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A New Differential Operator of Analytic Functions Involving Binomial

Series
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abstract: In this paper, we introduce a new differential operator of analytic
functions involving binomial series. Furthermore, we derive some subordination and
superordination results for this operator. Some applications and examples are also
obtained.
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1. Introduction and Definitions

Let H be the class of functions analytic in U := {z : |z| < 1} and H(a, n) be the
subclass of H consisting of functions of the form f(z) = a+anz

n+an+1z
n+1+ . . ..

Let A be the subclass of H consisting of functions of the form

f(z) = z +
∞∑

n=2

anz
n. (1.1)

Let p, h ∈ H and let φ(r, s, t; z) : C3×U → C. If p and φ(p(z), zp′(z), z2p′′(z); z)
are univalent and if p satisfies the second order superordination

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z), (1.2)

then p is a solution of the differential superordination (1.2). (If f is subordinate to
F , then F is superordinate to f .) An analytic function q is called a subordinant
if q ≺ p for all p satisfying (1.2). A univalent subordinant q̃ that satisfies q ≺ q̃ for
all subordinants q of (1.2) is said to be the best subordinant. Miller and Mocanu
[7] obtained conditions on h, q and φ for which the following implication holds:

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z).
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Using the results of Miller and Mocanu [7], Bulboacă [4] considered certain
classes of first order differential superordinations as well as superordination-preser-
ving integral operators [3] (see also, [1,5,10]). Shanmugam et al. [9] obtained
sufficient conditions for a normalized analytic functions f(z) to satisfy

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z) and q1(z) ≺

z2f ′(z)

{f(z)}2
≺ q2(z).

where q1 and q2 are given univalent functions in U with q1(0) = 1 and q2(0) = 1.
For a function f in A, and making use of the binomial series

(1− λ)m =

m∑

j=0

(
m

j

)
(−1)jλj (m ∈ N = {1, 2, . . .}, j ∈ N0 = N ∪ {0}),

we now define the differential operator Dζ
m,λf(z) as follows:

D0f(z) = f(z), (1.3)

D1
m,λf(z) = (1 − λ)mf(z) + (1 − (1− λ)m)zf ′(z) (1.4)

= Dm,λf(z), λ > 0; m ∈ N, (1.5)

Dζ
m,λf(z) = Dm,λ(D

ζ−1f(z)) (ζ ∈ N). (1.6)

If f is given by (1.1), then from (1.5) and (1.6) we see that

Dζ
m,λf(z) = z +

∞∑

n=2


1 + (n− 1)

m∑

j=1

(
m

j

)
(−1)j+1λj




ζ

anz
n, ζ ∈ N0. (1.7)

Using the relation (1.7), it is easily verified that

Cm
j (λ)z(Dζ

m,λf(z))
′ = Dζ+1

m,λf(z)− (1 − Cm
j (λ))Dζ

m,λf(z) (1.8)

where Cm
j (λ) :=

m∑
j=1

(
m
j

)
(−1)j+1λj .

We observe that for m = 1, we obtain the differential operator Dζ
1,λ defined by

Al-Oboudi [2] and for m = λ = 1,we get Sălăgean differential operator Dζ [8].
The main object of the present paper is to apply a method based on the dif-

ferential subordination in order to derive several subordination results involving
the operator Dζ

m,λ. Furthermore, we obtain the previous results of Srivastava and
Lashin [11] as special cases of some of the results presented here.

2. Preliminaries

In order to prove our results, we shall require the following known definition
and lemmas.
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Definition 2.1. [7, Definition 2, p. 817] Denote by Q, the set of all functions
f(z) that are analytic and injective on U− E(f), where

E(f) = {η ∈ ∂U : lim
z→η

f(z) = ∞},

and are such that f ′(η) 6= 0 for η ∈ ∂U− E(f).

Lemma 2.2. [6, Theorem 3.4h, p. 132] Let q(z) be univalent in the unit disk
U and θ and φ be analytic in a domain D containing q(U) with φ(w) 6= 0 when
w ∈ q(U). Set Q(z) = zq′(z)φ(q(z)), h(z) = θ(q(z)) +Q(z). Suppose that

1. Q(z) is starlike univalent in U, and

2. ℜ zh′(z)
Q(z) > 0 for z ∈ U.

If

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),

then p(z) ≺ q(z) and q(z) is the best dominant.

Lemma 2.3. [4] Let q(z) be convex univalent in the unit disk U and ϑ and ϕ be
analytic in a domain D containing q(U). Suppose that

1. ℜ
[
ϑ′(q(z))/ϕ(q(z))

]
> 0 for z ∈ U,

2. zq′(z)ϕ(q(z)) is starlike univalent in U.

If p(z) ∈ H[q(0), 1]∩Q, with p(U) ⊆ D, and ϑ(p(z))+zp′(z)ϕ(p(z)) is univalent
in U , and

ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ ϑ(p(z)) + zp′(z)ϕ(p(z)), (2.1)

then q(z) ≺ p(z) and q is the best subordinant.

