Bol. Soc. Paran. Mat. (3s.) v. 38 3 (2020): 193-201.
©SPM -ISSN-2175-1188 ON LINE ISSN-00378712 IN PRESS
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.v38i3.39868

Elliptic Curves Over the Ring R *

A. Boulbot, A. Chillali, A. Mouhib

ABSTRACT: Let Fq be a finite field of g elements, where ¢ is a power of a prime
number p greater than or equal to 5. In this paper, we study the elliptic curve
denoted E, ,(Fqle]) over the ring Fgle], where €2 = e and (a,b) € (Fgle])?. In
a first time, we study the arithmetic of this ring. In addition, using the Weier-
strass equation, we define the elliptic curve E, ;(Fgle]) and we will show that
Ero(a),mo ) (Fg) and Er. (q) x, (v)(Fq) are two elliptic curves over the field Fq, where
7o and 71 are respectively the canonical projection and the sum projection of coor-
dinates of X € Fq[e]. Precisely, we give a bijection between the sets E, ,(Fq[e]) and

Ero(a),mo () (Fa) X By (a),m1 (v) (Fa)-
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1. Introduction

Let F, be a finite field of order ¢ = p? where d is a positive integer and p > 5 is
a prime number. M. Virat see( [9]) has studied the elliptic curve E, ;(Fp[e]) defined
over the local ring F,[e] := F,[X]/(X?), where € = 0 and (a,b) € (F,[e])?. A.
Chillali see([2]) has generalized the work of M. Virat and extended it to the ring
Fyle] :== Fy[X]/(X™) where ¢ = 0. In this article, our objective is to study the
elliptic curve defined over the ring F,[X]/(X? — X). In section 2, we study the
arithmetic of this ring, in particular we show that Fyle] is not a local ring. In
section 3, we define the elliptic curve E, ;(Fqle]). The study of it’s discriminant
and it’s Weierstrass equation, allows us to define two elliptic curves Er(4) o) (Fq)
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and Er, (q),x (b)(Fq) defined over the finite field F,. In the next of this section, we
classify the elements of E, ,(F,[e]) and we give a bijection between the two sets
Eap(Fgle]) and B (a).m0(6)(Fg) X B, (a),m, (5) (Fq) Where mg and 71 are two surjective
morphisms of rings defined by:

mo: Fyle] — Fy and TV Fyle] — F,
To + T —— X0 To+ 16 — X0+ X1
2. The ring F,le],e? =€

In this section, we follow the approach in [4], [3], [7], [8] and [9]. F, is a finite
field of order ¢ = p? where d is a positive integer and p is a prime number. The ring
F,le], e* = e can be constructed as an extension of the ring F, by using the quotient
ring of F,[X] by the polynomial X% — X. An element X € F,[e] is represented by
X = xo + x1€ where (z0,21) € Fp.

2.1. Arithmetic operations

The arithmetic operations in F,le] can be decomposed into operations in F,
and they are computed as follows: X +Y = (zo + yo) + (z1 + y1)e and X.Y =
(zoyo) + (zoy1 + x1yo + x1y1)e, where X = 29 + x1e and Y = yo + y1e.

One can readily verify the following Lemmas:

Lemma 2.1. (Fyle], +,.) is a finite unitary commutative ring.
Lemma 2.2. F,le] is a vector space over Fy of dimension 2 and {1,e} is it’s basis.

» »

Proposition 2.3. The product law in Fyle] can be written as:

X.Y = (woyo) + ((xo + 1) (yo + y1) — Toyo)e-
Proof: We have: (zg 4+ x1)(yo + y1) — ZoYo = oY1 + T1Y0 + 11 |

Corollary 2.4. For all X = x¢ + x1e € Fyle], we have:
X2 =22 4+ ((xo +21)? —xd)e and X* = 23 + ((wo + 21)> — 20)e.
The next proposition characterize the set (F,[e])™ of invertible elements in F,e].

