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abstract: In this paper, we introduce the concepts of n-absorbing and strongly
n-absorbing second submodules as a dual notion of n-absorbing submodules of mod-
ules over a commutative ring and obtain some related results. In particular, we
investigate some results concerning strongly 2-absorbing second submodules.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will
denote the ring of integers. Let N be a submodule of an R-module M . For r ∈ R,
(N :M r) will denote (N :M r) = {m ∈ M : rm ∈ N}. Clearly, (N :M r) is a
submodule of M containing N .

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [17]. A non-
zero submodule S of M is said to be second if for each a ∈ R, the homomorphism
S

a→ S is either surjective or zero [26]. In this case AnnR(S) is a prime ideal of R.
A proper submodule N of M is said to be completely irreducible if N =

⋂
i∈I Ni,

where {Ni}i∈I is a family of submodules of M , implies that N = Ni for some
i ∈ I. It is easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [19].

The concept of 2-absorbing ideals was introduced in [11] and then extended
to n-absorbing ideals in [1]. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. Let I be a
proper ideal of R and n a positive integer. I is called an n-absorbing ideal of R if
whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there are n of the xi’s whose
their product is in I.

The authors in [15] and [24], extended 2-absorbing ideals to 2-absorbing sub-
modules. A proper submodule N of M is called a 2-absorbing submodule of M if
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whenever abm ∈ N for some a, b ∈ R and m ∈ M , then am ∈ N or bm ∈ N or
ab ∈ (N :R M). A proper submodule N of M is said to be a weakly 2-absorbing
submodule of M if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N , then
ab ∈ (N :R M) or am ∈ N or bm ∈ N [15]. A proper submodule N of M is called
n-absorbing submodule of M if whenever a1...anm ∈ N for a1, ..., an ∈ R and
m ∈ M , then either a1...an ∈ (N :R M) or there are n− 1 of ai’s whose their prod-
uct with m is in N [16]. Several authors investigated properties of 2-absorbing, and
some generalization of 2-absorbing submodules, for example [15,16,22,23,24,25].

In [2], the authors introduced the dual notion of 2-absorbing submodules (that
is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and investi-
gated some properties of these classes of modules. A non-zero submodule N of M
is said to be a 2-absorbing second submodule of M if whenever a, b ∈ R, L is a
completely irreducible submodule of M , and abN ⊆ L, then aN ⊆ L or bN ⊆ L
or ab ∈ AnnR(N). A non-zero submodule N of M is said to be a strongly 2-
absorbing second submodule of M if whenever a, b ∈ R, K is a submodule of M ,
and abN ⊆ K, then aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N). Also, in [3,4], the
authors introduced and investigated some generalization of 2-absorbing second and
strongly 2-absorbing second submodules.

The purpose of this paper is to introduce the concepts of n-absorbing and
strongly n-absorbing second submodules as dual notion of n-absorbing submodules
of modules and provide some information concerning these new classes of modules.
Furthermore, we study some properties of strongly 2-absorbing second submodules
of an R-module M . Also, we introduce the concept of weakly strongly 2-absorbing
second submodules of M as a dual notion of weakly 2-absorbing submodules and
obtain some related results.

2. n-absorbing and strongly n-absorbing second submodules

Definition 2.1. Let N be a non-zero submodule of an R-module M and n be
a positive integer. We say that N is an n-absorbing second submodule of M if
whenever a1...anN ⊆ L for a1, ..., an ∈ R and a completely irreducible submodule L
of M , then either a1...an ∈ AnnR(N) or there are n− 1 of ai’s whose their product
with N is a subset of L.

Remark 2.2. Let N and K be two submodules of an R-module M . To prove
N ⊆ K, it is enough to show that if L is a completely irreducible submodule of M
such that K ⊆ L, then N ⊆ L [9, 2.1].

We recall that an R-module M is said to be a cocyclic module if SocR(M) is
a large and simple submodule of M [27]. (Here SocR(M) denotes the sum of all
minimal submodules of M .). A submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module [19, 12.1.1].

Proposition 2.3. Let N be an n-absorbing second submodule of an R-module M .
Then we have the following.

(a) If L is a completely irreducible submodule of M such that N 6⊆ L, then
(L :R N) is an n-absorbing ideal of R.
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(b) If M is a cocyclic module, then AnnR(N) is an n-absorbing ideal of R.

(c) If a ∈ R, then anN = an+1N .

Proof. (a) Since N 6⊆ L, we have (L :R N) 6= R. Let a1, a2, ..., an, an+1 ∈ R and
a1a2...an+1 ∈ (L :R N). Then a1a2...anN ⊆ (L :M an+1). Thus there are n − 1
of ai’s whose their product with N is a subset of (L :M an+1), where 1 ≤ i ≤ n
or a1a2...anN = 0 because by [10, 2.1], (L :M an+1) is a completely irreducible
submodule ofM . Therefore, there are n of ai’s whose their product lies in (L :R N)
for some 1 ≤ i ≤ n+ 1 or a1...an ∈ (L :R N) as needed.

(b) Since M is cocyclic, the zero submodule of M is a completely irreducible
submodule of M . Thus the result follows from part (a).