3. Subordination for Analytic Functions

We begin by proving the following result.

Lemma 3.1. Let the functions p(z) and q(z) be analytic in U and suppose that
q(z) 6= 0 (z ∈ U) is also univalent in U and that

zq′(z)

q(z)
is starlike univalent in U. (3.1)

If q(z) satisfies

ℜ

(
1 +

c1
β
q(z) +

2c2
β

(q(z))2 + · · ·+
ncn
β

(q(z))n −
zq′(z)

q(z)
+

zq′′(z)

q′(z)

)
> 0 (3.2)
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(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C;β 6= 0)

and

c0 + c1p(z) + c2(p(z))
2 + · · ·+ cn(p(z))

n + β
zp′(z)

p(z)

≺ c0 + c1q(z) + c2(q(z))
2 + · · ·+ cn(q(z))

n + β
zq′(z)

q(z)

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C;β 6= 0)

then p(z) ≺ q(z) (z ∈ U) and q is the best dominant.

Proof: Let

θ(ω) := c0 + c1ω + c2ω
2 + · · ·+ cnω

n and φ(ω) :=
β

ω
.

Then, we observe that θ(ω) is analytic in C, φ(ω) is analytic in C∗= C\{0} and
that φ(ω) 6= 0 (ω ∈ C

∗).
Also, by letting

Q(z) = zq′(z)φ(q(z)) = β
zq′(z)

q(z)

and

h(z) = θ(q(z)) +Q(z)

= c0 + c1q(z) + c2(q(z))
2 + · · ·+ cn(q(z))

n + β
zq′(z)

q(z)
,

we find from (3.1) and (3.2), Q(z) is starlike univalent in U and that

ℜ

(
zh′(z)

Q(z)

)

= ℜ

(
1 +

a1
β
q(z) +

2a2
β

(q(z))2 + · · ·+
nan
β

(q(z))n −
zq′(z)

q(z)
+

zq′′(z)

q′(z)

)
> 0

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0).

Our result now follows by an application of Lemma 2.2. ✷

We first prove the following subordination theorem involving the operator Dζ
m,λ

.

Theorem 3.2. Let the function q(z) be analytic and univalent in U such that

q(z) 6= 0 (z ∈ U). Suppose that zq′(z)
q(z) is starlike univalent in U and the inequality

(3.2) holds true. Let

Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f) := c0 + c1

(
Dζ

m,λf(z)

z

)
+ c2

(
Dζ

m,λf(z)

z

)2
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+ · · ·+ cn

(
Dζ

m,λf(z)

z

)n

+
β

Cm
j (λ)

(
Dζ+1

m,λf(z)

Dζ
m,λf(z)

− (1− Cm
j (λ))

)
. (3.3)

If q(z) satisfies

Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f) ≺ c0+ c1q(z)+ c2(q(z))

2+ · · ·+ cn(q(z))
n+β

zq′(z)

q(z)
(3.4)

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0)

then

Dζ
m,λf(z)

z
≺ q(z) (z ∈ U\{0})

and q is the best dominant.

Proof: Define the function p(z) by

p(z) :=
Dζ

m,λf(z)

z
(z ∈ U\{0}; f ∈ A).

Then a computation shows that

zp′(z)

p(z)
=

z(Dζ
m,λf(z))

′

Dζ
m,λf(z)

− 1.

By using the identity (1.8), we obtain

zp′(z)

p(z)
=

1

Cm
j (λ)

(
Dζ+1

m,λf(z)

Dζ
m,λf(z)

− (1 − Cm
j (λ))

)

which, in light the hypothesis (3.4), yields the following subordination

c0 + c1p(z) + c2(p(z))
2 + · · ·+ cn(p(z))

n + β
zp′(z)

p(z)

≺ c0 + c1q(z) + c2(q(z))
2 + · · ·+ cn(q(z))

n + β
zq′(z)

q(z)

and Theorem 3.2 follows by an application of Lemma 3.1. ✷

For the choices q(z) = 1+Az
1+Bz

,−1 ≤ B < A ≤ 1 and q(z) =
(

1+z
1−z

)µ
, 0 < µ ≤ 1

in Theorem 3.2, we get Corollaries 3.3 and 3.4 below.
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Corollary 3.3. Assume that (3.2) holds true. If f ∈ A and

Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f)

≺ c0 + c1

(
1 +Az

1 +Bz

)
+ c2

(
1 +Az

1 +Bz

)2

+ · · ·+ cn

(
1 +Az

1 +Bz

)n

+
β(A−B)z

(1 +Az)(1 +Bz)

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0),

where Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f) is as defined in equation (3.3), then

Dζ
m,λf(z)

z
≺

1 +Az

1 + Bz
(z ∈ U\{0})

and 1+Az
1+Bz

is the best dominant.

