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Mapping Properties of Certain Linear Operator Associated with
Hypergeometric Functions
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ABSTRACT: The main object of the present paper is to find some sufficient condi-
tions in terms of hypergeometric inequalities so that the linear operator denoted by
Hng’c maps a certain subclass of close-to-convex function R7 (A, B) into subclasses
of k-uniformly starlike and k-uniformly convex functions k — 8T () and k —UCV(B)
respectively. Further, we consider an integral operator and discuss its properties.
Our results generalize some relevant results.
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1. Introduction and Definition

Let A be the class of analytic functions in the open unit disk U := {z € C :
|z| < 1} and having normalized power series expansion of the form:

f(z):z—i—Zanz" (z € U). (1.1)

As usual, we denote by 8 the subclass of A consisting of functions of the form
(1.1) which are univalent in U. A function f € A is said to be starlike of order
a (0 < a < 1), denoted by 8*(«) if and only if

R (ZJJ:(S)) >a (zeD), (1.2)
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and convex of order o (0 < o < 1), denoted by €V(«) if and only if

2f"(2)
§R<1+ ) > >a (zel). (1.3)

It is an established fact that f € CV(a) <= zf’ € 8*(«).
Note that for o = 0, 8*(0) = 8* and €V(0) = €V, the well-known standard class of
starlike and convex functions respectively (see [19]).

Furthermore, a function f(z) of the form (1.1) is said to be k-uniformly convex
in U, denoted by £ — UCV if and only if

R 7)) >

The class k — 8T, consisting of k-uniformly starlike functions is defined via k —UCV
(see [11]) by usual Alexander’s relation i.e.,

(0 <k <o0;z€l). (1.4)

fE€k—8T <= g€ k—UCV, where g(z):/ @dt.
0

The class £ — UCV and k — 8T were introduced by Kanas and Wisniowska where
its geometric definition and connection with conic domain were considered (see
[10,11]).

In particular, if k = 0 and k = 1, we get

0-UCV=CV, 0-8T=8", 1-UCV=UCV and 1 — 8T =8P

where CV, 8%, UCV and 8P are respectively the familiar classes of univalent convex
functions, univalent starlike functions (see [6]), uniformly convex functions ([8])
(also, see [14,20]) and parabolic starlike functions [20]. Recently many researchers
have generalized the classes k — UCV and k — 8T. Bharti et al. [2] (also, see [21])
introduced the classes & — UCV(B) and k — 8T(B) to be the classes of functions
f € A satisfying the condition:

2N )
%<1+ f,(z))>k | e (1.5)
and
SN (G
%( 1) ) e 1‘“3 16

respectively for some k> 0 and 8 (0 < 8 < 1). Note that f(z) € k —UCV(S) <=
2f'(2) € k — 8T(B). Clearly, 1 — UCV(0) = UCY, 1 — 8T(0) = 8P, 0 — UCV(0) =
CV, 0 —8T(0) = 8*. It has been shown that (see [2])

k+p

k—SiT(B):S*(1+k), k—uewﬁ)zev(ﬂ).

1+5
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For two analytic functions f and g in U, we say that the function f is said to
be subordinate to g, written as f(z) < g(z) (z € U), if there exists a Schwarz
function w(z), analytic in U with w(0) = 0 and |w(z)] < 1 (z € U) such that
f(z) = g(w(z)) (z € U). Furthermore, if the function g is univalent in U, then we
have the following equivalence (see [15]):

f(2) < g(2) <= f(0) = g(0) and f(U) C g(U).

In 1995, Dixit and Pal (see [5]) has introduced the class R7 (A4, B) as follows:
A function f € A is said to be in the class R7 (A, B) if it satisfies the inequality

f'(z) -1
(A—=B)T = B(f'(z) - 1)

<1l (z€eU;reC\{0},-1<B<A<LI). (1.7

By giving particular values of A, B and 7, the class R7(A, B) includes several
interesting subclasses of 8 studied by different researchers (see [3,17,18]).

