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Abstract. Motivated by the idea which has been introduced by M. Haiour
and S.Boulaaras (Proc. Indian Acad. Sci. (Math. Sci.) Vol. 121,No. 4,
November 2011,pp.481�493), We provide a maximum norm analysis of a theta
scheme combined with �nite element Schwarz alternating method for a class
of parabolic equation on two overlapping subdomains with nonmatching grids.
We consider a domain which is the union of two overlapping subdomains where
each subdomain has its own independently generated grid. The two meshes
being mutually independent on the overlap region, a triangle belonging to one
triangulation does not necessarily belong to the other one. Under a stability
analysis on the theta scheme which given by our work in (App. Math. Comp.,
217, 6443�6450 (2011).), we establish, on each subdomain, an optimal as-
ymptotic behavior between the discrete Schwarz sequence and the asymptotic
solution of parabolic di¤erential equations.

1. Introduction

This paper deals with the error analysis in the maximum norm, in the context
of the nonmatching grids method, of the following evolutionary equation: �nd
u 2 L2

�
0; T ;H1

0 (
)
�
\ C2

�
0; T;H�1 (
)

�
solution of

(1.1)

8>>>>>>><>>>>>>>:

@u

@t
��u+ �u = f; in �;

u = 0 in �=�0;

@u

@�
= ' in �0, u(:; 0) = u0; in 
;

where � is a set in R2 �R de�ned as � = 
� [0; T ] with T�< +1 , where 
 is
a smooth bounded domain of R2 with boundary �.
The function � 2 L1 (
) is assumed to be non-negative satis�es

(1.2) � � �; � > 0:
f is a regular function such that

f 2 L2
�
0; T; L2 (
)

�
\ C1

�
0; T;H�1 (
)

�
:
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Let (:; :)
 be the scalar product in L
2 (
) and (:; :)�0 be the scalar product in

L2 (�0) ; where �0 is the part of the boundary de�ned as

�0 =
�
x 2 @
 = � such that 8� > 0; x+ � =2 �


	
:

Schwarz method has been invented by Herman Amandus Schwarz in 1890. This
method has been used to solve the stationary or evolutionary boundary value prob-
lems on domains which consists of two or more overlapping sub-domains (see [1],
[7], [22], [23]). We refer to ([1], [7]-[9]) , and the references therein for the analysis
of the Schwarz alternating method for elliptic obstacle problems and to the pro-
ceedings of the annual domain decomposition conference beginning with [15]. For
results on maximum norm error analysis of overlapping nonmatching grids methods
for elliptic problems we refer, for example, to [4].
In [7], we studied the overlapping domain decomposition method combined with

a �nite element approximation for elliptic equation related for Laplace operator
�, where on uniform norm of an overlapping Schwarz method on nonmatching
grids has been used, where we proved that the discretization on every subdomain
converges on uniform norm norm. Furthermore, a result of asymptotic behavior
in uniform norm has been given. In this paper, similar to that in [7], we extend
the last work for evolutionary equation with mixed boundary conditions, where we
provide a maximum norm analysis of a theta scheme combined with �nite element
Schwarz alternating method for a linear parabolic equations on two overlapping
subdomains with nonmatching grids. We consider a domain which is the union
of two overlapping subdomains where each subdomain has its own independently
generated grid. The two meshes being mutually independent on the overlap region,
a triangle belonging to one triangulation does not necessarily belong to the other
one. Under a stability analysis on the theta scheme which given by our work in
[3], we establish, on each subdomain, an optimal asymptotic behavior between
the discrete Schwarz sequence and the asymptotic solution of parabolic di¤erential
equations.
The outline of the paper is as follows: In section 2, we introduce some necessary

notations, then we prove a full-discrete weak formulation of the presented problem
using the theta time scheme combined with a �nite element method. In section 3 we
state a continuous alternating Schwarz sequences and de�ne their respective �nite
element counterparts in the context of nonmatching overlapping grids. Section 4 is
devoted to the asymptotic behavior of the method.

