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Variations on Statistical Quasi Cauchy Sequences

Huseyin Cakalli

abstract: In this paper, we introduce a concept of statistically p-quasi-Cauchyness
of a real sequence in the sense that a sequence (αk) is statistically p-quasi-Cauchy
if limn→∞

1

n
|{k ≤ n : |αk+p − αk| ≥ ε}| = 0 for each ε > 0. A function f is

called statistically p-ward continuous on a subset A of the set of real umbers R if it
preserves statistically p-quasi-Cauchy sequences, i.e. the sequence f(x) = (f(αn))
is statistically p-quasi-Cauchy whenever α = (αn) is a statistically p-quasi-Cauchy
sequence of points in A. It turns out that a real valued function f is uniformly
continuous on a bounded subset A of R if there exists a positive integer p such that
f preserves statistically p-quasi-Cauchy sequences of points in A.
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1. Introduction

Throughout this paper, N, and R will denote the set of positive integers, and
the set of real numbers, respectively. p will always be a fixed element of N. The
boldface letters such as α, β, ζ will be used for sequences α = (αn), β = (βn),
ζ = (ζn), ... of points in R. A function f : R −→ R is continuous if and only if
it preserves convergent sequences. Using the idea of continuity of a real function
in this manner, many kinds of continuities were introduced and investigated, not
all but some of them we recall in the following: ward continuity ( [17], [4]), p-ward
continuity ( [26]), δ-ward continuity ( [20]), δ2-ward continuity ( [3]), statistical ward
continuity, ( [21]), λ-statistical ward continuity ( [37]), ρ-statistical ward continuity
( [6]), slowly oscillating continuity ( [14,57,36]), quasi-slowly oscillating continuity
( [43]), ∆-quasi-slowly oscillating continuity ( [18]), arithmetic continuity ( [58], [5]),
upward and downward statistical continuities ( [27]), lacunary statistical ward con-
tinuity ( [8]), δ lacunary statistical ward continuity ( [32]), δ2 lacunary statistical
ward continuity ( [62]), ideal ward continuity ( [9,25]), ideal statistical ward conti-
nuity ( [55]), Nθ-ward continuity ( [24], [31], [10], [46], [45]), Nθ-δ-ward continuity
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( [10]), and Abel continuity ( [7]), which enabled some authors to obtain interesting
results.

The purpose of this paper is to introduce statistically p-quasi-Cauchy sequences,
and prove interesting theorems.

2. Variations on statistical ward compactness

The concept of a Cauchy sequence involves far more than that the distance be-
tween successive terms is tending to 0 and statistically tending to zero, and more
generally speaking, than that the distance between p-successive terms is statisti-
cally tending to zero, by p-successive terms we mean αk+p and αk. Nevertheless,
sequences which satisfy this weaker property are interesting in their own right.

Before giving our main definition we recall basic concepts. A sequence (αn)
is called quasi Cauchy if limn→∞ ∆αn = 0, where ∆αn = αn+1 − αn for each
n ∈ N ( [4], [17]). The set of all bounded quasi-Cauchy sequences is a closed sub-
space of the space of all bounded sequences with respect to the norm defined for
bounded sequences ( [50]). A sequence (αk) of points in R is slowly oscillating if
limλ→1+ limn maxn+1≤k≤[λn] |αk − αn| = 0, where [λn] denotes the integer part
of λn ( [42]). A sequence (αk) is quasi-slowly oscillating if (∆αk) is slowly oscil-
lating. A sequence (αn) is called statistically convergent to a real number L if
limn→∞

1
n
|{k ≤ n : |αk − L| ≥ ε}| = 0 for each ε > 0 ( [44], [16], [33], and [12]).

Recently in [26] it was proved that a real valued function is uniformly continuous
whenever it is p-ward continuous on a bounded subset of R. Now we introduce the
concept of a statistically p-quasi-Cauchy sequence.

Definition 2.1. A sequence (αk) of points in R is called statistically p-quasi-
Cauchy if st − limk→∞ ∆pαk = 0, ie. limn→∞

1
n
|{k ≤ n : |∆pαk| ≥ ε}| = 0 for

each ε > 0, where ∆pαk = αk+p − αk for every k ∈ N.