The generalized hypergeometric function ,Fy (p, ¢ € Ng := {0,1,2,---}) with p
numerator parameters o; € C (j = 1,2,3,---p) and ¢ denominator parameters
By € C\ Zy (Zy :={0,-1,-2---},k=1,2,---¢q) is defined by (see, for example,
[24]), p. 19):

qu(Z) :qu(Oél,OtQ, . ap;ﬂbﬂ% . ..ﬂq;z)
_ - (al)n(a2)n T (ap)n ﬁ .
> Br)aBan - Bt Z €D (1.8)

n=0

where (), is the Pochhammer symbol (or shifted factorial) defined in terms of the
gamma function by

(}\)n:F()\—i—n):{l (n=0,AeC\{0})

O\ AMN+D)-(A+n—1) (neN:={1,2,3,---}, AeC).

Note that ,Fy(z) is an entire function if p < ¢ + 1. However, if p = ¢+ 1, then
pFy(2) is analytic in U. Also, if p = ¢+ 1 and R(3_7_, B; — >-F_, a;) > 0, then
pFy(2) converges on 9U. In particular, the function

oFi(a,b;c;2) = Z Mz" (z € )

ab s ala+ 1)b(b + 1))/22
l.c 1.2¢(e+1)

(1.9)

is the familiar Gaussian hypergeometric function. The hypergeometric function
o F1(a, b; ¢; z) has been extensively studied by various authors and play an important
role in the Geometric Function Theory. It is useful in unifying various functions
by givien appropriate values to the parameters a, b and c¢. Further, the series (1.9)
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may be regarded as a generalization of the elementary geometric series. It reduces
to the geometric series in two cases. When a = ¢ and b = 1 and when b = ¢ and
a = 1. Tt is worthy to mention here that the function o F}(a, b; ¢; z) is symmetric in
a and b and the series (1.9) terminates if at least one of the numerator parameters
a and b is zero or negative integer. For recent expository work on hypergeometric
function see [4,7,12,22]. Tt is well-known that 3F} (a,b;c; z) is the solution of the
second order homogeneous differential equation

z(1=2)w"(2) +[c— (a+ b+ 1)2]w'(2) — abw(z) =0 (1.10)

Note that the behavior of the hypergeometric function o F(a,b; c; z) near z =1 is
classified into three cases according as R(c — a —b) is positive, zero or negative. By
Gauss summation formula we get

& (@a()n  D(e—a—bI(e)
2Fi(abic;1) = 7; o). = Tle—a)T(c_b) (1.11)

provided R(¢ —a —b) > 0. The normalized hypergeometric function zoFi(a, b; ¢; 2)
has a series expansion of the form

zoF1(a,b;¢; 2) z+z%z”. (1.12)

n=2

Using normalized hypergeometric function zo Fi (a, b; ¢; z) consider the function (see
[25],with p=1)

Jus(a,bye;z) =(1— p+0)[z 2Fi(a, b;¢;2)) + (1 — 0)z[z 2 F1(a, b ¢; 2)]
+ 1022z o Fy(a, b; c; 2)]” (1.13)

with p,6 > 0, p > 6, z € U. For a function f € A given by (1.1) and g € A given
by

g(z) =2+ Z b, 2",
n=2

the Hadamard product (or convolution) of f and g is defined by
(f*9)(z) =2+ anbp2" (1.14)
n=2

We consider the linear operator szg’c : A — A defined by mean of Hadamard
product as
Hy3(£)(2) = dusla by 2) + f(2). (1.15)

Thus, for a function f € A of the form (1.1), we have

(HE5 (1)) = o4 D=0 (==, 2n (2 ). (L1o)

n=2
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Taking § = 0 in (1.16) we have Hz:bb’c(f) = L,(f) considered by Kim and Shon
(see [13]) while taking 1 = § = 0 we get Hg,’g’c(f)(z) = (J%f)(2) where J% is
known as Hohlov operator (see [9]).

