, η(un), Ek(x)ρ(u))Ek(x)D
α
u

+

∫
Ω

∑
|α|=m

tnAα(x, ξ(un))Ek(x)D
α
u

+

∫
Ω

∑
|α|=m

tnAα(x, η(un), Ek(x)ρ(u))D
α
un. (3.6)

By compact embedding, Dβun′ → Dβu a.e. and |c2Dβun′(x)|p(x) ≤ h(x) a.e for
some h ∈ L1(Ω) and for |β| ≤ m− 1 for some subsequence. Consequently,

(|c2Dβun′(x)|
p(x)

q′(x) )q
′(x) ≤ h(x)a.e.

By lemma 2.5,

|c2Dβun′(x)|
p(x)

q′(x) → |c2Dβu(x)|
p(x)

q′(x)

in Lq′(.)(Ω). Since q << p, we have

|c2Dβun′(x)|
p(x)

q′(x) → |c2Dβu(x)|
p(x)

q′(x)

in Lp′(.)(Ω). By (A2),we obtain

|Aα(x, η(un), Ek(x)η(u))| ≤ aα(x)+c1
∑

|β|=m

|c2k|p(x)−1+c1
∑

|β|≤m−1

|c2Dβun′ |
p(x)

q′(x) ),

for |α| = m. Now the right-hand side converges in Lp′(.)(Ω) and the left-hand side
converges a.e.,so that it is easy to deduce that the left-hand side also converges in
Lp′(.)(Ω). The first term on the right in (3.6) therefore tend towards

−
∫

Ω

∑

|α|=m

tAα(x, η(u), Ek(x)η(u)Ek(x)D
αu,

and the third term on the right in (3.6) will tend towards

∫

Ω

∑

|α|=m

tAα(x, η(u), Ek(x)ρ(u))D
αu,
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when n approaches infinity. Consequently,

lim inf

∫
Ω

∑
|α|=m

tnAα(x, ξ(un))D
α
un ≥ lim inf

∫
Ω

∑
|α|=m

tnAα(x, ξ(un))Ek(x)D
α
u

+

∫
Ω\Ωk

∑
|α|=m

tAα(x, η(u), 0̄)D
α
u

=
∑

|α|=m

∫
Ωk

hαD
α
u

+

∫
Ω\Ωk

∑
|α|=m

tAα(x, η(u), 0̄)D
α
u,

as Ek(x)D
αu ∈ Lp(.)(Ω). Letting k → ∞ we prove the lemma, since

hαD
αu ∈ L1(Ω) and tAα(x, η(u), 0̄)D

αu ∈ L1(Ω) for |α| = m. ✷

In the sequel we shall use the following well-known fact: if un ⇀ v in Lp(.)(Ω)
and un → w a.e. in Ω, then v = w a.e. in Ω.

Lemma 3.5. Assume that the conditions (A1)− (A4) hold. If the sequence

{un} ⊂ W
m,p(.)
0 (Ω), un ⇀ u ∈ W

m,p(.)
0 (Ω) in W

m,p(.)
0 (Ω),

A(un) → z ∈ W−m,p′(.)(Ω)(σ(W−m,p′(.),W
m,p(.)
0 ) in W−m,p′(.)(Ω) and

limsup〈A(un), un〉 ≤ 〈z, u〉, then un′ → u in W
m,p(.)
0 (Ω) for some subsequence.

Proof. We deduce as in [13] that Dαun(x) → Dαu(x) a.e. for |α| ≤ m and for
some subsequence. According to lemma 3.1 we may assume that

Aα(x, ξ(un)) → wα(x)(σ(L
p′(.), Lp(.))) in Lp′(.)

for every |α| ≤ m. Since

Aα(x, ξ(un)) → Aα(x, ξ(u)) a.e.,

we know that wα(x) = Aα(x, ξ(u)) a.e. A is pseudomonotone.
Hence

z = A(u) and 〈A(un), un〉 → 〈A(u), u〉.
By lemma 3.3,

∑

|α|≤m

Aα(x, ξ(un))D
αun →

∑

|α|≤m

Aα(x, ξ(u))D
αu

in L1(Ω), and by condition (A4),

d1
∑

|α|=m

|d2Dαun(x)|p(x) ≤
∑

|α|=m

Aα(x, ξ(un(x))D
αun(x)

