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The Image of Jordan Left Derivations on Algebras

Amin Hosseini∗ and Ajda Fošner

abstract: Let A be an algebra, and let I be a semiprime ideal of A. Suppose
that d : A → A is a Jordan left derivation such that d(I) ⊆ I. We prove that
if dim{d(a) + I | a ∈ A} ≤ 1, then d(A) ⊆ I. Additionally, we consider several
consequences of this result.
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1. Introduction and Preliminaries

Throughout the paper, A denotes an associative complex algebra and I an
ideal of A. Recall that I is prime if for a, b ∈ A, a ∈ I or b ∈ I whenever aAb ⊆ I.
Moreover, an ideal I is said to be semiprime if for a ∈ A, aAa ⊆ I implies that
a ∈ I. Obviously, every prime ideal is semiprime. Before describing the aim of the
paper, let us recall some basic definitions and set the notations which we use in
the sequel. As usual, the set of all primitive ideals is denoted by Π(A) and rad(A)
denotes the Jacobson radical of A. Recall that every primitive ideal is prime ( [4],
Proposition 1.4.34) and that the Jacobson radical is the intersection of all primitive
ideals of an algebra.

Before introducing a background of our study we need three definitions. A
linear mapping d : A → A is called:

• a derivation on A if d(ab) = d(a)b + ad(b) for all a, b ∈ A;

• a Jordan derivation on A if d(a2) = d(a)a+ ad(a) for all a ∈ A;

• a left derivation on A if d(ab) = ad(b) + bd(a) for all a, b ∈ A;

• a Jordan left derivation if d(a2) = 2ad(a) for all a ∈ A.

The concepts of a left derivation and a Jordan left derivation were introduced by
Brešar and Vukman in [3]. In the past three decades, there has been considerable
interest for Jordan left derivations and related mappings (see, e.g., [1,3,18]) which
are in a close connection with so-called commuting mappings. The main motivation
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comes from the Posner’s fundamental result which states that if a prime ring admits
a commuting nonzero derivation, then it must be commutative (see [14]).

Singer and Wermer [16] obtained a fundamental result which started investiga-
tions on the range of derivations on Banach algebras. The so-called Singer-Wermer
theorem states that any continuous derivation on a commutative Banach algebra
maps the algebra into the Jacobson radical. In the same paper, they made a very
insightful conjecture that the assumption of continuity is superfluous. This conjec-
ture, known as the Singer-Wermer conjecture, was proved in 1988 by Thomas [17].
According to this result, every derivation on a commutative semisimple Banach
algebra is zero.

A number of authors have presented many non-commutative versions of the
Singer-Wermer theorem (see, e.g., [2,12,13]). Moreover, the question under which
conditions all derivations are zero on a given Banach algebra has attracted much
attention of authors (see, e.g., [5,6,9,14,15]). In the following, some significant
works on the range of left derivations are reviewed. In 1998, Jung [10] proved that
every spectrally bounded left derivation maps algebra into its Jacobson radical.
Vukman [19] showed that every Jordan left derivation on a semisimple Banach
algebra is identically zero. In the same paper he conjectured that every Jordan left
derivation on a Banach algebra maps the algebra into its radical. Furthermore, in
[11] the authors obtained a result as follows:
If d is a Jordan left derivation on a unital Banach algebra A with the condition
sup{r(c−1d(c)) : c ∈ A invertible} < ∞, then d(A) ⊆ rad(A), where r(a) denotes
the spectral radius of a ∈ A.

By getting idea and using the techniques of [7,8,15], the current study aims to
prove the following result:
Let I be a semiprime ideal of an algebra A, and let d : A → A be a Jordan left
derivation such that d(I) ⊆ I. If dim{d(a) + I | a ∈ A} ≤ 1, then d(A) ⊆ I. From
this result, we obtain a consequence as follows:
Let every primitive ideal of an algebra A has codimension 1, and let d : A → A be a
Jordan left derivation such that d(P) ⊆ P for any P ∈ Π(A). Then d(A) ⊆ rad(A).
Moreover, in this paper, we present some examples of a Jordan left derivation which
is not a Jordan derivation. We also establish some examples of a Jordan derivation
which is not a Jordan left derivation.