(c) It is clear that an+1N ⊆ anN . Let L be a completely irreducible submodule
of M such that an+1N ⊆ L. Then anN ⊆ (L :M a). Since N is n-absorbing
second submodule and (L :M a) is a completely irreducible submodule of M by
[10, 2.1], an−1N ⊆ (L :M a) or anN = 0. Therefore, anN ⊆ L. This implies that
anN ⊆ an+1N by Remark 2.2. ✷

Definition 2.4. Let N be a non-zero submodule of an R-module M and n be a
positive integer. We say that N is a strongly n-absorbing second submodule of M
if whenever a1...anN ⊆ K for a1, ..., an ∈ R and a submodule K of M , then either
a1...an ∈ AnnR(N) or there are n−1 of ai’s whose their product with N is a subset
of K.

Clearly every strongly n-absorbing second submodule is an n-absorbing second
submodule. It is natural to ask the following question:

Question 2.5. Let M be an R-module. Is every n-absorbing second submodule of
M a strongly n-absorbing second submodule of M?

Note 1. Let a1, a2, ..., an ∈ R. We denote by âi the element a1...ai−1ai+1...an.
In this case, the definition of an n-absorbing (resp. a strongly n-absorbing) second
submodule can be reformulated as: a non-zero submodule N of an R-module M is
called n-absorbing (resp. strongly n-absorbing) second if whenever a1, ..., an ∈ R
and L is a completely irreducible submodule (resp. K is a submodule) of M with
a1...anN ⊆ L (resp. a1...anN ⊆ K), then either a1...an ∈ AnnR(N) or âiN ⊆ L
(resp. âiN ⊆ K) for some 1 ≤ i ≤ n.

Proposition 2.6. Let M be an R-module and let {Kλ}λ∈Λ be a chain of n-
absorbing second submodules of M . Then ∪λ∈ΛKλ is an n-absorbing second sub-
module of M .

Proof. Let a1, ..., an ∈ R, L be a completely irreducible submodule of M , and
a1...an(∪λ∈ΛKλ) ⊆ L. Assume that âi(∪λ∈ΛKλ) 6⊆ L. Then for each 1 ≤ i ≤ n
there is βi ∈ Λ, where âiKβ

i
6⊆ L. Hence, for every Kβ

i
⊆ Kαi

we have âiKαi
6⊆ L.

Therefore, for each submodule Kα such that Kβ
i
⊆ Kα (for each 1 ≤ i ≤ n), we

have âiKα 6⊆ L for each 1 ≤ i ≤ n. Thus a1...anKα = 0 as Kα is an n-absorbing
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second submodules of M . Let Kα be a submodule of M such that Kβ
i
⊆ Kα for

each 1 ≤ i ≤ n. As {Kλ}λ∈Λ is a chain, we have

∪λ∈ΛKλ = (∪Kλ⊆Kα
Kλ) ∪ (∪Kα⊂Kλ

Kλ) = Kα ∪ (∪Kα⊂Kλ
Kλ).

Therefore a1...an(∪λ∈ΛKλ) = 0, as needed. ✷

Definition 2.7. We say that an n-absorbing second submodule N of an R-module
M is a maximal n-absorbing second submodule of a submodule K of M , if N ⊆ K
and there does not exist an n-absorbing second submodule H of M such that N ⊂
H ⊂ K.

Lemma 2.8. Let M be an R-module. Then every n-absorbing second submodule
of M is contained in a maximal n-absorbing second submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.6. ✷

Theorem 2.9. Every Artinian R-module M has only a finite number of maximal
n-absorbing second submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of non-zero
submodules N of M such that N has an infinite number of maximal n-absorbing
second submodules. The collection Σ is non-empty because M ∈ Σ and hence has
a minimal member, S say. Then S is not n-absorbing second submodule. Thus
there exist a1, ..., an ∈ R, and a completely irreducible submodule L of M such
that a1...anS ⊆ L but âiS 6⊆ L (for each 1 ≤ i ≤ n) and a1...anS 6= 0. Let V
be a maximal n-absorbing second submodule of M contained in S. Then âiV ⊆ L
for some 1 ≤ i ≤ n or a1...anV = 0. Thus V ⊆ (L :M âi) or V ⊆ (0 :M a1...an).
Therefore, V ⊆ (L :S âi) or V ⊆ (0 :S a1...an). Hence every maximal n-absorbing
second submodule of S is a maximal n-absorbing second submodule of (L :S âi) or
(0 :S a1...an). By the choice of S, the modules (L :S âi) and (0 :S a1...an) have
only finitely many maximal n-absorbing second submodules. Therefore, there is
only a finite number of possibilities for the module S which is a contradiction. ✷

Definition 2.10. We say that a strongly n-absorbing second submodule N of an R-
module M is a maximal strongly n-absorbing second submodule of a submodule K
of M , if N ⊆ K and there does not exist a strongly n-absorbing second submodule
H of M such that N ⊂ H ⊂ K.

Remark 2.11. One can check that, by using the same technique, that the results in
Proposition 2.6, Lemma 2.8, and Theorem 2.9 about n-absorbing second submodules
is also true for strongly n-absorbing second submodules.