−
∑

|α|=m

Aα(x, ξ(un(x))D
αϕ(x)

+
∑

|α|=m

bα(x)D
αun(x) + b(x).
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The right hand side converges in L1(Ω) in accordance with Lemma 2.1. Lemma
2.5 implies Dαun → Dαu in Lp(.)(Ω) for all |α| = m. By compact embedding,
Dαun → Dαu in Lp(.), when |α| < m, which completes the proof. ✷

Theorem 3.6. If the conditions (A1)− (A4) hold, then the mapping A defined by
(3.1) belong to the class Fa.

Proof. Strong quasiboundedness and condition b) of class Fa follow immediately
from Lemma 3.1.
Lemma 3.4 implies condition c), and condition d) follows from lemmas 3.4, 3.3 and
3.2. Suppose that

{un} ⊂ W
m,p(.)
0 (Ω), un ⇀ u in W

m,p(.)
0 (Ω), A(un) → z ∈ Z(σ(W−m,p′(.),W

m,p(.)
0 ))

in W−m,p′(.)(Ω) and lim supn→∞〈A(un), un〉 ≤ 〈z, u〉.
By pseudomonotonicity, z = A(u) and 〈A(un), un〉 → 〈A(u), u〉. If (A4) holds,

then, by Lemma 3.5, un → u in W
m,p(.)
0 (Ω) for some subsequence. Choosing

tn = 1 in Lemma 3.3 and Lemma 3.2 we may deduce that A(un) → A(u) (mod) in
W−m,p′(.)(Ω). Hence A ∈ (MOD). ✷

3.2. Normalising maps

Let Y = W
m,p(.)
0 (Ω), Z = W−m,p′(.)(Ω). We start with an abstract existence

theorem.

Theorem 3.7. Let G ⊂ Y be open and bounded in Y , 0 ∈ G, f ∈ Z and F ∈ Fa.
Suppose that there exists a normalising map K ∈ Fa such that K(0) = 0 and
〈K(u), u〉 ≥ b > 0 for all u ∈ ∂Y G. Choose a constant a ≥ 0 such that

a ≤ inf
u∈∂Y G

〈K(u), u〉
‖K(u)‖ .

If 〈F (u)− f, u〉+ ‖F (u)− f‖a > 0 for all u ∈ ∂Y G, then d(F,G, f) = 1.

Proof. We may assume that f = 0. Since 〈K(u), u〉 ≥ b > 0 for all u ∈ ∂Y G, it is
clear that 0 6∈ K(∂Y G). Define by

H(t, u) = tF (u) + (1− t)K(u).

a homotopy which belong to the class H by Lemma 2.7. We show that H(t, u) 6= 0
for all t ∈ [0, 1],u ∈ ∂Y G. If 0 ∈ H([0, 1]× ∂Y G), then

tF (u) + (1 − t)K(u) = 0

for some u ∈ ∂Y G and t ∈ [0, 1]. It is clear that t 6= 0. Thus

t||F (u)|| = (1− t)||K(u)||,

implying

1− 1

t
= − ||F (u)||

||K(u)|| .
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On the other hand,
t〈F (u), u〉+ (1− t)〈K(u), u〉 = 0,

and therefore

〈F (u), u〉 = (1− 1

t
)〈K(u), u〉 = −||F (u)|| 〈K(u), u〉

||K(u)|| ≤ −||F (u)||a,

which is a contradiction. Hence H(t, u) 6= 0 for all t ∈ [0, 1] and u ∈ ∂Y G. By
homotopy invariance,

d(F,G, 0) = f(K,G, 0).

Since 0 ∈ K(G), we have d(K,G, 0) = 1. ✷

Corollary 3.8. Let G ⊂ Y be open and bounded in Y , ū ∈ G, f ∈ Z and F ∈ Fa.
Suppose that there exists a normalising map K ∈ Fa such that
K̃(u) = K(u+ ū)−K(ū) is also a normalising map in the class F

a and

〈K(u)−K(ū), u− ū〉 ≥ b > 0 for all u ∈ ∂Y G.