2. Main Results

Our first result reads as follows. This theorem has been motivated by [7].

Theorem 2.1. Let I be a semiprime ideal of an algebra A, and let d : A → A be
a Jordan left derivation such that d(I) ⊆ I. If dim{d(a) + I | a ∈ A} ≤ 1, then
d(A) ⊆ I.

Proof: If dim{d(a) + I | a ∈ A} = 0, then, obviously, d(A) ⊆ I. Now, suppose
that dim{d(a) + I | a ∈ A} = 1. Hence, there exists an element x ∈ A, x /∈ I,
such that {d(a) + I | a ∈ A} = {α(x + I) | α ∈ C} = {αx + I | α ∈ C}. In what
follows, we use the standard notation â = a + I for a ∈ A. We define a mapping
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D : A
I
→ A

I
by D(â) = d̂(a), a ∈ A. It is clear that D is linear. Next, we show

that D is well-defined. Suppose that â = b̂ for a, b ∈ A. Then a− b ∈ I and, thus
d(a− b) ∈ I since d(I) ⊆ I and, consequently, D(â) = D(̂b). Moreover, we have

D(â2) = D(â2) = d̂(a2) = d(a2) + I

= 2ad(a) + I

= 2(a+ I)(d(a) + I)

= 2âD(â).

It means that D is a Jordan left derivation on A
I
.

Suppose that d(A) 6⊆ I. Then there exists an element a0 ∈ A such that d(a0) 6∈
I. Thus, D(â0) = d(a0) + I 6= I. Since dim{D(â) | a ∈ A} = 1, we can consider
the functional f : A

I
→ C satisfying D(â) = f(â)x̂ for all a ∈ A. Clearly, f(â0) 6= 0

since f(â0)x̂ = D(â0) 6= I. Let us write b̂0 = 1
f(â0)

â0. Then D(b̂0) = D( 1
f(â0)

â0) =
1

f(â0)
f(â0)x̂ = x̂ and this implies that f(b̂0) = 1.

First, we show that â x̂ is a scalar multiple of x̂ for any a in A. For an arbitrary
element a ∈ A, we have

D(â2) = f(â2)x̂. (2.1)

On the other hand, since D is a Jordan left derivation and dim{D(â) | a ∈ A} = 1,
we have

D(â2) = 2âD(â) = 2âf(â)x̂. (2.2)

Comparing (2.1) and (2.2), we find that f(â2)x̂ = 2f(â)â x̂. If f(â) 6= 0, then

â x̂ = f(â2)
2f(â) x̂. If f(â) = 0, then

f(â b̂0 + b̂0 â)x̂ = D(â b̂0 + b̂0 â)

= 2b̂0D(â) + 2âD(b̂0)

= 2b̂0f(â)x̂+ 2âf(b̂0)x̂

= 2â x̂.

Therefore, â x̂ is a scalar multiple of x̂ for any a ∈ A.

Next, we show that x̂2 = 0. We have f(b̂0
2
)x̂ = D(b̂0

2
) = 2b̂0D(b̂0) =

2b̂0f(b̂0) x̂ = 2b̂0 x̂. It is a well-known fact in the abstract algebra that an ideal J of
a ring R is semiprime if and only if the quotient ring R

J
is a semiprime ring. From

this fact, we get that the quotient algebra A
I
is a semiprime algebra. Now it follows

from Theorem 2 of [19] thatD is a left derivation on the quotient algebra A
I
. We can

thus deduce that D(â b̂+ b̂ â) = 2âD(̂b)+2b̂D(â) = 2D(âb̂) for all a, b ∈ A. Hence,

D(b̂0 x̂+ x̂ b̂0) = 2D(b̂0 x̂) = D(2b̂0 x̂) = D(f(b̂0
2
)x̂) = f(b̂0

2
)D(x̂) = f(b̂0

2
)f(x̂)x̂.