Motivated by Sharma et al. [23] (also, see [1,16]), in this paper sufficient condi-
tions in term of hypergeometric inequalities are found so that the linear operator
defined by (1.16) maps a certain subclass of close-to-convex function R (A, B) into
subclasses of k-uniformly starlike and k-uniformly convex functions k — 8T(3) and
k —UCV(p) respectively. Further, we consider an integral operator and discuss its
properties.

2. Preliminaries Lemmas
To investigate our main results, we need each of the following lemmas:

Lemma 2.1. (see [2,21]) Let f € A be of the form (1.1). If

oo

S+ k) — (5 + B)llan] <15, (2.1)

n=2

then f € k—8T(p).

Lemma 2.2. (see [2,21]) A function [ of the form (1.1) is in k — UCV(B) if it
satisfies the inequality

S nln(1 4 k) — (b + B)lan] <1 5. (22)

Lemma 2.3. (see [5]) Let the function f, given by (1.1) be a member of R™ (A, B).
Then
lan| < (A—B)m (n e N\ {1}). (2.3)

n
The estimate in (2.3) is sharp.

3. Main Results

Unless otherwise mentioned, we assume throughout the sequel that
—1<B<A<1, 7€C\{0}, k>0, u, 6 >0and u>9.

Theorem 3.1. Let a, b, ¢ € R be such that a,b > 1 and ¢ > a+ b+ 2. If the
hypergeometric inequality

I'(e)l'(c—a—1b)

T(c—a)T(c —b) [1 +k—(n=0)k+B)+{(1+k)(n—105)—(k+B)ud+2(1+k)ud}

b, (o3-Sm0

c—a—b-1 (a—1)(b—1) (c—a—b—2)
tB)u—6-De-1D] . 1-4

S“‘ﬂ”[ w-Do-1 | T @B 31

is satisfied, then HZ:Z’C maps the class R™(A, B) into k — 8T ().
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Proof: Let the function f given by (1.1) be a member of R" (A, B). By (1.16) we
have

Hiv (F)(z) =2+ > I+ m—1)(n—06+ nm)]%anzn (z € U).

n=2
In view of Lemma 2.1, it is sufficient to show that

oo

Dot +k) = (k+ AL+ (n = 1)(p = 6+ npd)]

n=2

(a)nfl (b)nfl
()n-1(1)n-1

Since f € R7(A, B) by virtue of Lemma 2.3, it is again sufficient to show that

S = Z |:7’L(1 + k) — (k/"f'ﬁ)] 1+ (n—1)(u—6+nud) (a)n—l(f)n—l

n=2 n (C)nfl( n—1
1-p
S @B h
Now
5 :i n(Hk)n(kJrﬂ)] [1+(n1)(u5+nu5)]W

{(1+k)+(n1)(1+k)(u5)+n(n1)(1+k)y5k;;ﬂ

= D+ - 0)

n

(a)n-1(b)n—1
(C)nfl (1)71*1

—m—ww+ﬁmﬂ

,i (L+ k) +n(l+k)(u—08) + (n* +n) (1 + k)ud — %
DD ] O

4k 2 EZ)):((E;Z — 1| (k) (- 5)2 (27)1;%3:1
Wt SR e
e S S ek 3 e

(©n(Dn(n+1)

n=1

= > (a)"zb)” _ _ o (@)nt1(D)ns1
=R G, R0 2 T L,
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oo

+(1+k) /L(SZ ”*2 "*2 +2(1+/<:)M<SZ(
n+2

— <k+ﬁ>2;—<‘éi’;;f‘zi’;: -G+ 3 5

a bnfl
A= 0) 2 T T e 2 T

Repeated applications of the relation
(), =d(d+1)m—1 (d€C, meN)
in (3.3) give

(1+k) i(a)" —(1+k)+ (1+k)(u75)a_bi(a+1)n(b+1)n
n=0

(e)(1 e (c+1)n(1)n
(a)2(b)2 = (a +2)n(b+2), ab (a+1)p(b+1),
(ko G S (e ot s 3 e

n=0 n=0

(c (a—1)(b—1), (a—1)(b—1)
(“5)ﬁ+ %W‘l‘iﬁl }

(an(b)n
— (k+8)(n— ‘”{72(%(1)” 1}
k He—1) | X (a n a—1)(b—1
(k + B) (1 — {Z<C_1 )) a1 >}