Choose a constant a ≥ 0 such that

a ≤ inf
u∈∂Y G

〈K(u)−K(ū), u− ū〉
‖K(u)−K(ū)‖ .

If 〈F (u)− f, u− ū〉+ ‖F (u)− f‖a > 0 for all u ∈ ∂Y G, then d(F,G, f) = 1.

Proof. We may assume that f = 0. It follows from the above assumptions that the
degree d(F,G, 0) is defined. Define s(u) = u− ū. Then, by property 2.11,

d(F,G, 0) = d(Fos−1, s(G), 0).

Let u ∈ ∂Y s(G) be arbitrary. Denote u = u′ − ū, where u′ ∈ ∂Y G.
Now 〈K̃(u), u〉 = 〈K(u′)−K(ū), u′ − ū〉 ≥ b > 0 and

〈K̃(u), u〉
||K̃(u)||

=
〈K(u′)−K(ū), u − ū〉

‖K(u′)−K(ū)‖ ≥ a ≥ 0.

Moreover,

〈Fos−1(u), u〉+ ||Fos−1(u)||a = 〈F (u′), u′ − ū〉+ ||F (u′)||a.

Therefore the assumptions of Theorem 3.7 hold. Hence

d(Fos−1(u), s(G), 0) = 1.

✷

Next we shall present two mappings of class Fa, which can be used as normal-
ising maps.
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Theorem 3.9. The mapping K : W
m,p(.)
0 (Ω) → W−m,p′(.)(Ω) defined by

〈Ku, v〉 =
∑

|α|=m

∫

Ω

|Dαu(x)|p(x)−1sgnDαu(x)Dαv(x) dx for all v ∈ W
m,p(.)
0 (Ω),

belongs to the class Fa, 〈K(u), u〉 > 0 for u ∈ W
m,p(.)
0 (Ω), u 6= 0 and K(0) = 0.

Proof. Denote Aα(x, η, ρ) = |ρα|p(x)−1sgnρα when |α| = m and Aα(x, η, ρ) = 0
when |α| ≤ m − 1. The mappings Aα are clearly continuous with respect to η
and ρ. Hence condition (A1) is satisfied. It is obvious that condition (A2) holds.
Since the function |ρα|p(x)−1sgnρα is strictly increasing, we obtain condition (A3).
Condition (A4) is reduced to

∑

|α|=m

Aα(x, ξ).ξα ≥
∑

|α|=m

|ξα|p(x),

when we choose ϕ ≡ 0,bα = b = 0 and d1 = d2 = 1. Moreover,

〈K(u), u〉 =
∑

|α|=m

∫

Ω

|Dαu(x)|p(x)−1sgnDαu(x)Dαu(x) dx

=
∑

|α|=m

∫

Ω

|Dαu(x)|p(x) dx ≥ 0,

and the equality holds if and only if Dαu(x) = 0 a.e. for every |α| = m , which
implies that u ≡ 0. ✷

Theorem 3.10. The mapping, so-called p(.)-Laplacian,

K : W
1,p(.)
0 (Ω) → W−1,p′(.)(Ω)

defined by
K(u) = −∆p(.)(u) = −div(|∇u(x)|p(x)−2∇u(x)).

i.e.

〈Ku, v〉 =
∫

Ω

|∇u(x)|p(x)−2∇u(x).∇v(x) dx for all v ∈ W
1,p(.)
0 (Ω),

belongs to the class Fa, 〈K(u), u〉 > 0 for u ∈ W
1,p(.)
0 (Ω), u 6= 0 and K(0) = 0.

Proof. Denote Ai(x, η, ρ) = |ρ|p(x)−2ρi, i = 1, 2, ..., N , when ρ 6= 0̄, Ai(x, η, 0̄) = 0.
Since |Ai(x, η, ρ)| ≤ |ρ|p(x)−1, the function Ai is continuous with respect to η and
ρ. Hence condition (A1) is satisfied. Condition (A2) is easily seen to hold. Let
f(t) = |t|p(x)−1/t, when t 6= 0, f(0) = 0. The function f(t)t is strictly increasing
in [0,∞), which gives

(f(|ρ|)|ρ| − f(|ρ′|)|ρ′|)(|ρ| − |ρ′|) > 0,
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when ρ, ρ′ ∈ R
N2 , |ρ| 6= |ρ′|. Hence
N
∑

i=1

[f(|ρ|)ρi2 + f(|ρ′|)ρ′i
2
]− [f(|ρ|) + f(|ρ′|)]|ρ||ρ′| > 0.