2. The discrete parabolic equation

The problem (1.1) can be reformulated into the following continuous parabolic
variational equation: �nd u 2 L2

�
0; T;H1

0 (
)
�
solution of
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(2.1)

8>>>>>>>>><>>>>>>>>>:

�
@u

@t
; v

�
+ a (u; v) = (f; v) + ('; v)�0 ;

u = 0 in �=�0;

@u

@�
= ' in �0;

ui (x; 0) = ui0 in 
;

where a (:; :) is the bilinear form de�ned as:

(2.2) u; v 2 H1
0 (
) : a (u; u) = (ru;ru)� (a0u; u)

2.1. The space discretization. Let 
 be decomposed into triangles and �h de-
notes the set of those elements, where h > 0 is the mesh size. We assume that
the family �h is regular and quasi-uniform. We consider the usual basis of a¢ ne
functions 'i i = f1; :::;m (h)g de�ned by 'i (Mj) = �ij where Mj is a vertex of the
considered triangulation. We introduce the following discrete spaces Vh of �nite
element

(2.3) V
(')
h =

8>>>>>>><>>>>>>>:

v 2
�
L2
�
0; T;H1

0 (
)
�
\ C

�
0; T;H1

0

�
�

���

such that vh jK= P1; k 2 �h;

vh (:; 0) = vh0 in 
;
@vh
@�

= �h' in �0,

vh = 0 in �n�0;

9>>>>>>>=>>>>>>>;
where P1 Lagrangian polynomial of degree less than or equal to 1 and �h is an

interpolation operator on �0.
We consider rh be the usual interpolation operator de�ned by

rhv =

m(h)X
i=1

v (Mi)'i (x) :

2.1.1. The discrete maximum principle assumption (DMP). We assume
the matrices whose coe¢ cients a

�
'i; 'j

�
are M-matrix ([12] and [13]). For con-

venience in all the sequels, C will be a generic constant independent on h:It can
be approximated the problem (1.1) by a weakly coupled system of the following
parabolic equation v 2 H1 (
)

(2.4)
�
@u

@t
; v

�



+ a (u; v) = (f; v)
 + ('; v)�0 :

We discretize in space, i.e., we approach the space H1
0 by a space discretization of

�nite dimensional Vh �
�
L2
�
0; T;H1

0 (
)
�
\ C

�
0; T;H1

0

�
�

���

; we get the following
semi-discrete system of parabolic equation

(2.5)
�
@uh
@t
; vh

�



+ a (uh; vh) = (f; vh � uh)
 + ('; vh)�0 :
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2.2. The time discretization. Now we apply the �-scheme in the semi-discrete
approximation (2.5). Thus we have, for any � 2 [0; 1] and k = 1; :::; p

(2.6)

�
ukh � u

k�1
h ; vh

�


+ (�t) a

�
u�;kh ; vh

�
=

(�t)
h�
f i; �;k; vh

�


+
�
'i;�;k; vh

�
�0

i
;

where
u�;kh = �ukh + (1� �)uk�1h ;

(2.7) f �;k = �fk + (1� �) fk�1

and

(2.8) ' �;k = �'k + (1� �)'k�1:

By multiplying and dividing by � and by adding

 
uk�1h

��t
; vh

!
to both parties of

the inequalities (1.1), we get

(2.9)

 
u�;kh
��t

; vh

!



+ a
�
u�;kh ; vh

�
=

 
f �;k +

u�;k�1h

��t
; vh

!



+

+
�
'�;k; vh

�
�0
; vh 2 V (')h :

Then, the problem (2.9) can be reformulated into the following coercive discrete
system of parabolic quasi-variational inequalities

(2.10) b
�
u�;kh ; vh

�
=
�
f�;k + �uk�1h ; vh

�


+
�
'�;k; vh

�
�0
; vh; u

�;k
h 2 V (')h ;

where

(2.11)

8>><>>:
b
�
u�;kh ; vh

�
= �

�
u�;kh ; vh

�


+ a

�
u�;kh ; vh

�
; vh 2 V (')h ;

� =
1

��t
=

p

�T
::

:

Theorem 1. see [7] . Under suitable regularity of the solution of problem (1.1),
there exists a constant C independent of h such that

(2.12) k�1h � �k � Ch2 jlog hj :

Lemma 1. (see [18]) Let w 2 H1 (
) \ C
�
�

�
satis�es a (w; �) + � (w; �) � 0 or

all nonnegative � 2 H1 (
) and w � 0 on �, then w � 0 on �
:

Notation 1. (F �;k; '�;k); ( eF �;k; e'�;k) be a pair of data and ��;k = @(F �;k; '�;k);e��;k =
@( eF �;k; e'�;k) the corresponding solutions to (2.10) .
Proposition 1. Under the previous notation, we have
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(2.13)



��;kh � ��;k





L1(
)

� maxf
�
1

�

�


F �;k � eF �;k



L1(
)

;



'�;k � e'�;k




L1(
)

g:

Proof. First, putting

(2.14) ��;k = maxf
�
1

�

�


F �;k � eF �;k



L1(
)