We will denote the set of all statistically p-quasi-Cauchy sequences by ∆s
p for

each p ∈ N. The sum of two statistically p-quasi-Cauchy sequences is statistically
p-quasi-Cauchy, the product of a statistically p-quasi-Cauchy sequence and a con-
stant real number is statistically p-quasi-Cauchy, so that the set of all statistically
p-quasi-Cauchy sequences ∆s

p is a vector space. We note that a sequence is sta-
tistically quasi-Cauchy when p = 1, i.e. statistically 1-quasi-Cauchy sequences are
statistical quasi-Cauchy sequences. It follows from the inclusion
{k ≤ n : |αk+p − αk| ≥ ε} ⊆
⊆ {k ≤ n : |αk+p − αk+p−1| ≥

ε
p
} ∪ {k ≤ n : |αk+p−1 − αk+p−2| ≥

ε
p
} ∪ ...

∪ {k ≤ n : |αk+2 − αk+1| ≥
ε
p
} ∪ {k ≤ n : |αk+1 − αk| ≥

ε
p
}

that any statistically quasi-Cauchy sequence is also statistically p-quasi-Cauchy,
but the converse is not always true as it can be seen by considering the the se-
quence (αk) defined by (αk) = (0, 1, 0, 1, ..., 0, 1, ...) is 2-statistically quasi Cauchy
which is not statistically quasi Cauchy. More examples can be seen in [50, Section

1.4]. It is clear that any Cauchy sequence is in
⋂p=1

∞ ∆s
p, so that each ∆s

p is a
sequence space containing the space C of Cauchy sequences. It is also to be noted
that C is a proper subset of ∆s

p for each p ∈ N.
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Definition 2.2. A subset A of R is called statistically p-ward compact if any se-
quence of points in A has a statistically p-quasi-Cauchy subsequence.

We note that this definition of statistically p-ward compactness cannot be ob-
tained by any summability matrix in the sense of [15] (see also [13], and [22]).

Since any statistically quasi-Cauchy sequence is statistically p-quasi-Cauchy we
see that any ward compact subset of R is statistically p-ward compact for any p ∈ N.
A finite subset of R is statistically p-ward compact, the union of finite number of
statistically p-ward compact subsets of R is statistically p-ward compact, and the
intersection of any family of statistically p-ward compact subsets of R is statistically
p-ward compact. Furthermore any subset of a statistically p-ward compact set of R
is statistically p-ward compact and any bounded subset of R is statistically p-ward
compact. These observations above suggest to us the following.

Theorem 2.1. A subset A of R is bounded if and only if there exists a p ∈ N such
that A is statistically p-ward compact.

Proof: The bounded subsets of R are statistically p-ward compact, since any
bounded sequence of points in a bounded subset of R is bounded and any bounded
sequence has a convergent subsequence which is statistically p-quasi-Cauchy for
any p ∈ N. To prove the converse, suppose that A is not bounded. If it is un-
bounded above, pick an element α1 of A greater than p. Then we can find an
element α2 of A such that α2 > 2p + α1. Similarly, choose an element α3 of
A such that α3 > 3p + α2. So we can construct a sequence (αj) of numbers
in A such that αj+1 > (j + 1)p + αj for each j ∈ N. Let (αjk) be any sub-
sequence of (αj). Since {k ≤ n : |αjk+1

− αjk | ≥ p
2} = {1, 2, ..., n}, it follows

that limn→∞
1
n
|{k ≤ n : |αjk+1

− αjk | ≥
p

2}| = 1 6= 0. This means that (αjk)
is not statistically p-quasi-Cauchy. Then the sequence (αj) does not have any
statistically p-quasi-Cauchy subsequence. If A is bounded above and unbounded
below, then pick an element β1 of A less than −p. Then we can find an ele-
ment β2 of A such that β2 < −2p + β1. Similarly, choose an element β3 of A
such that β3 < −3p + β2. Thus one can construct a sequence (βi) of points in
A such that βi+1 < −(i + 1)p + βi for each i ∈ N. Let (βik

) be any subse-
quence of (βi). Since {k ≤ n : |βik+1

− βik
| ≥ p} = {1, 2, ..., n}, it follows that

limn→∞
1
n
|{k ≤ n : |βik+1

− βik
| ≥ p}| = 1 6= 0. This implies that (βik

) is not
statistically p-quasi-Cauchy. Then the sequence (αi) does not have any statistically
p-quasi-Cauchy subsequence. Thus this contradiction completes the proof of the
theorem. ✷