+

(a_l b_l n=0 ot
_(k+6)u5;
Zw =[(1+k) = (k+B)(u—9)2F1(a, by c;1)

= e+ Da(l)n

+ 1+ k) (u—08)— (k+ B)ud +2(1 +k:)u5]%b2F1(a+ 1,b+1;¢+1;1)

+ (14 k)ud (azz)(b)QgFl(a F2.b+2c+2:1)

(k+B)(c—1) _ _
+(H*5*1)mzﬂ( —1L,b—1;¢—1;1)
(k+B8)(c—-1) (k+B)p-0C-1)
D @a-D0G-1) (1=8)]- (3.4)

Since the condition ¢ > a + b+ 2 holds we use the Gauss summation formula (1.11)
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in (3.4) and get

Sy =[(1+k) — (k+ﬂ)(u5)1%
ab

+ (1 +Ek(e—9)— (k+ B)ud +2(1 + k)pd]

Fle+ 1) (c—a—-b-1) (a)2(b)2T(c+2)(c—a—b—2)
T(c—a)l'(c—0) (¢)2 I(c—a)l'(c—0)
(k+B)(c—=1)I(c—Dl(c—a—b+1)
(@a=1-1)  Tle-al(c-b)
(k+B)u—0d)(c—1)  (k+B)c—1)
@-06-1 " @-Do-1)
ECE =R 4 1) = = D)+ 8) {0+ R) =9

c

+ (14 k)po

+(p—0-1)

+|A-1-

b (u—06—1)(k+B)(c—a—b)
= (kb b+ 201+ K)o} g (a-1b-1)

(@3 (0): (k4 B =3 - 1)(e-1)
+(1+/€)M5(c—a—b—2)2}_ (a=1)(b—1) Hu=a

Thus, in view of (3.2) if the hypergeometric inequality (3.1) is satisfied, the

HYP(f) € k — 8T(B)

as asserted. This ends the proof of Theorem 3.1. O

Putting § = 0 in Theorem 3.1, we get the following result due to Sharma et al.
(see [23] Theorem 1).

Corollary 3.2. Let a, b, ¢ € R be such that a,b > 1 and ¢ > a+ b+ 1. If the
hypergeometric inequality

Fe)'c—a—0b) [ wl+k)ab
Te—al(e—b) |[eea—p_1) T TF-nk+B}+

1—8 . (k+B)u—-1(c—1)
SEBF T @-np-n T

is satisfied, then L, maps the class R™(A, B) into k — 8T(5).

(k+B)(n—1)(c—a—b)
(a—1)(b—1)

Further, by taking u = 0 in Corollary 3.2, we get the following result:

Corollary 3.3. Let a,b,c € R be such that a,b > 1 and ¢ > a +b. If the hyperge-
ometric inequality

()T (c—a—b) _(k+B)(c—a—Db) 1-8  (k+B)(c—1)
I(c—a)T(c—b) Lk (a—1)(b—1) = (A—B)|r]  (a—1)(b—1)

is satisfied, then I%° maps the class R™(A, B) into k — 8T(j3).




MAPPING PROPERTIES OF CERTAIN LINEAR OPERATOR... 231

Remark 3.4. Letting 3 =0 and 7 = (1 — a)cosde™™ (0 < a < 1,|A| < 5) in
Corollary 3.3 we get the result of Aouf et al. ([1], Theorem 2.9).

Letting £ = S = 0 in Theorem 3.1 we have the following result in form of a
corollary:

Corollary 3.5. Let a,b,c € R be such that a,b > 0 and ¢ > a+ b+ 2. If the
hypergeometric inequality
T'(e)l'(c—a—1b) ab n ud(a)2(b)2 1

_ < -
Te—are_p LT W02 Y oo, | S T Ao

is satisfied, then szg’c maps the class R (A, B) into the class 8*.