An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :M I), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N)) [5].



n-absorbing and Strongly n-absorbing Second Submodules 13

A proper ideal I is a strongly n-absorbing ideal of R if whenever I1...In+1 ⊆ I
for ideals I1,...,In+1 of R then there are n of the Ii’s whose their product is in
I [1]. Clearly a strongly n-absorbing ideal of R is also an n-absorbing ideal of
R. Anderson and Badawi conjectured that these two concepts are equivalent, e.g.,
they proved that an ideal I of a Prüfer domain R is strongly n-absorbing if and
only if I is an n-absorbing ideal of R [1, Corollary 6.9].

Theorem 2.12. Let N be a submodule of an R-module M . Then we have the
following.

(a) If N is a strongly n-absorbing second submodule of M , then AnnR(N) is an
n-absorbing ideal of R.

(b) If M is a comultiplication R-module and AnnR(N) is a strongly n-absorbing
ideal of R, then N is a strongly n-absorbing second submodule of M .

Proof. (a) Let N be a strongly n-absorbing second submodule of M . Assume that
a1, ..., an+1 ∈ R with a1...an+1 ∈ AnnR(N). For each 1 ≤ i ≤ n, let âi be the
element of R which is obtained by eliminating ai from a1...an. Then a1...anN ⊆
a1...anN implies that âiN ⊆ a1...anN for some 1 ≤ i ≤ n because N is strongly
n-absorbing second. Thus âian+1N = 0 that is, AnnR(N) is n-absorbing.

(b) Assume that AnnR(N) is a strongly n-absorbing ideal of R. Let a1, ..., an ∈
R and K be a submodule of M such that a1...anN ⊆ K and a1...anN 6= 0.
Then a1...anAnnR(K)N = 0. Now as AnnR(N) is a strongly n-absorbing ideal
of R, âiAnnR(K) ⊆ AnnR(N) since a1...an 6∈ AnnR(N). Thus AnnR(K) ⊆
AnnR(âiN). It follows that âiN ⊆ K since M is a comultiplication R-module that
is, N is strongly n-absorbing second submodule of M . ✷

Theorem 2.13. Let N be a strongly n-absorbing second submodule of an R-module
M . Then rN is a strongly n-absorbing second submodule of M for all r ∈ R \
AnnR(N).

Proof. Let a1...anrN ⊆ K for some a1, ..., an ∈ R and a submodule K of M . Then
a1a2...anN ⊆ (K :M r). So either a1...an ∈ AnnR(N) or there are n − 1 of ai’s
whose their product with N is a subset of (K :M r). If a1...an ∈ AnnR(N), since
AnnR(N) ⊆ AnnR(rN) we are done. In other case, there are n − 1 of ai’s whose
their product with N is a subset of (K :M r) implies that there is a product of
n − 1 of the ai’s with rN is a subset of K. Thus rN is a strongly n-absorbing
second submodule of M . ✷

An R-module M is said to be a multiplication module if for every submodule
N of M there exists an ideal I of R such that N = IM [12].

Corollary 2.14. Let R be a principal ideal domain and M be a multiplication
strongly n-absorbing second R-module. Then every submodule of M is a strongly
n-absorbing second submodule of M .
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Proof. This follows from Theorem 2.13. ✷

Proposition 2.15. Let f : M → Ḿ be a monomorphism of R-modules. Then we
have the following.

(a) If N is a strongly n-absorbing second submodule of M , then f(N) is a strongly
n-absorbing second submodule of Ḿ .

(b) If Ń is a strongly n-absorbing second submodule of f(M), then f−1(Ń) is a
strongly n-absorbing second submodule of M .

Proof. (a) Since N 6= 0 and f is a monomorphism, we have f(N) 6= 0. Let
a1, a2, ..., an ∈ R, Ḱ be a submodule of Ḿ , and a1a2...anf(N) ⊆ Ḱ. Then
a1a2...anN ⊆ f−1(Ḱ). As N is strongly n-absorbing second submodule, âiN ⊆
f−1(Ḱ) for some 1 ≤ i ≤ n or a1a2...anN = 0. Therefore,

âif(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or a1a2...anf(N) = 0, as needed.
(b) If f−1(Ń) = 0, then f(M) ∩ Ń = f(f−1(Ń)) = f(0) = 0. By assumption,

Ń ⊆ f(M). Therefore Ń = 0, a contradiction. Therefore, f−1(Ń) 6= 0. Now let
a1, a2, ..., an ∈ R, K be a submodule of M , and a1a2...anf

−1(Ń) ⊆ K. Then

a1a2...anŃ = a1a2...an(f(M) ∩ Ń) = a1a2...anf(f
−1(Ń)) ⊆ f(K).

Thus as Ń is strongly n-absorbing second submodule, âiŃ ⊆ f(K) for some
1 ≤ i ≤ n or a1a2...anŃ = 0. Therefore, âif

−1(Ń) ⊆ f−1(f(K)) = K or
a1a2...anf

−1(Ń) = 0, as desired. ✷

Theorem 2.16. Let M be an R-module. If Ni is a strongly ni-absorbing second
submodule of M for each 1 ≤ i ≤ k, then N1 + . . .+Nk is a strongly n-absorbing
second submodule of M for n = n1+. . .+nk. In particular, if N1, . . . , Nn are second
submodules of M , then N1 + . . .+Nn is a strongly n-absorbing second submodule
of M .