It follows from Theorem 2.1 that statistically p-ward compactness of a subset
of A of R coincides with either of the following kinds of compactness: p-ward
compactness ( [26, Theorem 2.3]), statistical ward compactness ( [21, Lemma 2]),
λ-statistical ward compactness ( [37, Theorem 1]), ρ-statistical ward compactness
( [6, Theorem 1]), strongly lacunary ward compactness ( [24, Theorem 3.3]), slowly
oscillating compactness ( [19, Theorem 3]), lacunary statistical ward compactness
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(see [8]), and [19, Theorem 3]), ideal ward compactness ( [9, Theorem 8]), Abel
ward compactness ( [7, Theorem 5]).

If a closed subset of R is statistically p-ward compact for a positive integer
p, then any sequence of points in A has a (Pn, s)-absolutely almost convergent
subsequence (see [29], [38], [51], [60], [2], and [61]).

Corollary 2.2. A subset of R is statistically p ward compact if and only if it is
statistically q ward compact for any p, q ∈ N.

Corollary 2.3. A subset of R is statistically p ward compact if and only if it is
both statistically upward half compact and statistically downward half compact.

Proof: The proof follows from [27, Corollary 3.9], so is omitted. ✷

Corollary 2.4. A subset of R is statistically p ward compact for a p ∈ N if and only
if it is both lacunary statistically upward half compact and lacunary statistically
downward half compact.

Proof: The proof follows from [11, Theorem 1.3 and Theorem 1.9], so is omitted.
✷

3. Variations on statistical ward continuity

In this section, we investigate connections between uniformly continuous func-
tions and statistically p-ward continuous functions. A function f : R −→ R is
continuous if and only if it preserves statistically convergent sequences. Using this
idea, we introduce statistical p-ward continuity.

Definition 3.1. A function f is called statistically p-ward continuous on a subset
A of R if it preserves statistically p-quasi-Cauchy sequences, i.e. the sequence
f(x) = (f(αn)) is statistically p-quasi-Cauchy whenever α = (αn) is statistically
p-quasi-Cauchy of points in A.

We see that this definition of statistically p-ward continuity can not be obtained
by any summability matrix A (see [13]).

We note that the sum of two statistically p-ward continuous functions is sta-
tistically p-ward continuous, and for any constant c ∈ R, cf is statistically p-ward
continuous whenever f is a statistically p-ward continuous function, so that the set
of all statistically p ward continuous functions is a vector space. The composite of
two statistically p-ward continuous functions is statistically p-ward continuous, but
the product of two statistically p-ward continuous functions need not be statisti-
cally p-ward continuous as it can be seen by considering product of the statistically
p-ward continuous function f(x) = x with itself. If f is a statistically p-ward
continuous function, then |f | is also statistically p-ward continuous since

|{k ≤ n : |f(αk+p)− f(αk)| ≥ ε}| ⊆ |{k ≤ n : ||f(αk+p)| − |f(αk)|| ≥ ε}|
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which follows from the inequality ||f(αk+p)| − |f(αk)|| ≤ |f(αk+p) − f(αk)|. If f ,
and g are statistically p-ward continuous, thenmax{f, g} is also statistically p-ward
continuous, which follows from the equality max{f, g} = 1

2{|f − g|+ |f + g|}.
In connection with statistically p-quasi-Cauchy sequences, slowly oscillating se-

quences, and convergent sequences the problem arises to investigate the following
types of “continuity” of a function on R.

(∆s
p) (αn) ∈ ∆s

p ⇒ (f(αn)) ∈ ∆s
p

(∆s
pc) (αn) ∈ ∆s

p ⇒ (f(αn)) ∈ c

(∆s) (αn) ∈ ∆s ⇒ (f(αn)) ∈ ∆s

(c) (αn) ∈ c ⇒ (f(αn)) ∈ c

(d) (αn) ∈ c ⇒ (f(αn)) ∈ ∆s
p

(e) (αn) ∈ w ⇒ (f(αn)) ∈ ∆s
p

where w denotes the set of slowly oscillating sequences, and ∆s = ∆s
1. We see that

(∆s
p) is statistically p-ward continuity of f , and (c) states the ordinary continuity

of f . It is easy to see that (∆s
pc) implies (∆s

p), and (∆s
p) does not imply (∆s

pc);
∆s

p implies (d), and (d) does not imply (∆s
p); and (∆s

p) implies (e), and (e) does
not imply (∆s

p); (∆
s
pc) implies (c) and (c) does not imply (∆s

pc); and (c) implies
(d). Now we see that (∆s

p) implies (∆s), i.e. any statistically p-ward continuous
function is statistically ward continuous.