;



'�;k � e'�;k




L1(�)

g;

then 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

eF �;k � F �;k + 


F �;k � eF �;k



L1(
)

� F �;k +
�
�

�

�


F �;k � eF �;k



L1(
)

� F �;k + �maxf
�
1

�

�


F �;k � eF �;k



L1(
)

;



'�;k � e'�;k




L1(�)

g

� F �;k + ���;k:
So

(2.15) b
�e��;k; �� � b���;k; ��+ � ���;k; �� ; for all � � 0, � 2 H1

0 (
)

and thus

b
�e��;k; �� � b���;k + ��;k; �� = �F �;k + ���;k; �� :

On the other hand,we have

(2.16) ��;k + �� e��;k � 0 on �0:
So

(2.17) b(��;k + �� e��;k � 0:
By using the result of lemma 1, we get

(2.18) e��;k + �� ��;k � 0 on 

Similarly, interchanging the roles of the couples (F �;k; '�;k) and ( eF �;k; e'�;k), we get
(2.19) e��;k + �� ��;k � 0 on 
;
which completes the proof. �

Remark 1. Proposition 1 stays true for the discrete case.

Lemma 2. ([18]) Let w 2 Vh satisfy b(w�;k; �s) > 0 for s = 1; 2:::m(h)and w�;k � 0

on �0.then w�;k � 0 on (
):

Notation 2. (F �;k; '�;k); ( eF �;k; e'�;k) be a pair of data and ��;kh = @(F �;k; '�;k);e��;kh =

@( eF �;k; e'�;k) the corresponding solutions to (2.10) .
Proposition 2. Let DMP hold, we have
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(2.20)


��;kh � e��;kh 



L1(
)

� maxf
�
1

�

�


F �;k � eF �;k



L1(
)

;



'�;k � e'�;k




L1(�0)

g

Proof. The proof is similar to that of the continuous case. �

3. Schwarz Alternating Methods for parabolic equation

We decompose (
) in two overlapping smooth subdomain 
1 and 
2 such that

 = 
1 [
2; we denote by @
i the boundary of 
i and �i = @
i \
j and assume
that the intersection of �i and �j ;i 6= j is empty. Let

V
(w�;kj )

i =

8<: v 2
�
L2
�
0; T;H1

0 (
)
�
\ C

�
0; T;H1

0

�
�

���

such that v = wj on �i:

We associate with problem (2.10) the following system: �nd (u�;k1 ; u�;k2 ) 2 V �;k1 �
V �;k2 solution to

(3.1)

8<: b1(u
�;k
1 ; v) = (F

�;k

; v)
1 + ('
�;k; v)�01 ;

b2(u
�;k
2 ; v) = (F

�;k

; v)
2 + ('
�;k; v)�02 ;

where

(3.2) bi(u
�;k
i ; v) =

Z

i

(5u�;k:Ov�;k + �u�;k:v�;k)dx

and
u�;ki = u�;k=
i; i = 1; 2

3.1. The Continuous Schwartz Sequences. Let u0 be an initialization in C0�


�
,i.e., continuous functions vanishing on @
 such that

(3.3) b(u0; v) = (F
�;k; v):

Starting from u0 = u0=
2 , we respectively de�ne the alternating Schwarz
sequences

�
un+11

�
on 
1 such that

u�;k;n+11 2 V (u
�;k;n
2 )

1 solves of

(3.4) b1(u
�;k;n+1
1 ; v) = (F �;k1 ; v);

where
F �;k1 = f�;k + �u�;k�1;n+11

and (u�;k;n+12 )on 
2 such that u
�;k;n+1
2 2 V (�;k;u

�;k;n+1
1 )

2 solves

(3.5) b2(u
�;k;n+1
2 ; v) = (F �;k1 ; v);

where
F �;k1 = f�;k + �u�;k�1;n+12
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Theorem 2. [7] The sequences (un+1h ); (un+1h ), n � 0 produced by the Schwarz
alternating method converge geometrically to a solution u of the elliptic obstacle
problem. More precisely, there exist k1; k2 2 (0; 1) which depend on (
1; 
2) and
(
2; 
1) such that for all n � 0,
(3.6) sup


1

��uh � u2n+1�� � �n1 �n2 sup

1

��uh � u0h��
and

(3.7) sup

2

��uh � u2n�� � �n1 �n�12 sup

2

��uh � u0h�� :
3.2. The discrete Schwartz sequences. As we have de�ned before, for i = 1; 2,

let �hi be a standard regular and quasiuniform �nite element triangulation in 
i;hi
, being the mesh size. The two meshes being mutually independent 
1 \ 
2 , a
triangle belonging to one triangulation does not necessarily belong to the other and
for every w 2 C (
i) , we set