By the Cauchy-Schwarz inequality,|ρ||ρ′| ≥ ∑N
i=1 ρiρ

′
i, implying

N
∑

i=1

[f(|ρ|)ρi2 + f(|ρ′|)ρ′i
2
]−

N
∑

i=1

[f(|ρ|) + f(|ρ′|)]ρiρ′i > 0.

Consequently,
N
∑

i=1

[f(|ρ|)ρi − f(|ρ′|)ρ′i][ρi − ρ′i] > 0,

when |ρ| 6= |ρ′|. If |ρ| = |ρ′|, we have equality in the Cauchy-Schwarz inequality
only if ρ = ρ′, and hence strict inequality follows. Therefore condition (A3) holds.
Condition (A4) follows as in Theorem 3.9. Moreover,

〈K(u), u〉 =
∫

Ω

|∇u(x)|p(x) dx ≥ 0,

and equality holds only if ∇u(x) = 0 a.e., which implies that u = 0 a.e. ✷

The previous theorems imply the existence of a normalising map in Sobolev
space with variables exponents which satisfy the conditions of the previous section.

We shall equip the space Y = W
m,p(.)
0 (Ω) with the norm

||u||Y =

√

∑

|α|=m

||Dαu||2
p(.).

Let G ⊂ W
m,p(.)
0 (Ω) be open and bounded in W

m,p(.)
0 (Ω) and 0 ∈ G. Since the set

∂Y G is closed, we have
inf

u∈∂Y G
||u||Y > 0.

We may therefore choose a constant c ∈ R such that

0 < c <
1√
N2

inf
u∈∂Y G

||u||Y .

Moreover, we have

c <
1√
N2

√

∑

|α|=m

||Dαu||2
p(.) − ǫ

≤ 1√
N2

√

N2 max
|α|=m

{||Dαu||2
p(.)} − ǫ

= max
|α|=m

{||Dαu||p(.)} − ǫ
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for some ǫ > 0 and for all u ∈ ∂Y G. Define a mapping K ∈ Fa,

Ku(x) =
∑

|α=m

(−1)|α|Dα(|D
αu(x)

c
|p(x)−1sgnDαu(x)).

Let u ∈ ∂Y G and ||Dα0u||p(.) = max|α|=m ‖Dαu‖p(.). Now

〈K(u), u〉 = c
∑

|α|=m

∫

Ω

|D
αu(x)

c
|p(x)−1|D

αu(x)

c
| dx

= c
∑

|α|=m

∫

Ω

|D
αu(x)

c
|p(x) dx

≥ c

∫

Ω

| Dα0u(x)

||Dα0u||p(.) − ǫ
|p(x) dx

≥ c.

Moreover,

‖K(u)‖Z = sup
‖v‖Y ≤1

〈K(u), v〉 = sup
‖v‖Y ≤1

∑
|α|=m

∫
Ω

|
Dαu(x)

c
|p(x)−1

sgnD
α
u(x)Dα

v(x) dx

≤ sup
‖v‖Y ≤1

2
∑

|α|=m

‖|
Dαu(x)

c
|p(x)−1‖p′(.)‖D

α
v‖p(.)

≤ 2
∑

|α|=m

‖|
Dαu(x)

c
|p(x)−1‖p′(.)

Consequently,

〈K(u), u〉
‖K(u)‖Z

≥
c
∑

|α|=m

∫

Ω |D
αu(x)
c

|p(x) dx
2
∑

|α|=m ‖|Dαu(x)
c

|p(x)−1‖p′(.)

.

If ‖|D
αu(x)
c

|p(x)−1‖p′(.) ≤ 1 for all |α| = m, then

〈K(u), u〉
‖K(u)‖Z

≥ c

2N2

∫

Ω

|D
α0u(x)

c
|p(x) ≥ c

2N2
.