Remark 3.6. Letting 6 = 0 in Corollary 3.5 we get the result of Sharma et al.
([23],Corollary 1).

Putting £k =1 and 8 = 0 in Theorem 3.1, we get the following result:

Corollary 3.7. Let a,b,c € R be such that a,b > 1 and ¢ > a+ b+ 2. If the
hypergeometric inequality

L(c)T'(¢c—a—0) ab
T(e—a)T(c—b) 2—p+d+(2p 25+3u5)c_a_b_1

(n=0—-1)(c—a-b) (a)2(b)2
(a—1)(b—1) +2M5(C—a—b—2)2
(c—1) 1

<14+ (p—-0-1)

@-Do-1)  A-B)r

is satisfied, then szg’c maps the class R7(A, B) into 8P.

Remark 3.8. Letting 6 = 0 in Corollary 3.7 we get the result due to Sharma et
al. ([23], Corollary 2, page 330).

Theorem 3.9. Let a,b,c € R be such that a,b > 0 and ¢ > a+ b+ 3. If the
hypergeometric inequality

T(e)I'(c—a—0)

T(c—a)l(c =) {1+ k)14 20— 20 +4p6) — (n— 0)(k + B)

— 2ud(k + ﬁ)}ﬁ
(1= 8)+ {1+ k) (u — 6+ 5u0) —u5(k+6)}%
(a)s(b)s
+(1+kj)M6(cfa—b73)3
_1=8 4
“@-pp TP 32

is satisfied, then Hﬁ:g’c maps the class R™(A, B) into k —UCV(f).
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Proof: Let the function f given by (1.1) be a member of R7(A, B). By virtue of
Lemma 2.2 and the coefficient inequality (2.3) it is sufficient to show that

where

Sy =

(A= B)jr|S: < 1- 8, (36)
i[n(l +k) = (k+BI1+m—1)(k— 5+”F‘5)1%
B o (@n(b)n — (@)n(b)n
=R 2 UG, ~ k0 2 G,

S ( )n(b)n _ - (a)nJrl b)n+1

;n(nJrl)( NN (1 +k)n§o O, (14 k)
- (a)n(b)n B B - (a)n(b)n -

(Z @D 1) (k+ 9\ 2 Gnoy 1)

FAR -0 (n—1+2) (c()“na(fj"l

+ (1 4 k)pué i{(n —1)(n—2)+5(n—1)+4} (0(52?1(:”1

n=1

M5k+ﬂi n+1

n=0

— ué(k + B) (Z(n —1+2) (é):ﬁfj:)

n=1

=[14+k+2(0+k)(p—0)+4(1+k)ud — (u—6)(k + 3)

n=0 n+1 n

n

L+ R 0) + 501+ Kb — pi(h+ 9] 3 Ds2Bas el
n=0 n
+(1+k) 52 "*3 "*3 —(1=8)+(1-p) Z (@)n () (3.7)
n+3 "—0 (C)n(l)n

Repeated applications of the relation

(d)m =d(d+1)m-1 (meN\{1})
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in (3.7) give
So =[(1+ k)(1+ 2 — 8) +418) — (11— 6)(k + B)

b
- 2,u6(k+5)]%2F1(a+ Lb+1;c+1;1)

+ (1 +k)[u5+5u5ué(k+ﬂ)]%gﬂ(a+2,b+2;c+2;l)
+(1 +k),U/(SM2F1(a+3,b+3;C+3;1)

(c)s
—(1=08)+ (1= B)2F1(a,b;¢;1).

Since the condition ¢ > a + b+ 3 holds we use the Gauss summation formula (1.11)
and after simplification we get

I'(e)I'(c—a—b)
T(c—a)l(c —b) {0+ R) (1 +2(1 = 8) + 46) — (= 0)(k + B) — 2ud(k + §)}

(1 )+ {1 ) — 8 5 — s+ )} 2

(LB g,

Thus, in view of (3.6), if the hypergeometric inequality (3.5) is satisfied, then
HZ’?”C(f) € k—UCV(B) as asserted.The proof of Theorem 3.9 is complete. O

So =

Putting 6 = 0 in Theorem 3.9 we get the following result due to Sharma et al.
([23], Theorem 2).