Corollary 3.4. Assume that (3.2) holds true. If f ∈ A and

Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f)

≺ c0 + c1

(
1 + z

1− z

)µ

+ c2

(
1 + z

1− z

)2µ

+ · · ·+ cn

(
1 + z

1− z

)2nµ

+
2βµz

1− z2

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0),

where Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f) is as defined in equation (3.3), then

Dζ
m,λf(z)

z
≺

(
1 + z

1− z

)µ

(z ∈ U\{0})

and
(

1+z
1−z

)µ
is the best dominant.

For q(z) = eǫAz , (|ǫA| < π), in Theorem 3.2, we get the following result.

Corollary 3.5. Assume that (3.2) holds true. If f ∈ A and

Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f)

≺ c0 + c1e
ǫAz + c2e

2ǫAz + · · ·+ cne
nǫAz + βǫAz

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0),

where Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f) is as defined in equation (3.3), then

Dζ
m,λf(z)

z
≺ eǫAz (z ∈ U\{0})
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and eǫAz is the best dominant.
For q(z) = 1

(1−z)2b , (b ∈ C
∗), c0 = ζ = λ = m = 1, c1 = c2 = . . . = cn = 0

and β = 1
b

in Theorem 3.2, we get the following result obtained by Srivastava and
Lashin [11].

Corollary 3.6. Let b be a non zero complex number. If f ∈ A, and

1 +
1

b

[
zf ′(z)

f(z)
− 1

]
≺

1 + z

1− z
,

then
f(z)

z
≺

1

(1− z)2b

and 1
(1−z)2b

is the best dominant.

4. Superordination for Analytic Functions

Next, applying Lemma 2.3, we obtain the following two theorems.

Theorem 4.1. Let q be analytic and convex univalent in U such that q(z) 6= 0 and
zq′(z)
q(z) is starlike univalent in U. Suppose also that

ℜ

(
c1
β
q(z) +

2c2
β

(q(z))2 + · · ·+
ncn
β

(q(z))n
)

> 0 (4.1)

(z ∈ U; c1, c2, . . . , cn, β ∈ C; β 6= 0).

If f ∈ A ,

Dζ
m,λf(z)

z
∈ H[q(0), 1] ∩Q

and Ωm
j (c0, c1, c2, . . . , cn, β, ζ, λ, f) defined in (3.3) is univalent in U, then the fol-

lowing superordination:

c0+ c1q(z)+ c2(q(z))
2+ · · ·+ cn(q(z))

n+β
zq′(z)

q(z)
≺ Ωm

j (c0, c1, c2, . . . , cn, β, ζ, λ, f)

(z ∈ U; c1, c2, . . . , cn, β ∈ C; β 6= 0).

implies that

q(z) ≺
Dζ

m,λf(z)

z
(z ∈ U\{0})

and q(z) is the best subordinant.

Proof: Let

ϑ(ω) := c0 + c1ω + c2ω
2 + · · ·+ cnω

n and ϕ(ω) := β
ω′

ω
.
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Then, we observe that ϑ(ω) is analytic in C, ϕ(ω) is analytic in C∗= C\{0} and
that ϕ(ω) 6= 0 (ω ∈ C

∗).
Since q is a convex univalent in U, it follows that

ℜ

(
ϑ′(q(z))

ϕ(q(z))

)
= ℜ

(
c1
β
q(z) +

2c2
β

(q(z))2 + · · ·+
ncn
β

(q(z))n
)

> 0

(z ∈ U; c1, c2, . . . , cn, β ∈ C; β 6= 0).

Theorem 4.1 follows as an application of Lemma 2.3. ✷

Combining the results of differential subordination and superordination, we
state the following “sandwich results”:

Theorem 4.2. Let q1 be convex univalent and q2 be univalent in U such that
q1(z) 6= 0 and q2(z) 6= 0 (z ∈ U). Suppose also that q2 satisfies (4.1) and q1
satisfies (3.2). If f ∈ A ,

Dζ
m,λf(z)

z
∈ H[q(0), 1] ∩Q

and

c0 + c1

(
Dζ

m,λf(z)

z

)
+ c2

(
Dζ

m,λf(z)

z

)2

+ · · ·+ cn

(
Dζ

m,λf(z)

z

)n

+
β

Cm
j (λ)

(
Dζ+1

m,λf(z)

Dζ
m,λf(z)

− (1 − Cm
j (λ))

)

(z ∈ U; c1, c2, . . . , cn, β ∈ C; β 6= 0).

is univalent in U, then the subordination given by

c0+c1q1(z)+c2(q1(z))
2+· · ·+cn(q1(z))

n+β
zq′1(z)

q1(z)
≺ Ωm

j (c0, c1, c2, . . . , cn, β, ζ, λ, f)

≺ c0 + c1q2(z) + c2(q2(z))
2 + · · ·+ cn(q2(z))

n + β
zq′2(z)

q2(z)

(z ∈ U; c1, c2, . . . , cn, β ∈ C; β 6= 0).

implies that

q1(z) ≺
Dζ

m,λf(z)

z
≺ q2(z).
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