Proposition 2.5. Let X = zg + z1e € Fyle], then X € (Fqle])™ if and only if
xo # 0 and xo + x1 # 0. The inverse is given by:

X '=uay'+ (o +z1) " = xgl) e.
Proof: Let X = x¢ + z1e and Y = yo + y1e be two elements of Fyle]. We have
X.Y = zoyo + ((zo + 1)(yo + y1) — Toyo)e, then:

. . SCoyO:l
X.Y =1 if and only if
1 and only 1 { (x0+x1)(y0+y1):x0y0

—1
. . Yo =1To , To # 0

f and only if

ARG oy {yl(onJrfEl)lel, o+ x1 #0
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so X € (Fyle])™ if and only if xyp # 0 and xo + 21 # 0. In this case, we have:
X t=ay'+ (o +a1) "t =2 ) e

Corollary 2.6. Let X € Fle], then X is not invertible if and only if X = xe or
X =x — e, such that v € F, .

Now, we consider the two ideals of Fyle], I = {ze € Fyle] |z € Fy} and J =
{z —xze € Fyle] | € Fg}. It’s clear that I U J is the set of non invertible elements
in Fyle], and for all (x,y) € F; we have:

r—xe=ye=>ax—(r+yle=0=>ax=ax+y=0=>2=y=0,

so I and J are two distinct ideals of Fyle] and I U J is not an ideal. Finally, we
have:

Lemma 2.7. Fyle] is a non local ring.
We complete this subsection, by the Lemma:

Lemma 2.8. 7wy and w1 are two surjective morphisms of rings.

Proof: Let X = z9 + xz1e and Y = yo + y1e be two elements of Fy[e]. We have:
X +Y = (20 +yo) + (z1 +y1)e and XY = (zoy0) + ((zo + 1) (yo + y1) — Zoyo)e,
then:

* To(X+Y) =20+yo = mo(X)+m(Y) and mo(X.Y) = x0.yo = mo(X).7o(Y),
S0 7o is a morphism of rings.

* M (X +Y)=20+yo+z1+y1 = (wo+21) + (Yo +y1) = m(X) + 7 (Y) and
m(X.Y) = (zo +21).(yo +y1) = m1(X).711(Y), so w1 is a morphism of rings.

Finally, for all x € F, C Fgle], we have mo(x) = m1(x) = x, so mp and 7 are two
surjective morphisms. |

2.2. Costs of arithmetic operations

Let s,m and i denote the costs of addition, multiplication and inversion in F,
respectively, and let S, M and I denote the costs of addition, multiplication and
inversion in Fg[e] respectively; we have S = 2s, M = 2s+4m and I = s+ 2i. From
the Proposition 2.3, we have M = 3s+2m, so 3s+2m < 2s+4m, then the formula
in the Proposition 2.3 is more efficient to compute the multiplication law in Fye].

3. Elliptic curves over the ring Fle], e = ¢

In this section the prime number p is greater than or equal to 5, and the elements
X.Y,Z,a and b are in the ring Fyle] such that X = z9 + 1€, Y = 3o + i€,
7 = zy + z1e,a = ag + are and b = by + bye where xg, 21, Yo, Y1, 20, 21, @0, a1, bo
and by are in F,. We denoted A := 4a3 + 27b%, A¢ := mo(A) = 4ad + 27b% and
Ay :=71(A) = 4(ag + a1)® + 27(bo + b1)?. For more details of an elliptic curves in
characteristics 2 and 3, see the appendix A in [6].
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3.1. The elliptic curves E. (q),x 1) (Fq) and Ex (q) . 3)(Fq)

Definition 3.1. We define an elliptic curve over the ring Fyle], as a curve in
the projective space P%(Fle]), which is given by the Weierstrass equation: Y?Z =
X3+ aXZ?+bZ3, where the discriminant A is invertible in Fyle].

Notation:
If A is invertible in Fgle], we denote the elliptic curve over Fgle] by E, ,(Fqle]), and
we write:

E.p(Fyle]) = {[X :Y : Z] € P2(F le]) | Y?Z = X® +aX Z? + bZ%}.
Proposition 3.2. A = Ay + (A1 — Ag)e.
From the Propositions 2.5 and 3.2, we deduce that:
Corollary 3.3. A is invertible in Fyle] if and only if Ao # 0 and Ay # 0.