Proof. Let a1, ..., an ∈ R and K be a submodule of M with a1...an(N1+ ...+Nk) ⊆
K such that âi(N1+...+Nk) 6⊆ K for each 1 ≤ i ≤ n. As a1...an(N1+...+Nk) ⊆ K,
we have a1...anNj ⊆ K for every 1 ≤ j ≤ k. Therefore, a1....an ∈ AnnR(Nj) for
every 1 ≤ j ≤ k since Nj is a strongly nj-absorbing second submodule of M and
nj ≤ n. Therefore a1+...+an ∈ AnnR(N1)∩...∩AnnR(Nk) = AnnR(N1+...+Nk),
that is, N1+ ...+Nk is strongly n-absorbing second. The “In particular” statement
follows from the fact that every second submodule is a strongly n-absorbing second
submodule. ✷

Let N be a non-zero submodule of an R-module M . It is clear that if N is
an n-absorbing (resp. a strongly n-absorbing) second submodule, then it is an m-
absorbing (resp. a strongly m-absorbing) second submodule of M for every integer
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m ≥ n. If N is a strongly n-absorbing second submodule of M for some positive
integer n, then ωc

M (N) = min{n : N is an n−absorbing second submoduleof M };
otherwise, set ωc

M (N) = ∞. Moreover, we define ωc
M (0) = 0. Therefore, for any

submodule N of M , we have ωc
M (N) ∈ N∪ {0,∞}, with ωc

M (N) = 1 if and only if
N is a second submodule of M and ωc

M (N) = 0 if and only if N = 0. Then ωc
M (N)

measures, in some sense, how far N is from being a second submodule of M . One
can ask how ωc

M (N) and ωc
R(AnnR(N)) compare.

Corollary 2.17. Let M be an R-module. Then we have the following.

(a) If N1, ..., Nk are strongly n-absorbing second submodules of M , then ωc
M (N1+

...+Nk) ≤ ωc
M (N1) + ...+ ωc

M (Nk).

(b) If N1, ..., Nn are second submodules of M , then ωc
M (N1 + ...+Nn) ≤ n.

Proof. This follows from Theorem 2.16. ✷

Theorem 2.18. Let M be an R-module and N be a P -secondary submodule of M
such that Pn ⊆ AnnR(N). Then N is a strongly n-absorbing second submodule of
M . Moreover, ωc

M (N) ≤ n. In particular, if (0 :M Pn) is a P -secondary submodule
of M , then (0 :M Pn) is a strongly n-absorbing second submodule of M . Moreover,
ωc
M ((0 :M Pn)) ≤ n.

Proof. Assume that a1, ..., an ∈ R and K be a submodule of M with a1...anN ⊆ K
such that âiN 6⊆ K for each 1 ≤ i ≤ n. For every 1 ≤ i ≤ n, as âiaiN ⊆ K with
âiN 6⊆ K and N is a P -secondary submodule of M , we have ai ∈ P . Consequently,
a1...an ∈ Pn ⊆ AnnR(N), that is, N is a strongly n-absorbing second submodule
of M . The ”In particular“ statement follows from the fact that Pn ⊆ AnnR((0 :M
Pn)). ✷

Theorem 2.19. Let R be a Noetherian ring and let M be a finitely cogenerated
R-module. Then every non-zero proper submodule of M is a strongly n-absorbing
second submodule of M for some positive integer n.

Proof. Let N be a P -secondary submodule of M . So AnnR(N) is a P -primary
ideal of R. Since R is a Noetherian ring, there exists a positive integer m for
which Pm ⊆ AnnR(N). Thus N is a strongly m-absorbing second submodule of
M by Theorem 2.18. Now assume that K is a non-zero submodule of M . Since
M is an Artinian R-module, K has a secondary representation by [20, 6.11]. Let
K = N1 + ... + Nk be a secondary representation of K, where each Ni is a Pi-
secondary submodule ofM for any 1 ≤ i ≤ n. By the first part, eachNi (1 ≤ i ≤ n)
is a strongly mi-absorbing second submodule of M for some positive integer mi.
Now K is a strongly n-absorbing second submodule in which n = m1 + ...+mk by
Theorem 2.16. Therefore the result follows. ✷
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Theorem 2.20. Let N be a strongly n-absorbing second submodule of an R-module
M with n ≥ 2 and AnnR(N) ⊂

√
AnnR(N). Suppose that r ∈

√
AnnR(N) \

AnnR(N) and let t(≥ 2) be the least positive integer such that rt ∈ AnnR(N).
Then rt−1N is a strongly (n− t+ 1)-absorbing second submodule of M .