We observe two cases.
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Case 1. Suppose that f(x̂) = 0. Then D(b̂0 x̂+ x̂ b̂0) = 0 and, hence,

0 =f(b̂0
2
)f(x̂)x̂ = f(b̂0

2
)D(x̂) = D(b̂0 x̂+ x̂ b̂0)

= 2b̂0D(x̂) + 2x̂D(b̂0)

= 2b̂0f(x̂)x̂+ 2f(b̂0)x̂
2

= 2x̂2.

Consequently, x̂2 = 0.

Case 2. Suppose that f(x̂) 6= 0. Then

f(x̂2)x̂ = D(x̂2) = 2x̂D(x̂) = 2f(x̂)x̂2.

Thus,

f(x̂2)x̂ = 2f(x̂)x̂2. (2.3)

If f(x̂2) = 0, then, by (2.3), x̂2 = 0. If f(x̂2) 6= 0, then x̂2 = f(x̂2)
2f(x̂) x̂. Note that

D(αâ) = αD(â). Hence, f(αâ)x̂ = αf(â)x̂, and, since we are assuming that x̂ is

non-zero, it is concluded that f(αâ) = αf(â) for all a ∈ A, α ∈ C. Let λ = f(x̂2)
2f(x̂) .

Replacing x̂2 by λx̂ in (2.3), we obtain λf(x̂)x̂ = f(λx̂)x̂ = f(x̂2)x̂ = 2f(x̂)λx̂. It
follows that x̂ = 0, which this is a contradiction. Therefore, f(x̂2) must be zero.
Reusing the equation (2.3), we have 0 = f(x̂2)x̂ = 2f(x̂)x̂2. So, x̂2 = 0, as desired.

We already know that â x̂ = αx̂ for some scalar α ∈ C. Multiplying the equality
by x̂ on the left side and using the fact that x̂2 = 0, we see that x̂ â x̂ = 0 for any
a in A. It means that xax ∈ I for all a ∈ A, and since I is a semiprime ideal, x ∈ I.
Thus, x̂ = x + I = 0, a contradiction. This contradiction shows that there is no
element a0 ∈ A such that d(a0) 6∈ I. Therefore, d(A) ⊆ I. The proof is completed.

✷

The next corollary is a direct application of the preceding theorem.

Corollary 2.2. Let every primitive ideal of an algebra A has codimension 1, and
let d : A → A be a Jordan left derivation such that d(P) ⊆ P for any P ∈ Π(A).
Then d(A) ⊆ rad(A).

Proof: Let P be an arbitrary primitive ideal ofA. According to the aforementioned
assumption, dim{d(a) + P | a ∈ A} ≤ 1, and it follows from Theorem 2.1 that
d(A) ⊆ P. Since P is an arbitrary primitive ideal of A, we have d(A) ⊆ rad(A). ✷

Since every primitive ideal of a commutative algebra A has codimension 1, we
have the next direct corollary.

Corollary 2.3. Let A be a commutative algebra, and let d : A → A be a derivation
(or left derivation). If d(P) ⊆ P for any P ∈ Π(A), then d(A) ⊆ rad(A).
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In the proof of Theorem 2.4, we omit the details since the main idea is the same
as in the proof of Theorem 2.1. This theorem has been motivated by Theorem 2.1
of [8].

Theorem 2.4. Let P be a semiprime ideal of an algebra A, and let d : A → A
P

be a left derivation such that d(P) = {0}. If dim{d(a) | a ∈ A} ≤ 1, then d is
identically zero.