Corollary 3.4. If A is invertible in Fyle], then Er (a),xo0)(Fq) and Ex (q) ) (Fq)
are two elliptic curves over the finite field Fy, and we write:

Ero(a)mo) (Fq) = {[z 1y : 2] € PP(Fy) | y?2 = 2° + apwz® + bz}, and

Ery()m) (Fo) = {[r 1y 2] € P2(Fy) [ y*2 = 2® + (a0 + ar)wz® + (bo + b1)2"} .
Proposition 3.5. Let X,Y and Z in F,le], then [X :Y : Z] € P?(F,le]) if and
only if [mo(X) : mo(Y) : mo(Z)] € P2 (Fy) and [r1(X) : m1(Y) : m1(Z)] € P2 (F,).

Proof: Suppose that [X : Y : Z] € P2 (F,[e]), then there exist (U, V, W) € (F,[e])’
such that UX + VY + WZ = 1. Hence for i € {0,1}, we have: m;(U)m;(X) +
mi(V)mi(Y) + 7i(W)mi(Z) = 1, so (mi(X),m(Y), mi(Z)) # (0,0,0), which proves
that [ﬂ'l(X) : 7Ti(Y) : 7T1(Z)] € p? (Fq).

Reciprocally, let [m;(X): m;(Y) : mi(Z)] € P?(F,) where i € {0,1}. Suppose
that xg # 0, then we distinguish between two case of z¢ + z1:

(a) o+ x1 #0: then X is invertible in F,[e], so [X : Y : Z] € P% (F,[e]).
(b) 2o+ x1 =0:then yo+y1 #0 or zg + 21 # 0.
(1) If yo + y1 # 0 then:
2o+ (Yo +y1 —x0) e = xo — woe + (yo +y1) e = X +eY € (Fyle])™,

so there exist U € Fyle] : UX +eUY =1, hence [X : Y : Z] € P% (F,[e]).
(ii) If 20 + 21 # 0 then X +eZ € (F,[e])”, s0 [X : Y : Z] € P? (F,[e]).

In the case where yg # 0 or zg # 0, we follow the same proof. a
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Proposition 3.6. Let X,Y and Z in F,le], then the point [X : Y : Z] is a solution
of the Weierstrass equation in E, 1, (F4le]) if and only if [mi(X) : m;(Y) : mi(2)] is
a solution of the same equation in Er (q) =) (Fq) where i € {0,1}.

Proof: We have:

Y?Z = y3zo + ((yo +41)* (20 + 21) — y320)e
X = a5+ (w0 +21)° — x3)e
aXZ?% = apxozi + ((ap + a1)(xo + 1) (20 + 21) — apwozd)e
ng = boZS + ((bo + bl)(ZO + 21)3 - boZS)e.
Or {1,e} is a basis of F, vector space F,le], then: Y2Z = X3+ aX Z?+bZ3 if and

only if ygzo = xf + aozozg + bozy and (yo + y1)*(20 + 21) = (zo + 21)* + (a0 +
al)($0+.T1)(Zo+21)2+(b0+b1)(20+Zl)3. O

From the Corollary 3.3, the Proposition 3.5 and the Proposition 3.6, we deduce
the theorem:

Theorem 3.7. Let X,Y and Z in Fyle], then [X : Y : Z] € E,, (Fyle]) if and only
if [mi(X) :mi(Y) : mi(2)] € Er,(a),miv) (Fq), where i € {0,1}.

Corollary 3.8. The mappings 7o and 1 are well defined, where ; for i € {0,1}
s given by:

Eap®ole]) =5 Epaymn(Fy)
(X:Y:Z] — [m(X):m(Y):mi(2)).

Proof: From the previous theorem, we have
[mi(X) 1 mi(Y) : 7i(Z)] € Er,a),miv) (Fq)-

If [X:Y:Z]=[X":Y':Z], then there exist ® € (F,[e])™ such that: X' = ®X,
Y’ = ®Y and Z' = ®Z, then:

~

m (XY Z) = [m( X)) c (YY) i (2))]
= [mi(®)mi(X) : mi(P)mi(Y) : i ()i (Z)]
mi(P)EF)

= [m(X) : 1 (Y) : m(2)] = (X:Y:2]).