Theorem 3.1. If f is statistically p-ward continuous on a subset A of R for some
p ∈ N, then it is statistically ward continuous on A.

Proof: If p = 1, then it is obvious. So we would suppose that p > 1. Take
any statistically p-ward continuous function f on A. Let (αk) be any statistical
quasi-Cauchy sequence of points in A. Write

(ξi) = (α1, α1, ..., α1, α2, α2, ..., α2, ..., αn, αn, ..., αn, ...),

where the same term repeats p times. The sequence

(α1, α1, ..., α1, α2, α2, ..., α2, ..., αn, αn, ..., αn, ...)

is also statistically quasi-Cauchy so it is statistically p-quasi-Cauchy. By the sta-
tistically p-ward continuity of f , the sequence

(f(α1), f(α1), ..., f(α1), f(α2), f(α2), ..., f(α2), ..., f(αn), f(αn), ..., f(αn), ...)

is statistically p-quasi-Cauchy, where the same term repeats p-times. Thus the
sequence

(f(α1), f(α1), ..., f(α1), f(α2), f(α2), ..., f(α2), ..., f(αn), f(αn), ..., f(αn), ...)

is also statistically p quasi-Cauchy. It is easy to see that st−lim(f(αn+p)−f(αn)) =
0, which completes the proof of the theorem.

✷
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Corollary 3.2. If f is statistically p-ward continuous on a subset A of R, then it
is continuous on A in the ordinary case.

Proof: The proof follows immediately from [21, Theorem 3] so is omitted. ✷

Theorem 3.3. Statistical p-ward continuous image of any statistically p-ward com-
pact subset of R is statistically p-ward compact.

Proof: Let f be a statistically p-ward continuous function, and A be a statistically
p-ward compact subset of R. Take any sequence β = (βn) of terms in f(E).
Write βn = f(αn) where αn ∈ E for each n ∈ N, α = (αn). statistically p-ward
compactness of A implies that there is a statistically p-quasi-Cauchy subsequence
ξ = (ξk) = (αnk

) of α. Since f is statistically p-ward continuous, (tk) = f(ξ) =
(f(ξk)) is statistically p-quasi-Cauchy. Thus (tk) is a statistically p-quasi-Cauchy
subsequence of the sequence f(α). This completes the proof of the theorem. ✷

Corollary 3.4. Statistical p-ward continuous image of any G-sequentially con-
nected subset of R is G-sequentially connected for a regular subsequential method
G (see [22], [48], and [34]).

Proof: The proof follows from the preceding theorem, so is omitted (see [23] and
[49] for the definition of G-sequential connectedness and related concepts). ✷

Theorem 3.5. If f is uniformly continuous on a subset A of R, then (f(αn)) is
statistically p-quasi-Cauchy whenever (αn) is a p-quasi-Cauchy sequence of points
in A.

Proof: Let (αn) be any p-quasi-Cauchy sequence of points in A. Take any ε > 0.
Uniform continuity of f on A implies that there exists a δ > 0, depending on
ε, such that |f(x) − f(y)| < ε whenever |x − y| < δ and x, y ∈ A. For this
δ > 0, there exists an N = N(δ) such that |∆pαn| < δ whenever n > N . Hence
|∆pf(αn)| < ε if n > N . Thus {k ≤ n : |∆pf(αk)| ≥ ε} ⊆ {1, 2, ..., N}. Therefore
limn→∞

1
n
|{k ≤ n : |∆pf(αk)| ≥ ε}| ≤ limn→∞

1
n
|{k ≤ N : k ∈ N}| = 0. It follows

from this that (f(αn)) is a statistically p-quasi-Cauchy sequence. This completes
the proof of the theorem. ✷

Corollary 3.6. If f is slowly oscillating continuous on a bounded subset A of
R, then (f(αn)) is statistically p-quasi-Cauchy whenever (αn) is a p quasi-Cauchy
sequence of points in A.