Proof: If dim{d(a) | a ∈ A} = 0, then, obviously, d is identically zero. Now,
suppose that dim{d(a) | a ∈ A} = 1. Hence, there exists an element x ∈ A,
x /∈ P, such that {d(a) | a ∈ A} = {α(x + P) | α ∈ C} = {αx + P | α ∈ C}.
As before, we denote â = a + P for a ∈ A. Suppose that d(a0) 6= 0 for some
a0 ∈ A. We consider the functional f : A → C satisfying d(a) = f(a)x̂, a ∈ A.
Clearly, f(a0) 6= 0, since f(a0)x̂ = d(a0) 6= 0. Let us write b0 = 1

f(a0)
a0. Then

d(b0) = d( 1
f(a0)

a0) =
1

f(a0)
f(a0)x̂ = x̂ and this implies that f(b0) = 1.

Similar as above, we first show that a x̂ is a scalar multiple of x̂ for any a ∈ A.
For an arbitrary element a ∈ A, we have

d(a2) = f(a2)x̂. (2.4)

On the other hand, since d is a left derivation and dim{d(a) | a ∈ A} = 1, we have

d(a2) = 2ad(a) = 2f(a)ax̂. (2.5)

Comparing (2.4) and (2.5), we find that f(a2)x̂ = 2f(a)a x̂. If f(a) 6= 0, then

a x̂ = f(a2)
2f(a) x̂. If f(a) = 0, then

f(ab0 + b0a)x̂ = d(ab0 + b0a)

= 2(ad(b0) + b0d(a))

= 2(af(b0)x̂+ b0f(a)x̂)

= 2ax̂.

Therefore, a x̂ is a scalar multiple of x̂ for any a in A.
Next we show that x̂2 = 0. We have f(b0

2)x̂ = d(b0
2) = 2b0d(b0) = 2f(b0)b0x̂ =

2b0 x̂, i.e., 2b0x̂−f(b0
2)x̂ = 0. Therefore, 2b0x−f(b0

2)x ∈ P. Based on the hypoth-
esis, we have d(2 b0x− f(b0

2)x) = 0, which means that 2d(b0x) = f(b0
2)d(x). This

equation together with the fact that d is a left derivation imply that f(b20)d(x) =
2d(b0x) = 2(xd(b0) + b0d(x)) = 2(xx̂+ b0f(x)x̂) = 2(x̂2 + f(x)b0x̂). Hence,

2f(x)b0x̂+ 2x̂2 = f(b20)f(x)x̂.

If f(x) = 0, then x̂2 = 0. Now, suppose that f(x) 6= 0. We therefore have

f(x2)x̂ = d(x2) = 2xd(x) = 2xf(x)x̂ = 2f(x)x̂2. (2.6)

If f(x2) = 0, then by the above, x̂2 = 0. So, assume that f(x2) 6= 0. In this

case, we have x̂2 = f(x2)
2f(x) x̂. Let us denote λ = f(x̂2)

2f(x̂) . The equality d(αa) = αd(a)
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implies that f(αa)x̂ = αf(a)x̂ and since we are assuming that x̂ is non-zero, it
is concluded that f(αa) = αf(a) for all a ∈ A, α ∈ C. We already know that
x̂2 = λx̂, and hence x2 − λx ∈ P. According to the assumption that d(P) = {0},
we have d(x2 − λx) = 0, i.e., d(x2) = λd(x). Therefore,

f(x2)x̂ = λf(x)x̂ = f(x)x̂2. (2.7)

Comparing (2.6) and (2.7), we obtain that f(x)x̂2 = 0 and since f(x) 6= 0 we have
x̂2 = 0, as desired.