Corollary 3.10. Let a,b,c € R be such that a,b > 0 and ¢ > a+ b+ 2. If
f € R7(A, B) and the hypergeometric inequality

lrﬂgz)f(:)r(i - Z? u((cljf)_(?i(l;))z + (U 2+ b= pf) ———— aa_bb —

(1 B)]
-f

S GA-B)]

+(1-5)

is satisfied, the L, (f) € k —UCV(B).
Taking p = 0 in Corollary 3.10 we have the following result:

Corollary 3.11. Let a,b,c € R be such that ¢ > a+b+ 1. If f € R7(A, B) and
the hypergeometric inequality

I(c)T(c—a—10) ab 1-p5

T(c—a)l'(c—0) (1+k)c +1-0) =

—a—-b-1 |T|+(1_ﬁ)’

(A-B)
is satisfied, then I%°(f) € k — UCV(B).
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Letting k = g = 0 in Corollary 3.10 we have the following result due to Sharma
et al. ([23], Corollary 3).

Corollary 3.12. Let a,b,c € R be such that a,b > 0 and ¢ > a+ b+ 2. If
f € R7(A, B) and the hypergeometric inequality

T(e)T(c—a—b) ab (a)2(b)2 1
T(c—a)l(c—0b) (1+2H)c—a—b—1 +'u(c—a—b—Q)z = ( 7| +1

A-B)
is satisfied, the L,(f) € CV.

Taking k£ =1 and 8 = 0 in Corollary 3.10, we improve the result of Sharma et
al. ([23], Corollary 4).

Corollary 3.13. Let a,b,c € R be such that a,b > 0 and ¢ > a+ b+ 2. If
f € R7(A, B) and the hypergeometric inequality

I'(e)l'(c—a—b) (a)2(b)2 1
T(c—a)l(c—10) +tl s 7] +1

(c—a—b—2) ~ (A-B)
is satisfied, then L, (f) € UCY.

ab
2 2
(B + )c—a—b—1+ a

4. Integral operator

In this section, we define a particular integral operator M, s(a, b, ¢; z) acting on
Jus(ab,cz) as

z b,c;t
Myslab,css) = [ Dby, (a.1)
0

and investigate its geometric properties.

Theorem 4.1. Let a,b,c € R be such that a,b > 1 and ¢ > a + b+ 2. If
f € R7(A, B) and the hypergeometric inequality given by (3.1) is satisfied, then
M, s(a,b,c;2) x f(z) € k—UCV(p).

Proof: Let the function f given by (1.1) be a member of R7(A, B). By (4.1) we

have,
) _ (L4 (=1 (p =0 +npd) | (@)n-1(0)n-1
MM,5(aaba 072)*f(z) = Z+n¥2 |: n (C)nfl(l)n—l anz
(4.2)
with z € U). In view of Lemma 2.2, it is sufficient to show that
3 _ (- (@n-1(b)n-1 _
3l +8) = (-4 B[+ (0= 1 =6+ md) G el 19
Making use of Lemma 2.3, it is sufficient to show that
(L + k) — (k+B)] (@)n-1(b)n—1 1-8

n=2

The rest part of the proof of Theorem 4.1 is similar to that of Theorem 3.1. We
choose to omit the detail. This ends the proof of Theorem 4.1. O



MAPPING PROPERTIES OF CERTAIN LINEAR OPERATOR... 235

5. Acknowledgement

The Authors would like to thank to the editor and anonymous referees for their

comments and suggestions which improve the contents of the manuscript. Further,
the present investigation of the first-named author is supported by CSIR research
project scheme no. 25(0278)/17/EMR-II, New Delhi, India.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

References

M. K. Aouf, A. O. Mostafa and H. M. Zayed, Some constraints of hypergeometric functions to
belong to certain subclasses of analytic functions, J. Egyptian Math. Soc., 24(2016) 361-366.

