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On Sextic Integral Bases Using Relative Quadratic Extention

M. Sahmoudi and A. Soullami

abstract: Let K = Q(θ) be a cubic number filed and P (X) = X3
− aX − b

(a, b in Z), the monic irreducible polynomial of θ. In this paper we give a sufficient
conditions on a,b which ensure that θ is a power basis generator, also we give con-
ditions on relative quadratic extension to be monogenic. As a consequence of this
theoretical result we can reach an integral basis of some sextic fields which Neither
algebraically split nor arithmetically split.
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1. Introduction

The search of integral bases and Monogenity are classical topic of algebraic
number theory c.f. [3], [9] and [8]. Let K ⊆ L be algebraic number fields with
[L : K] = n, denote by OK and OL the rings of integers of K and L, respectively.
The field L possess a power basis generator (PBG) if there exists an algebraic
integer α such that: {1, α, ..., αn−1} forms a basis of OL, so, L is called monogenic
relative over K (for K 6= Q).
The main result of this paper is a generalization of sufficient condition given by
Dedekind for quadratic number field to relative quadratic number field (Theorem
3.1). As well we give a simplest sufficient condition for cubic number field to
have monogenic basis (Theorem 3.3). As a consequence, if K is a cubic field and
L = K(α) with α2 ∈ Z it has proved that the rings of integers of L admits an
integral basis over Z See [3]. we want to solve the same problem for a family
of sextic fields with α2 ∈ OK\Z, for this we prove that the field L is relatively
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monogenic over K under the conditions stated above. As a consequence, we obtain
a straightforward computation of discriminant dL/Q given by the formula

dL/Q = NK/Q(dL/K).(dK/Q)
[L:K],

where NK/Q denote the norm from K over Q.

2. Preliminaries

In the following we shall say that an ideal a of a dedekind ring R is a square
free ideal in R if νp(a) ≤ 1 for any prime ideal p in R. An element d of a dedekind
ring R is said a square free element in R if the ideal dR is a square free ideal of R.
This implies that d ∈ R −R2.
For each prime p and each non zero algebraic integer m, υp(m) denotes the greatest
nonnegative integer l such that pl divides m.
For any polynomial P, we denote by SP the set of prime square divisors of discP :

SP = { p ∈ specR | p2divides discP }.

The set SP is very useful to use Dedekind Criterium in order to know whether the
ring of integers of L has a power basis generators over K or not.

Hereinafter, we recall the result that gives necessary and sufficient conditions
for an extension L/K to be monogenic.

Theorem 2.1. [5, Theorem 2.1.]. Let R be a Dedekind ring, K its quotient field,
L a finite separable extension of K, OL the integral closure of R in L, α ∈ OL

a primitive element of L, and P (X) ∈ R[X ] the monic irreducible polynomial of
α over R. For a fixed prime ideal p of R, let the decomposition of P into monic
irreducible polynomials in R/p[X ] take the form

P (X) =

r
∏

i=1

Pi
ei
(X) ∈ R/p[X ]. (2.1)

For i = 1, ..., r, let Pi ∈ R[X ] be a monic lift of Pi, set

G(X) =
∏

1≤i≤r,ei≥2

Pi(X), H(X) =

r
∏

i=1

P ei
i (X)/G(X), (2.2)

where the empty product is to mean that G(X) = 1, and let P (X) = G(X)H(X)+
aT (X) for some T (X) ∈ R[X ] and a ∈ p \ p2. Then, If discR(P ) is not square
free, then the following are equivalent:

1. α is a PBG for OL over R.

2. For any prime ideal p ∈ SP , either (P is square free in R/p[X ]) or ( P is not
square free in (R/p)[X ] and in this case T 6= 0modulo p and νp(Res(P,G)) =
deg(G)).
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3. Relative and absolute monogenicity

Our first main result study monogenicity of relative quadratic extension. For
the second, we give sufficient condition for a extension to have a PBG.

Theorem 3.1. Let R be a Dedekind ring with quotient field K. Let L = K(α) be a
pure quadratic extension of K, where α is a root of a monic irreducible polynomial
P (X) = X2 − d ∈ R[X ]. Assume that: for all prime p such that υp(2d) ≥ 1 we
have d− 1 ∈ p \ p2. Then α is a PBG of L/K.