If

max
|α|=m

‖|D
αu(x)

c
|p(x)−1‖p′(.) = ‖|D

α1u(x)

c
|p(x)−1‖p′(.) > 1

for some |α1| = m, then we obtain
∫

Ω

|D
α1u(x)

c
|p(x) dx =

∫

Ω

||D
α1u(x)

c
|p(x)−1|p′(x) dx ≥ ‖|D

α1u(x)

c
|p(x)−1‖p′(.).

Hence

〈K(u), u〉
‖K(u)‖Z

≥
c
∑

|α|=m

∫

Ω |D
αu(x)
c

|p(x) dx
2
∑

|α|=m ‖|Dαu(x)
c

|p(x)−1‖p′(.)

≥ c
∫

Ω |D
α1u(x)

c
|p(x) dx

2N2‖|D
α1u(x)

c
|p(x)−1‖p′(.)

≥ c

2N2
.
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In other words, we have constructed a normalising map K for which the conditions
of this section hold. For example, if G = BR(0), we may choose c = R

2
√
N2

,

b = R
2
√
N2

,a = R
4N2

√
N2

and

Ku(x) =
∑

|α|≤m

(−1)|α|Dα(|D
αu(x)

c
|p(x)−1sgnDαu(x))

in Theorem 3.7. While, if G = BR(ū) for some ū ∈ W
m,p(.)
0 , we may choose a, b

and c as above and

Ku(x) =
∑

|α|≤m

(−1)|α|Dα(|D
αu(x)−Dαū

c
|p(x)−1sgnDαu(x)))

+
∑

|α|≤m

(−1)|α|Dα(|D
αū(x)

c
|p(x)−1sgnDαū(x))

in Corollary 3.8.

3.3. Existence results

Theorem 3.11. Assume that the conditions (A1)−(A4) hold. Define the mapping
A as in (3.1). Let f ∈ W−m,p′(.)(Ω). If

lim inf
‖u‖m,p(.)→∞

〈A(u)− f, u− ū〉 ≥ 0 for some ū ∈ W
m,p(.)
0 (Ω), (3.7)

then the problem (1.1) is almost solvable, i.e., f ∈ A(W
m,p(.)
0 (Ω)). If

lim inf
‖u‖m,p(.)→∞

〈A(u)− f, u− ū〉 > 0 for some ū ∈ W
m,p(.)
0 (Ω), (3.8)

then the problem (1.1) is solvable, i.e., f ∈ A(W
m,p(.)
0 (Ω)).

Proof. Suppose first that (3.7) holds. By theorem 3.6, A ∈ Fa. If

inf
‖u−ū‖m,p(.)=R

(〈A(u)− f, u− ū〉+ ‖A(u)− f‖ R

4N2

√
N2

) ≤ 0 for all R > 0,

then, by (3.7), there exists a sequence {un} ⊂ W
m,p(.)
0 (Ω) such that ‖un‖m,p(.) →

∞ and ‖A(un)− f‖ → 0. Hence f ∈ A(W
m,p(.)
0 (Ω)).Suppose that

inf
‖u−ū‖m,p(.)=R

(〈A(u)− f, u− ū〉+ ‖A(u)− f‖ R

4N2

√
N2

) > 0 for some R > 0.

As indicated in the previous section, there exists a normalising mapK satisfying the
assumptions of Corollary 3.8 with b = R

2
√
N2

and a = R

4N2

√
N2

. Denote BR(ū) =

{u ∈ W
m,p(.)
0 (Ω)/‖u − ū‖Y ≤ R}. By Corollary 3.8, d(A,BR(ū), f) = 1. By
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property (1) of the degree function, f ∈ A(BR(ū)) ⊂ A(W
m,p(.)
0 (Ω)). If (3.8)

holds, then we clearly have

inf
‖u−ū‖m,p(.)=R

(〈A(u)− f, u− ū〉+ ‖A(u)− f‖ R

4N2

√
N2

) > 0 for some R > 0,

and proceeding as above we obtain f ∈ A(W
m,p(.)
0 (Ω)). ✷
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