3.2. Classification of elements in E, ,(F,[e])

In this subsection we will classify the elements of the elliptic curve into three
types, depending on whether the third projective coordinate Z is invertible or not.
The result is in the following proposition.
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Proposition 3.9. Every element of Eq,(Fyle]) is of the form [X 'Y : 1] or
[ve : 1 : ze] such that [x : 1 : 2] € Er (a),rw(Fq) or [x —we 1 1 : 2z — z¢]
such that [z : 1 : 2] € Eri(a).xo)(Fq) or [ve : y —ye : €] such that y # 0 and
[2:0:1] € Ex (a),m@)(Fq) or [t —xe:ye:1—e] such that y #0 and [z :0:1] €
Ewo(a),wo(b) (Fq). We write:

Eap(Fole]) ={[X :Y :1]| Y? = X + aX + b}
U{[ze:1:z2¢e]|[x:1:2] € Ex (a)mt)(Fq)}
U{lz—we:1:2—ze]|[x:1:2] € Exya)mom) (Fq)}

[
U{lze:y—ye:e]l |y#0and [x:0:1] € Ex (a)m0)(Fq)}
U{lz—aze:ye:1—€]|y#0and [2:0:1] € Erya)mom)(Fq)} -

Proof: Let P =[X :Y : Z] € E,,(Fyle]), where X = zg +z1e and Y = yo + yre.
We have three cases of the third projective coordinate Z:

1. If Z is invertible, then: [X : Y : Z] ~ [X : Y : 1].

2. If Z = ze, where z € F,, then 7 ([X : Y : Z]) = [0 : yo : 0], s0 29 = 0 and
yo # 0; hence [X : Y : Z] = [ze : 1 + ye : ze] and there are two sub-cases of
yeF:

(a) y # —1, then 14 ye is invertible in Fy[e], so we have: [X : Y : Z] ~ [ze:
1: ze], where [z : 1: 2] € Ex (a),x ) (Fq)-

(b) y = —1, then 1 — e is not invertible in Fyle], so we have: [X : Y : Z] =
[rte : 1 —e : ze], where [z : 0 : 2] € Er (a),r ) (Fq), then necessary
2z # 0, hence [X : Y : Z] = [ae : B — Be : €], where 8 = 27! # 0 and
a:0: 1] € Eﬂ'l(a)qﬂ'l(b)(Fq)'

3. If Z = 2 — ze, where z € Fy, then my ([X :Y : Z]) = [xo + 21 : yo + 1 : 0], s0
xo+x1 =0and yo+y1 #0; hence [X : Y : Z] =[x —xe:yo+ 1€ : 2z — ze],
where yo + y1 # 0. We have two sub-cases of yg € Fy :

(a) yo # 0, then yo + y1e is invertible in Fyle], so we have: [X : Y : Z] ~
[ —xe:1:2z—ze], where [x:1: 2] € Er (a),x)(Fq)-

(b) yo =0, then Y = ye, where y # 0 is not invertible in F,[e], so we have:
(X :Y :Z] =[x —xe:ye:z— ze], where [z : 0: 2] € Er(a),ro0)(Fq),
then necessary z 20 and [X : Y : Z] =[xz —ze : ye: 1 —e], where y # 0
and [:L' :0: 1] S Eﬂ'o(a),ﬂ'o(b) (Fq).

Which proves the proposition. O

From this proposition we deduce that:

Corollary 3.10. 7 is a surjective mapping.

Proof: Let [v:y: 2] € Er(a),xo ) (Fq), then:
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* Ify #0, then [z :y: 2] ~[x:1:z]; hence [x—xe: 1:z—ze] is an antecedent
of [z:1:2z].

* If y=0,then 2z #20and [x:y: 2] ~[r:0:1]; hence [xt —ze:e:1—¢]is an
antecedent of [z : 0 : 1].

Corollary 3.11. 7 is a surjective mapping.

Proof: Let [v:y: 2] € B (a),r, ) (Fq), then:

* Ify#0, then [x:y: 2] ~[zr:1:2]; hence [ze : 1 : ze] is an antecedent of
[x:1:2].

* Ify =0,then z# 0and [z :y: 2] ~ [z :0:1]; hence [ze : 1 —e : ¢] is an
antecedent of [z : 0 : 1].
|

The next proposition gives a bijection between the two sets E,;(Fqle]) and
Ero(a).mov)(Fa) X Eny(a),mi (5) (Fo)-

Proposition 3.12. The T mapping defined by:

Eqb(Fqle]) = Ero(a),mo) (Fg) X Exy(a).m ) (Fq)
X:Y:2] s (mo(X): mo(Y) : mo(2)], [m(X) : mi(Y) : m(2)])

is a bijection.

Proof:
*x As 7y and 71 are well defined, then 7 is well defined.