Proof. Choose 2 ≤ t ≤ n. Then n− t+1 ≥ 1. Let a1...an−t+1r
t−1N ⊆ K for some

a1, ..., an−t+1 ∈ R and a submodule K of M . Since rt−1a1...an−t+1N ⊆ K and N
is a strongly n-absorbing second submodule of M , therefore either rt−1âiN ⊆ K
or rt−2a1...an−t+1N ⊆ K or a1...an−t+1 ∈ AnnR(r

n−1N). If rt−1âiN ⊆ K or
a1...an−t+1 ∈ AnnR(r

n−1N), then we are done. Hence assume that rt−1âiN 6⊆
K and a1...an−t+1 6∈ AnnR(r

n−1N). Since N is a strongly n-absorbing sec-
ond submodule of M , therefore rt−2a1...an−t+1N ⊆ K. Now rt ∈ AnnR(N)
and rt−1a1...an−t+1N ⊆ K imply rrt−2a1...an−t(an−t+1 + r)N ⊆ K. Again,
since N is a strongly n-absorbing second and rt−1âiN 6⊆ K for any 1 ≤ i ≤
(n − t) and rrt−2a1...an−t(an−t+1 + r) 6∈ AnnR(N) (as rt ∈ AnnR(N)), we must
have rt−2a1...an−t(an−t+1 + r)N = rt−2a1...an−t+1N + rt−1a1...an−tN ⊆ K. As
rt−2a1...an−t+1N ⊆ K, we have rt−1a1...an−tN ⊆ K, a contradiction, since we
assumed that the product of rt−1 with any n− t of the ai’s with N is not a subset
of K. Thus rt−1âiN ⊆ K or a1...an−t+1 ∈ AnnR(r

t−1N), and hence rt−1N is a
strongly (n− t+ 1)-absorbing second submodule of M . ✷

Remark 2.21. One can see, by using the same technique, that the results in Theo-
rems 2.16, 2.13, and Corollary 2.14 about strongly n-absorbing second submodules
in this section is also true for n-absorbing second submodules.

3. Strongly and weakly strongly 2-absorbing second submodules

Recall that anR-moduleM is said to be sum-irreducible precisely when it is nonzero
and cannot be expressed as the sum of two proper submodules of itself [13, Defi-
nition and Exercise 7.2.8].

Theorem 3.1. Let N be a strongly 2-absorbing second submodule of an R-module
M . Then aN = a2N for all a ∈ R \

√
AnnR(N). The converse holds, if N is a

sum-irreducible submodule of M .

Proof. Let a ∈ R \
√
AnnR(N). Then a2 ∈ R \AnnR(N). Thus aN = a2N by [2,

3.3]. Conversely, letN be a sum-irreducible submodule ofM and abN ⊆ K for some
a, b ∈ R and a submodule K of M . Assume that, ab ∈ R \

√
AnnR(N). We show

that aN ⊆ K or bN ⊆ K. As ab ∈ R\
√
AnnR(N), we have a, b ∈ R\

√
AnnR(N).

Thus aN = a2N by assumption. Let x ∈ N . Then ax ∈ aN = a2N . Hence
ax = a2y for some y ∈ N . This implies that x − ay ∈ (0 :N a) ⊆ (K :N a). Thus
x = x − ay + ay ∈ (K :N a) + (K :N b). Therefore, N ⊆ (K :N a) + (K :N b).
Clearly, (K :N a) + (K :N b) ⊆ N . Thus as N is sum-irreducible, (K :N a) = N or
(K :N b) = N as needed. ✷
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Proposition 3.2. Let N be a submodule of an R-module M . Then we have the
following.

(a) If (0 :M AnnR(N)3) is a strongly 2-absorbing second submodule of M , then
(0 :M AnnR(N)2) = (0 :M AnnR(N)3).

(b) If K is a strongly 2-absorbing second submodule of M such that K 6⊆ N , then
(K +N)/N is a strongly 2-absorbing second of M/N and

√
(N :R K +N) \

(N :R K) =
√
AnnR(K) \ (N :R K).

Proof. (a) Clearly, (0 :M AnnR(N)2) ⊆ (0 :M AnnR(N)3). As (0 :M AnnR(N)3) is
a strongly 2-absorbing second submodule of M and AnnR(N)2(0 :M AnnR(N)3) ⊆
(0 :M AnnR(N)), we have AnnR(N)(0 :M AnnR(N)3) ⊆ (0 :M AnnR(N)) or
AnnR(N)2(0 :M AnnR(N)3) = 0. So in any case, AnnR(N)2(0 :M AnnR(N)3) =
0. This implies that (0 :M AnnR(N)3) ⊆ (0 :M AnnR(N)2).

(b) As K 6⊆ N , we have (K + N)/N 6= 0. Let ab((K + N)/N) ⊆ H/N
for some a, b ∈ R and a submodule H/N of M/N . Then ab(K + N) + N ⊆
H . This implies that abK ⊆ H . Now as K is a strongly 2-absorbing second
submodule of M , we have either aK ⊆ H or bK ⊆ H or abK = 0. Therefore,
either a((K + N)/N) ⊆ H/N or b((K + N)/N) ⊆ H/N or ab((K + N)/N) = 0
as needed. To see the second assertion, let a ∈

√
(N :R K +N) \ (N :R K).