R. Bharti, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions
and corresponding class of starlike functions, Tamknag J. Math, 28(1) (1997) 17-32.

T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc.,
39(1973) 357-361.

B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J.
Math. Anal., 15(1984) 737-745.

K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian
J. Pure Appl. Math., 26(9) (1995) 889-896.

P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259,
Springer-Verlarg, New York, Berlin, Heidelbeg, Tokyo (1983).

A. Gangadharan, T. N. Shammugam and H. M. Srivastava, Generalized hypergeometric func-
tions associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002) 1515-
1526.

A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991) 87-92.

Yu. E. Hohlov, Operators and operations in the class of univalent functions (in Russian),
Izv.Vyss. Ucebn.Zave. Matematika , 10(1978), 83-89.

S. Kanas and A. Wisniowska, Conic regions and k-uniform convezity, J. Comput. Appl.
Math, 105(1999) 327-336.

S. Kanas and A. Wisniowska, Conic regions and k-starlike functions, Rev. Roumaine Math.
Pure. Appl, 45(2000) 647-657.

Y. S. Kim, M. A. Rakha and A. K. Rathie, Extensions of certain classical summation theo-
rems for the series o F1, 3F2 and 4F3 with applications in Ramanujan’s summation, Int. J.
Math. Math. Sci., 2010, Art. ID 309503.

J. A. Kim and K. H. Shon, Mapping properties for convolutions invovling hypergeometric
functions, Int. J. Math. Math. Sci., 17 (2003) 1083-1091.

W. Ma and D. Minda, Uniformly convez functions, Ann. Polon. Math., 57 (1992) 165-175.

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series
on Monographs and Textbooks in Pure and Appl. Math., No.225, Marcel Dekker, Inc. New
York, 2000.

A. K. Mishra and T. Panigrahi, Class-mapping properties of the Hohlov operator, Bull. Ko-
rean Math. Soc., 48(1) (2011) 51-65.

K. S. Padmanabhan, On a certain class of functions whose derivatives have a positive real
part in the unit disc, Ann. Polon. Math, 23 (1979) 73-81.

S. Ponnusamy and F. Ronning, Starlikeness properties for convolutions involving hypergeo-
metric series, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 52 (1998)(1) 141-155.

M. S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936) 374-408.



236 T. PANIGRAHI AND R. EL-ASHWAH

20. F. Rgnning, Uniformly convex functions and a corresponding class of starlike functions, Proc.
Amer. Math. Soc.,118 (1) (1993) 189-196.

21. S. Shamas, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex
functions, Int. J. Math. Math. Sci., 55 (2004) 2959-2961.

22. T. N. Shammugam, Hypergeometric functions in the geometric function theory, Appl. Math.
Comput., 187(2007) 433-444.

23. A. K. Sharma, S. Porwal and K. K. Dixit, Class mapping properties of convolutions involving
certain univalent functions associated with hypergeometric functions, Electr. J. Math. Anal.
Appl., 1(2)(2013), 326-333.

24. H. M. Srivastava and P. W. Karlson, Multiple Gaussian Hypergeometric Series, Ellis Horwood
Ltd., Chichester, Halsted Press (John Wiley and Sons, Inc.), New york, 1985.

25. H. Tang and G. T. Deng, Subordination and superordination preserving properties for a
family of integral operators involving the Noor integral operator, J. Egyptian Math. Soc.,
22(3)(2014) 352-361.

T. Panigrahi,

Department of Mathematics,

School of Applied Sciences,

KIIT to be University,
Bhubaneswar-751024, Odisha,

India.

E-mail address: trailokyap6@gmail.com

and

R. El-Ashwah,

Department of Mathematics,
Faculty of Science,
Damietta University,

New Damietta 34517,

Egypt.
E-mail address: r_elashwah@yahoo.com



	Introduction and Definition
	Preliminaries Lemmas
	Main Results
	Integral operator
	Acknowledgement