We already know that ax̂ = αx̂ for some scalar α ∈ C. Multiplying the equality
by x̂ on the left side and using the fact that x̂2 = 0, we see that x̂ a x̂ = 0 for any
a ∈ A. Thus, xax ∈ P for all a ∈ A and, since P is a semiprime ideal of A, x ∈ P.
It implies that x̂ = x + P = 0. This contradiction shows that there is no element
a0 of A such that d(a0) 6= 0. Therefore, d must be zero. This completes the proof
of the theorem. ✷

As a consequence of Theorem 2.4, we obtain the following corollary:

Corollary 2.5. Let d : A → A be a left derivation, and let every semiprime
ideal of A has codimension 1. If d(P) ⊆ P for any semiprime ideal P of A, then
d(A) ⊆ rad(A). Moreover, if the intersection of all semiprime ideals of A is zero,
then d is identically zero.

Proof: Let P be an arbitrary semiprime ideal of A, and let D : A → A
P

be
a mapping defined by D(a) = d(a) + P, a ∈ A. It is easy to see that D is
a left derivation with dim{D(a) | a ∈ A} ≤ 1, since dim(A

P
) = 1. Note that

D(P) = {d(p) + P | p ∈ P} = {0} and, by Theorem 2.4, D is identically zero, i.e.,
d(A) ⊆ P. Since P is an arbitrary semiprime ideal of A, this yields that d(A) lies
in the intersection of all semiprime ideals of A. Recall that every primitive ideal
is semiprime ( [4], Proposition 1.4.34) and thus d(A) ⊆

⋂
P∈Π(A) P = rad(A). It is

clear that if the intersection of all semiprime ideals of A is zero, then
⋂

P∈Π(A) P =

rad(A) = {0} and consequently, d ≡ 0. This proves the corollary. ✷

In the rest of this paper, we present some examples of a Jordan left derivation
which is not a Jordan derivation. We also establish some examples of a Jordan
derivation which is not a Jordan left derivation. Such examples are as follows:

Example 2.6. Let R be a ring such that the square of each element in R is zero,
but the product of some nonzero elements in R is nonzero. Next, let

R =

{


a 0 b
0 a 0
0 0 0


 : a, b ∈ R

}
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Clearly, R is a ring under matrix addition and matrix multiplication. Define the
mapping ∆ : R → R by

∆

(


a 0 b
0 a 0
0 0 0



)

=




a 0 a
0 a 0
0 0 0


 .

A straightforward verification shows that ∆ is a Jordan left derivation which is
neither a left derivation nor a Jordan derivation.

Example 2.7. Let S be a ring, and let

S =

{


a b c
0 d 0
0 0 e


 : a, b, c, d, e ∈ S

}

Clearly, S is a ring. Define the mapping δ : S → S by

δ

(


a b c
0 d 0
0 0 e



)

=




0 b 0
0 0 0
0 0 0


 .

It is evident that δ is a derivation, but it is not a Jordan left derivation.

Example 2.8. Let T be a ring such that the square of each element in T is zero,
but the product of some nonzero elements in T is nonzero. Let

T =

{


0 a b
0 0 a
0 0 0


 : a, b ∈ T

}

Clearly, T is a ring. Define the mapping Ψ : T → T by

Ψ

(


0 a b
0 0 a
0 0 0



)

=




0 a 0
0 0 a
0 0 0


 .

It is easy to check that Ψ is both a Jordan left derivation and a Jordan derivation.
But, it is neither a left derivation nor a derivation.

Example 2.9. Let U be a ring, and let

U =

{[
a b
0 a

]
: a, b ∈ U

}

Clearly, U is a ring. Define the mapping Ω : U → U by

Ω

([
a b
0 a

])
=

[
0 b
0 0

]
.

A simple calculation shows that Ω is a derivation, but it is not a Jordan left deriva-
tion.
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Example 2.10. Let V be a ring, and let

V =

{


0 a b
0 0 c
0 0 0


 : a, b, c ∈ V

}

Clearly, V is a ring. Define the mapping Φ : V → V by

Φ

(


0 a b
0 0 c
0 0 0



)

=




0 a 0
0 0 0
0 0 0


 .

It is straightforward to see that Φ is a left derivation, but it is not a Jordan deriva-
tion.
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