Proof: Let p ∈ SP . As discR(P ) = 4dR, then p|4d yields υp(2) + υp(2d) ≥ 1.
It is clear that υp(2d) ≥ 1, This allows us to write υp(d − 1) = 1, hence by
dominance principal theorem that υp(d) = 0. By reducing P modulo p yields

X2 − d = (X − 1)
2
. Then, by keeping the notation of Theorem 2.1, we have,

P (X) = G(X)H(X)+a.T (X) withG(X) = H(X) = X−1 and T (X) = 2X−1+d
a for

some a in p\p2. Moreover, ResR(X
2−d,X−1) = (−d+1)R. Then νp(ResR(X

2−
d,X − 1)) = νp((d− 1)R) = 1. So α is a PBG of L/K. ✷

Corollary 3.2. Let L = K(α), using the notations of theorem 3.1, the discrimi-
nant dL/K of L is given by: dL/K = 4dR.

Proof: The proof is based on the index formula: discR(P ) = indR(α)
2dL/K . Since

α is a PBG, by Theorem 3.1, we have indR(α) = R and therefore discR(P ) = dL/K ,
which suffices to show that dL/K = 4dR. ✷

Let K = Q(θ) be a cubic field, where θ is a root of the monic irreducible
polynomial

X3 − aX − b = 0, a, b ∈ Z.

The discriminant of θ is δ = 4a3 − 27b2 and δ = indZ(θ)
2d(K/Q), where d(K/Q)

denotes the discriminant of K, and indZ(θ) is the index of θ.

Theorem 3.3. Under the assumptions above and in addition, we may assume that:

1. 3 ∤ b, a = 3 + 32A; b = 2 + 3B with 3 ∤ AB,

2. If p ≡ 1 mod 3 and p | δ, then υp(a) = υp(b) = 1.

3. δ is square without prime divisors congruent to 2 mod 3,

Then, θ is a power basis generator of K/Q.

Proof: The discriminant δ is given by δ = 32
∏

3<p|δ

p2 (See [6]). Let p ∈ SP , yields

the only primes p of Z such that p2 divides δ are p = 3 or p ≡ 1mod 3. Let us
first examine the case p = 3. Reducing P modulo 3, yields P (X) ≡ X3− b mod 3.
Since b ≡ 2 mod 3. Hence, P (X) ≡ (X + 1)3 mod 3. Letting P (X) = (X +
1)3 − 3X2 − (3 + a)X − (b + 1), we put b + 1 = 3b′ and 3 + a = 3(1 + a′), then
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P (X) = (X + 1)3 + 3T (X) with T (X) = −X2 − (1 + a′)X − b′. Hence, T 6≡ 0
modulo 3 as desired. Moreover, ResZ(X

3 − aX − b,X + 1) = b − a + 1. By
dominance principal theorem, we check that υ3(b− a+ 1) = υ3(b− 2− (a− 3)) =
Inf(υ3(b− 2), υ3(a− 3) = 1). Then ν3(ResZ(X

3 − aX − b,X + 1) = deg(X + 1)).
Secondly, assume now that the prime p in Sp verifies p ≡ 1mod 3, reducing P
modulo p yields, since υp(a) = υp(b) = 1, P (X) ≡ X3 mod p.

Then, by keeping the notation of Theorem 2.1, we have, P (X) = G(X)H(X)+
p.T (X) with G(X) = X, H(X) = X2 and T (X) = −p(apX + b

p ). Since υp(a) = 1,

T 6≡ 0modulo p. The task is now to compute ResZ(X
3−aX− b,X), so, by using a

computing package, such as (Maple) it can be checked that ResZ(X
p−aX−b,X) =

b, hence, νp(ResZ(X
3 − aX − b,X)) = νp(b) = deg(G), which completes the proof

the second case.
✷

4. Illustration

4.1. Integral basis of sextic extension

In [3] it was considered sextic fields that are composites of subfields. In the
following case we consider the sextic field L Neither algebraically split nor arith-
metically split see ( [4, III.2.13]).

Let α ∈ OL be a primitive element of L/K (L = K(α)) with α2 ∈ OK\Z.

Theorem 4.1. Let K = Q(θ) be a cubic field as in Theorem 3.3. Let L = K(α) a
pure quadratic extension of K, where α is a root of a monic irreducible polynomial
P (X) = X2 − d ∈ OK [X ]. Suppose that for all prime p such that υp(2d) ≥ 1 we
have d− 1 ∈ p \ p2. Then the sextic fields L = Q(α; θ) has integral basis given by :
{1, θ, θ2, α, αθ, αθ2}.