Then anK ⊆ N for some positive integer n. Now as K is a strongly 2-absorbing
second submodule of M and a 6∈ (N :R K), we have a ∈

√
AnnR(K). Hence√

(N :R K +N) \ (N :R K) ⊆
√
AnnR(K) \ (N :R K). The reverse inclusion is

clear. ✷

For a submodule N of an R-module M the second radical (or second socle) of
N is defined as the sum of all second submodules of M contained in N and it is
denoted by sec(N) (or soc(N)). In case N does not contain any second submodule,
the second radical of N is defined to be (0) (see [14], [8]).

Theorem 3.3. Let N be a strongly 2-absorbing second submodule of an R-module
M . Then we have the following.

(a)
√
AnnR(N)

2 ⊆ AnnR(N).

(b) If M is a finitely generated comultiplication R-module, then N ⊆ (0 :M
Ann2

R(sec(N))).

(c) If
√
AnnR(N) 6= AnnR(N), then for each a ∈

√
AnnR(N) \ AnnR(N), aN

is a second R-module with
√
AnnR(N) ⊆ AnnR(aN). Furthermore, we have

{AnnR(aN)}
a∈
√

AnnR(N)\AnnR(N)
is a chain of prime ideals of R.

Proof. (a) By [2, 3.5], AnnR(N) is a 2-absorbing ideal of R. Thus the result follows
from [11, 2.4].

(b)By [7, 2.12], AnnR(sec(N)) =
√
AnnR(N). Thus

AnnR(sec(N))2 ⊆ AnnR(N),
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by part (a). Hence N ⊆ (0 :M Ann2
R(sec(N)).

(c) Let a ∈
√
AnnR(N) \ AnnR(N). Then aN 6= 0 and there exists a positive

integer t such that atN = 0 but at−1N 6= 0. Now let b ∈ R such that abN 6= 0.
We show that abN = aN . As N is a strongly 2-absorbing second submodule of M ,
abN ⊆ abN implies that aN ⊆ abN or bN ⊆ abN . If aN ⊆ abN , then we are done.
If bN ⊆ abN , then at−1bN ⊆ atbN = 0. By [2, 3.5], AnnR(N) is a 2-absorbing
ideal of R. Hence at−2bN = 0. Continuing in this way we obtain, abN = 0 which
is a contradiction.

By part (a), a
√
AnnR(N) ⊆

√
AnnR(N)

2 ⊆ AnnR(N). Thus
√
AnnR(N) ⊆

(AnnR(N) :R a) = AnnR(aN).
As AnnR(N) is a 2-absorbing ideal of R, {AnnR(aN)}

a∈
√

AnnR(N)\AnnR(N)
is

a chain of prime ideals of R by [11, 2.5], which completes the proof. ✷

Proposition 3.4. Let N be a P -secondary submodule of an R-module M . Then
N is a strongly 2-absorbing second submodule of M if and only if P 2 ⊆ AnnR(N).

Proof. This follows from Theorem 3.3 (a) and Theorem 2.18. ✷

Definition 3.5. Let N be a non-zero submodule of an R-module M . We say that
N is a weakly strongly 2-absorbing second submodule of M if whenever a, b ∈ R,
K is a submodule of M , abM 6⊆ K, and abN ⊆ K, then aN ⊆ K or bN ⊆ K or
ab ∈ AnnR(N).

Example 3.6. Let M be an R-module. Clearly every strongly 2-absorbing second
submodule of M is a weakly strongly 2-absorbing second submodule of M . Also,
evidently M is a weakly strongly 2-absorbing second submodule of itself. In partic-
ular, M = Z6⊕Z10 is not strongly 2-absorbing second Z-module but M is a weakly
strongly 2-absorbing second Z-submodule of M .

Theorem 3.7. Let N be a weakly strongly 2-absorbing second submodule of an R-
module M which is not a strongly 2-absorbing second submodule. Then Ann2

R(N) ⊆
(N :R M).

Proof. Assume on the contrary that Ann2
R(N) 6⊆ (N :R M). We show that N is a

strongly 2-absorbing second submodule of M . Let a, b ∈ R and K be a submodule
of M such that abN ⊆ K. If abM 6⊆ K, then we are done because N is a weakly
strongly 2-absorbing second submodule of M . Thus suppose that abM ⊆ K. If
abM 6⊆ N , then abM 6⊆ N∩K. Hence abN ⊆ N∩K implies that aN ⊆ N∩K ⊆ K
or bN ⊆ N∩K ⊆ K or abN = 0 as needed. So let abM ⊆ N . If aAnnR(N)M 6⊆ K,
then a(b+AnnR(N))M 6⊆ K. Thus a(b+AnnR(N))N ⊆ K implies that aN ⊆ K
or bN = (b +AnnR(N))N ⊆ K or abN = a(b+ AnnR(N))N = 0, as required. So
let aAnnR(N)M ⊆ K. Similarly, we can assume that bAnnR(N)M ⊆ K. Since
AnnR(N)2 6⊆ (N :R M), there exist a1, b1 ∈ AnnR(N) such that a1b1M 6⊆ N .
Thus there exists a completely irreducible submodule L of M such that N ⊆ L
and a1b1M 6⊆ L by Remark 2.2. If ab1M 6⊆ L, then a(b + b1)M 6⊆ L ∩K. Thus
a(b + b1)N ⊆ L ∩ K implies that aN ⊆ L ∩ K ⊆ K or bN = (b + b1)N ⊆
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L ∩ K ⊆ K or abN = a(b + b1)N = 0 as needed. So let ab1M ⊆ L. Similarly,
we can assume that a1bM ⊆ L. Therefore, (a + a1)(b + b1)M 6⊆ L ∩ K. Hence,
(a+a1)(b+b1)N ⊆ L∩K implies that aN = (a+a1)N ⊆ K or bN = (b+b1)N ⊆ K
or abN = (a+ a1)(b+ b1)N = 0, as desired. ✷