Proof: If f is a slowly oscillating continuous function on a bounded subset A of
R, then it is uniformly continuous on A by [39, Theorem 2.3]. Hence the proof
follows from Theorem 3.5. ✷

It is well-known that any continuous function on a compact subset A of R

is uniformly continuous on A. We have an analogous theorem for a statistically
p-ward continuous function defined on a statistically p-ward compact subset of R.
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Theorem 3.7. If a function is statistically p-ward continuous on a statistically
p-ward compact subset of R, then it is uniformly continuous on A.

Proof: Suppose that f is not uniformly continuous on A so that there exist an
ǫ0 > 0 and sequences (αn) and (βn) of points in A such that |αn − βn| < 1/n and
|f(αn)− f(βn)| ≥ ǫ0 for all n ∈ N. Since A is statistically p-ward compact, there
is a subsequence (αnk

) of (αn) that is statistically p-quasi-Cauchy. On the other
hand, there is a subsequence (βnkj

) of (βnk
) that is statistically p-quasi-Cauchy as

well. It is clear that the corresponding sequence (ankj
) is also statistically p-quasi-

Cauchy, since
{j ≤ n : |αnkj+p

− αnkj
| ≥ ε} ⊆ {j ≤ n : |αnkj+p

− βnkj+p
| ≥ ε

3} ∪ {j ≤ n :

|βnkj+p
− βnkj

| ≥ ε
3} ∪ {j ≤ n : |βnkj

− αnkj
| ≥ ε

3}

for every n ∈ N, and for every ε > 0. Now the sequence

(αnk1
, αnk1

, ..., αnk1
, βnk1

, βnk1
, ..., βnk1

, ..., αnkj
,

αnkj
, ..., αnkj

, βnkj
, βnkj

, ..., βnkj
, ...)

is statistically p-quasi-Cauchy while the sequence

(f(αnk1
), f(αnk1

), ..., f(αnk1
), f(βnk1

), f(βnk1
), ..., f(βnk1

), ..., f(αnkj
),

f(αnkj
), ..., f(αnkj

), f(βnkj
), f(βnkj

), ..., f(βnkj
), ...)

is not statistically p-quasi-Cauchy where same term repeats p-times. Hence this
establishes a contradiction, so completes the proof of the theorem. ✷

Corollary 3.8. If a function defined on a bounded subset of R is statistically p-
ward continuous, then it is uniformly continuous.

We note that when the domain of a function is restricted to a bounded subset of
R, statistically p-ward continuity implies not only ward continuity, but also slowly
oscillating continuity.

4. Conclusion

In this paper, we introduce statistically p-quasi Cauchy sequences, and investi-
gate conditions for a statistically p ward continuous real function to be uniformly
continuous, and prove some other results related to these kinds of continuities and
some other kinds of continuities. It turns out that statistically p-ward continuity
implies uniform continuity on a bounded subset of R. The results in this paper not
only involves the related results in [21] as a special case for p = 1, but also some
interesting results which are also new for the special case p = 1. The statistically
p-quasi Cauchy concept for p > 1 might find more interesting applications than
statistical quasi Cauchy sequences to the cases when statistically quasi Cauchy
does not apply. For a further study, we suggest to investigate statistically p-quasi-
Cauchy sequences of soft points and statistically p-quasi-Cauchy sequences of fuzzy
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points. However due to the change in settings, the definitions and methods of proofs
will not always be analogous to those of the present work (for example see [1], [30],
[41], and [47]). We also suggest to investigate statistically p-quasi-Cauchy double
sequences of points in R (see [54], [53], [40], and [35] for the related definitions in
the double case). For another further study, we suggest to investigate statistically
p-quasi-Cauchy sequences in abstract metric spaces (see [28], [52], [36], [56], and
[59]).
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12. A. Caserta, and Ljubisa. D. R. Kočinac, On statistical exhaustiveness, Appl. Math. Lett. 25,
10, 1447-1451, (2012).

13. J.Connor, K.-G.Grosse-Erdmann, Sequential definitions of continuity for real functions,
Rocky Mountain J. Math. 33, 1, 93-121, (2003).
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