Proof: of Theorem 4.1 we know that Bc = {1, θ, θ2} is an integral basis of K over
Q. According to the Theorem 3.1 and Lemma [3, Lemma 3.1.], it is easily seen
that{1, θ, θ2, α, αθ, αθ2} is an integral basis of L. ✷

Corollary 4.2. Under the assumptions and suppositions of Theorem 4.1. Let
d = u+ vθ + wθ2, (u, v, w) ∈ Z3. The discriminant of the sextic field L over Q is
given by:

dL/Q = 43(−abvw2+b2w3+bv3−bv2w+(aw+v)u2+(a2w2−av2+(a−2b)vw)u).δ2.

Proof: To compute discriminant we use [7, Proposition 13, p. 66 ], then we have
dL/Q = 43NK/Q(dR).δ2. In the rest of this proof, we will give explicitly the norm
of d, NK/Q(dR). Let md : K 7→ K the left multiplication by d i.e, a K-linear
transformation, we know that NK/Q(dR) = det(md). To compute this norm, we

will need in particular to compute explicitly md(1), md(θ) and md(θ
2). Then by
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using a computer algebra package (such as Maple) it can be checked that:







md(1) = u+ vθ + wθ2

md(θ) = bw + (aw + u)θ + vθ2

md(θ
2) = vb + (va+ wb)θ + (u+ aw)θ2

we check that; det(md) = −abvw2 + b2w3 + bv3 − bv2w + (aw + v)u2 + (a2w2 −
av2 + (a− 2b)vw)u. ✷

Remark 4.3. By considering d ∈ Z we see that the discriminant simplifies to
dL/Q = 43d2δ2, which has been proved in [3].

4.2. Monogenicity of sextic extension

We keep the same notation of Theorem 3.3 and Theorem 3.1. Like previous
sections let L = Q(θ, α). Set γ = α + θ, using a computing package previously
cited, we can checked that the minimal polynomial of γ is given by:

F (X) = Irrd(γ,Z) = X6 + cX5 + eX4 + fX3 + gX2 + hX + i, where:































c = 0, e = −2aw − 2a− 3u, f = −2b− 6bw − 4av

g = a2w2 − 2a2w − 3bvw + 4uwa+ a2 + 3u2 − v2a− 9bv

h = 2bw2a− 4bwa+ 6uwb+ 2ba− 6v2b− 6bu+ 4uva

i = −ua2w2 + 2ua2w − ua2 + avw2b− 2u2wa− 2avwb + avb+ 2au2

+uv2a− b2w3 + 3b2w2 + 3bvwu− 3b2w − u3 − v3b− 3bvu+ b2

Then L = Q(γ) and hence the index is:

IndZ(γ) = ∓λ(−3bwvu+ u3 + v3b+ 2wu2a− uav2 + ua2w2 − aw2vb + b2w3)
1

2

(−w6b2 − 6w5b2 + 24w2bvu − 32wuav2 − v2a2w4 − 4v2a2w3 + 12v4u + 40a3w3 +
20a3w− 40a3w2 + 7v2a2 − 54b2w+9b2w2 + 28b2w3 − 26v3b+27b2 +64u3 − 4a3 −
v6 − 20v2a2w + 2w3v3b + 4a3w5 − 20a3w4 − 2av4 + 72bvu − 54avb − 2w5avb +
18w4avb + 12w3vab + 54wv3b+ 36ua2 − 96u2a− 48u2v2 + 128wu2a− 112ua2w +
32uav2+120ua2w2−32w2u2a+2w2v4a+24w3bvu−48w3ua2+4w4ua2+18v2a2w2−
30w2v3b − 120bwvu− 124aw2vb+ 150awvb− 3w4b2).
Where: λ = (−aw2vb+ b2w3 + v3b− bwv2 +wu2a+ u2v+ ua2w2 − uav2 +wuva−

2bwvu)
1

2 .

Remark 4.4. The presented method permits to check whether a particular element
generates a power basis of L over Q. For example, by the particular case where
d = θ + θ2, we get IndZ(γ)

2 = a−b−1
a−b hence γ it not a power integral basis.
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