Let M be an R-module. A submodule N of M is said to be idempotent (resp.
coidempotent) if N = (N :R M)2M (resp. N = (0 :M AnnR(N)2)). Also, M is
said to be fully idempotent (resp. fully coidempotent) if every submodule of M is
idempotent (resp. coidempotent) [6].

Corollary 3.8. Let M be a faithful R-module. Then we have the following.

(a) If M is a fully coidempotent R-module and N is a proper submodule of M ,
then N is a weakly strongly 2-absorbing second submodule of M if and only
if N is a strongly 2-absorbing second submodule.

(b) If M is a fully idempotent R-module and N is a non-zero submodule of M ,
then N is a weakly 2-absorbing submodule if and only if N is a 2-absorbing
submodule.

Proof. (a) The sufficiency is clear. Conversely, assume on the contrary thatN 6= M
is a weakly strongly 2-absorbing second submodule of M which is not a strongly
2-absorbing second submodule. Then by Theorem 3.7, Ann3

R(N) ⊆ AnnR(M).
Hence as M is faithful, Ann3

R(N) = 0. Since N is a coidempotent submodule
of M, this implies that N = (0 :M AnnR(N)2) = (0 :M AnnR(N)3) = M , a
contradiction.

(b)The proof is similar to the part (a) by using [15, 2.5]. ✷

Theorem 3.9. Let t ∈ R and M be an R-module. Then we have the following.

(a) If (0 :M t) ⊆ tM , then (0 :M t) is a strongly 2-absorbing second submodule if
and only if it is a weakly strongly 2-absorbing second submodule.

(b) If (tM :R M) ⊆ AnnR(tM), then the submodule tM is strongly 2-absorbing
second if and only if it is weakly strongly 2-absorbing second.

Proof. (a) Suppose that (0 :M t) is a weakly strongly 2-absorbing second submodule
of M , a, b ∈ R, and K is a submodule of M such that ab(0 :M t) ⊆ K. If
abM 6⊆ K, then since (0 :M t) is weakly strongly 2-absorbing second, we have
a(0 :M t) ⊆ K or b(0 :M t) ⊆ K or ba ∈ AnnR((0 :M t)) which implies (0 :M t) is
strongly 2-absorbing second. Therefore we may assume that abM ⊆ K. Clearly,
a(b + t)(0 :M t) ⊆ K. If a(b + t)M 6⊆ K, then we have (b + t)(0 :M t) ⊆ K or
a(0 :M t) ⊆ K or a(b + t) ∈ AnnR((0 :M t)). Since at ∈ AnnR((0 :M t)) therefore
b(0 :M t) ⊆ K or a(0 :M t) ⊆ K or ab ∈ AnnR((0 :M t)). Now suppose that
a(b+ t)M ⊆ K. Then since abM ⊆ K, we have taM ⊆ K and so tM ⊆ (K :M a).
Now (0 :M t) ⊆ tM implies that (0 :M t) ⊆ (K :M a). Thus a(0 :M t) ⊆ K as
needed. The converse is clear.
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(b) Let tM be a weakly strongly 2-absorbing second submodule of M and
assume that a, b ∈ R and K be a submodule of M with abtM ⊆ K. Since tM is
a weakly strongly 2-absorbing second submodule, we can suppose that abM ⊆ K,
otherwise tM is strongly 2-absorbing second. Now abtM ⊆ tM ∩ K. If abM 6⊆
tM ∩ K, then as tM is a weakly strongly 2-absorbing second submodule, we are
done. Now let abM ⊆ tM ∩K. Then abM ⊆ tM . Thus (tM :R M) ⊆ AnnR(tM)
implies that ab ∈ AnnR(tM) as requested. The converse is clear. ✷

Theorem 3.10. Consider the following statements for an R-module M .

(a) Every non-zero submodule of M is a weakly strongly 2-absorbing second sub-
module of M .

(b) Every proper submodule of M is a weakly 2-absorbing submodule of M .

Then (a) ⇒ (b). Moreover, (b) ⇒ (a) if M is faithful.

Proof. (a) ⇒ (b). Let N be a proper submodule of M , a, b ∈ R, and m ∈ M
with 0 6= abm ∈ N . If abM ⊆ N , then we are done. So suppose that abM 6⊆ N .
Since 0 6= abm ∈ Rm, we have Rm 6= 0. By assumption, Rm is weakly strongly
2-absorbing second. Thus aRm ⊆ N or bRm ⊆ N or abRm = 0. Since, abm 6= 0,
am ∈ N or bm ∈ N as desired.