* Let ([z0 2 yo : 20], [#1 : 91 ¢ 21]) € By (a),mo(0) (Fg) X By (a),my (v) (Fg ), then [zo 4
(x1—x0)e :yo+ (y1 —yo)e : 20+ (21 — 20) €] € Eqp (Fqle]) and it is clear
that

7 ([zo + (21 — z0) e s yo + (y1 —yo) e : 20 + (21 — 20) €]) = ([z0 : yo : 20, [21 : 91 = 21))
hence 7 is a surjective mapping.

* Lets [X : Y : Z] and [X' : Y’ : Z'] be elements of E, (Fq[e]), where X =
xo + x16,Y = yo +y1e,Z = zo + z16, X' = x, + 2le, Y’ = y{ + yje and
7' =z + zle. M [z yo : 20) = [xg =y = 2] and [zo + 21 ¢ yo + y1 ¢
20 + 21] = [y + 2 yh + vy 2y + z1], then there exist (o, 3) € (F;)2 such
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x = axg x + a1 = B (z0 + 1) ) = (B —a)zo + By
that: ¢ yo = ayo and ¢ yo + v = B(yo + 1) .50 ¢ v1 = (B—)yo + By,
20 = azo 20+ 21 = B (20 + 21) 21 =(B—a)z + Bz

then:
X =arg+ (f—a)xo+fri1)e=(a+ (f—a)e) X
Vi=ay+((B-a)yo+By)e=(a+(B-a)e)Y
Z'=azp+ ((B—a)zo+ Pz1)e=(a+(B—a)e)Z

Or a+ (8 — ) e is invertible in Fy[e], so [X': Y’ : Z'] = [X : Y : Z], hence T
is an injective mapping.

~—1
We can easily show that the mapping 7  defined by:

7 ([0t yo : 0], [x1 : 91+ 21]) = [0 + (21 — T0)e : Yo+ (y1 — Yo)e : 20 + (21 — 20)€]

is the inverse of . O
Corollary 3.13. The cardinal of E, ,(Fqle]) is equal to the cardinal of

Ero(a),mo() (Fa) X By (a),m ) (Fo)-
3.3. Example

In Fsle], lets a = 1 + 3e and b = 1 + 2e. We have:

Ey,p(Fsle]) ={[0:1:0],[0:1:1+4e],[0:1:4+¢],[2:1+¢:1],
2:142e:1],[2:4+3e:1],[2:4+4e:1],[e:1: 3e],
2e:1+e:1],[2e:1+2e:1],[2e:4+3e:1],[2e:4+4e: 1],
[de:1:2e],[2+3e:1:1+4+4e],[2+3e:1:34 2],
24+3e:1:44¢],[34+2e:1:1+4e],[34+2¢e:1:2+ 3¢,
B+2e:1:44¢],34+4e:14+e¢e:1],[3+4e:1+2¢:1],
[B+4e:4+3e:1],[34+4e:4+4e:1],[4+3e:2:1],
[4+3e:3:1],[44+3e:2+e:1],[4+3e:3+4e: 1]},

Ey1(F5)={[0:1:0},[0:1:1],[0:4:1],[2:1:1],[2:4:1],[3:1:1],
[B:4:1],[4:2:1],[4:3:1]},
E,3F5)={[0:1:0],[2:2:1],[2:3:1]},
so card(Eq »(Fsle])) = 27, card(Ey 1(Fs)) = 9 and card(Ey 3(Fs)) = 3.
3.4. Cryptography applications

In cryptography applications, we have:

* If card(E, ,(Fgle])) := n is an odd number, then n = s x ¢ is the factorization
of n, where s := card(Ey(q),xo)(Fq)) and t := card(Ex, (a),x, ) (Fq)), hence
the cardinal of E, ;(F,[e]) is not a prime number.

* The discrete logarithm problem in E, ,(F,[e]) is equivalent to the discrete
logarithm problem in Eﬂ'o(a),ﬂ'o(b) (Fq) x B, (a),m1(b) (Fq).
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4. Conclusion

In this work, we have proved the bijection between E, ;(F,[e]) and Er (4) o (5)(Fq) X
Er (a),x (b)(Fq). For the group law over F, ,(F[e]) see the explicit formulas in the
article of [1], [pages : 236-238].
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