(b) ⇒ (a). Let 0 6= N be a submodule of M , a, b ∈ R, and K be a submodule
of M with abN ⊆ K, where abM 6⊆ K. If abN = 0, then we are done. So suppose
that abN 6= 0. Clearly, K is a proper submodule of M . By assumption, K is
weakly 2-absorbing. Thus by [18, 3.4], aN ⊆ K or bN ⊆ K as needed. ✷

Corollary 3.11. Let M be a non-zero R-module such that every non-zero submod-
ule of M is weakly strongly 2-absorbing second. Then R has at most three maximal
ideals containing Ann(M).

Proof. This follows from [21, 6.1] and Theorem 3.10 (a) ⇒ (b). ✷

Acknowledgments. We would like to thank the referees for careful reading
of our manuscript and useful comments.

References

1. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra,
39, 1646-1672, (2011).

2. H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine
Journal of Mathematics, 8 (2) (2019), 159–168.

3. H. Ansari-Toroghy and F. Farshadifar, Classical and strongly classical 2-absorbing second
submodules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (1) (2020), 123-136.

4. H. Ansari-Toroghy and F. Farshadifar, 2-absorbing and strongly 2-absorbing secondary sub-
modules of modules, Le Matematiche 72 (11), 123-135, (2017).

5. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese
J. Math. 11 (4), 1189–1201, (2007).



n-absorbing and Strongly n-absorbing Second Submodules 21

6. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull.
Iranian Math. Soc. 38 (4), 987-1005, (2012).

7. H. Ansari-Toroghy, and F. Farshadifar, On the dual notion of prime radicals of submodules,
Asian Eur. J. Math. 6 (2), 1350024 (11 pages), (2013).

8. H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra
Colloq. 19 (Spec 1), 1109-1116, (2012).

9. H. Ansari-Toroghy and F. Farshadifar, The dual notions of some generalizations of prime
submodules, Comm. Algebra 39 (7)(2011), 2396-2416.

10. H. Ansari-Toroghy, F. Farshadifar, and S. S. Pourmortazavi, On the P -interiors of submodules
of Artinian modules, Hacet. J. Math. Stat. 45 (3), 675-682, (2016).

11. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-
429, (2007).

12. A. Barnard, Multiplication modules, J. Algebra 71, 174-178, (1981).

13. M.P. Brodmann and R.Y. Sharp, Local cohomology an algebraic introduction with geometric
applications, Cambridge Univercity Press, 1998.

14. S. Ceken, M. Alkan, and P.F. Smith, The dual notion of the prime radical of a module, J.
Algebra 392, 265-275, (2013).

15. A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math.
9 (3), 577–584, (2011).

16. A. Y. Darani and F. Soheilnia, On n-absorning submodules, Math. Commun. 17, 547-557,
(2012).

17. J. Dauns, Prime submodules, J. Reine Angew. Math. 298, 156–181, (1978).

18. M. K. Dubey and P. Aggarwal, On n-absorbing submodules of modules over commutative
rings, Beitr. Algebra Geom. 57 (3), 679-690, (2016).

19. L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness condi-
tions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homo-
logical Algebra, Lect. Notes Pure Appl. Math. 249, 121–145, (2006).

20. H. Matsumara, Commutative Ring Theory, Cambridge University Press, Cambridge 1986.

21. S. Moradi and A. Azizi, Weakly 2-absorbing submodules of modules, Turkish J. Math. 40 (2),
350-364, (2016).

22. H. Mostafanasab, U. Tekir, and K.H. Oral, Classical 2-absorbing submodules of modules over
commutative rings, Eur. J. Pure Appl. Math. 8 (3), 417-430, 2015.

23. H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, On 2-absorbing primary
submodules of modules over commutative rings, An. S¸t. Univ. Ovidius Constanta 24 (1),
335-351, 2016.

24. Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq. 19, 913-920, (2012).

25. Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform. 10
(1), 131-137, (2015).

26. S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37, 273–278, (2001).

27. S. Yassemi, The dual notion of the cyclic modules, Kobe. J. Math. 15, 41–46, (1998).



22 H. Ansari-Toroghy, F. Farshadifar, and S. Maleki-Roudposhti

H. Ansari-Toroghy (Corresponding Author),
Department of pure Mathematics,
Faculty of Mathematical Sciences,
University of Guilan,
P. O. Box 41335-19141, Rasht, Iran.
E-mail address: ansari@guilan.ac.ir

and

F. Farshadifar,
Assistant Professor, Department of Mathematics,
Farhangian University, Tehran, Iran.
E-mail address: f.farshadifar@cfu.ac.ir

and

S. Maleki-Roudposhti,
Department of pure Mathematics,
Faculty of Mathematical Sciences,
University of Guilan,
P. O. Box 41335-19141, Rasht, Iran.
E-mail address: Sepidehmaleki.r@gmail.com


	Introduction
	n-absorbing and strongly n-absorbing second submodules
	Strongly and weakly strongly 2-absorbing second submodules