V
(w�;kj )

hi =

8<: v 2
�
L2
�
0; T;H1

0 (
)
�
\ C

�
0; T;H1

0

�
�

���

such that v = � on �01 \ �02; v = �hi (w) on �0i;
where �hidenote an interpolation operator on �0i:
Now, we de�ne the discrete counterparts of the continuous Schwarz sequences

de�ned in (3.4) and (3.5) .
Indeed, let u0h be the discrete analog of u0, de�ned in (3.3), we respectively,

de�ne by u�;k;n+11h 2 V (u
�;k;n
2h )

h1 such that

(3.8) b1(u
�;k;n+1
1h ; v) = (F �;k(u�;k;n+11h ); v);8v 2 V (')h ; n � 0

and u�;k;n+12h 2 V (u
�;k;n+1
1h )

h2 such that

(3.9) b2(u
�;k;n+1
2h ; v) = (F �;k(u�;k;n+12h ); v);8v 2 V (')h ; n � 0:

4. Maximum norm analysis of asymptotic behavior

4.1. Error Analysis for the stationary case. We begin by introducing two
discrete auxiliary sequences and prove a fundamental lemma.

4.1.1. Two auxiliary Schwarz sequences. For w02h = u02h , we de�ne the se-

quences w�;1;n+1
1h and w�;1;n+1

2h such that u�;1;n+1
1h 2 V (u

�;1;n
2 )

h1 solves

(4.1) b1(w
�;1;n+1
1h ; v) = (F �;k(u�;1;n+1

1h ); v);8v 2 V (')h1 ;n � 0;

and w�;1;n+1
2h 2 V (u

�;1;n+1
1h )

2h solves

(4.2) b2(w
�;1;n+1
2h ; v) = (F �;k(u�;1;n+1

2h ); v);8v 2 V (')h2 ;n � 0;
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respectively. It is then clear that w�;1;n+1
1h and w�;1;n+1

2h are the �nite element
approximation of u�;1;n+1

1 and u�;1;n+1
2 de�ned in (4.1), (4.2), respectively. Then,

as F �;k (:) is continuous,



F �;k �u�;k;n+1i

�



1
� �




u�;k;n+1i





1
, (independent i of n).

Therefore, making use of standard maximum norm estimates for linear parabolic
problems, we have

(4.3)



u�;k;ni � u�;k;nih





L1(
i)

� Ch2 jlog hj

where C is a constant independent of both h and n.

Notation 3. From now on, we shall adopt the following notations: j:j1 = j:jL1(�1);

j:j2 = j:jL1(�2);
k:k1 = k:kL1(�1)

, k:k2 = k:kL1(�2);
and we set �h1 = �h2 = �h:

4.2. Iterative discrete algorithm. We give our following discrete algorithm

(4.4) u�;k;n+1ih = Thu
k�1;n+1
ih ; k = 1; :::; p; u�;k;n+1ih 2 V (u

�;k;n
2 )

hi

where u�;kh is the solution of the problem (2.10) and the �rst iteration u0h is
solution of (3.3).

Proposition 3. [3]Under the previous hypotheses and notations, we have the fol-

lowing estimate of convergence if � � 1

2

(4.5)



u�;k;n+1h � u1h





1
�
�

1

1 + ��t

�k
ku1h � uh0k1 ;

if 0 � � <
1

2
; we have

(4.6)



u�;k;2n+1h � u1h





1
�
�

2

2 + � (1� 2�) � (A)

�k
ku1h � uh0k1 ;

where � (A) is the spectral radius of the elliptic operator.

Lemma 3. Let � =
�

�
. Then, under assumption (1.2), there exists a constant C

independent of both h and n such that

(4.7)



u�;1;n+1

i � u�;1;n+1
ih





i
� Ch2 jlog hj

1� � ; i = 1; 2:

Proof. We know from standard error estimate on uniform norm for linear problem
[17] that there exists a constant C independent of h such that

(4.8)


u0 � u0h

L=(
) � Ch2 jlog hj :

Since
1

2
< � < 1, then 1 < �= (1� �) and

(4.9)


u02 � u02h

2 � Ch2 jlog hj � �Ch2 jlog hj

1� � :



9

Let us now prove (4.7) by induction. Indeed for n = 1; using the result of Propsi-
tion1, we have in 
1


u�;k;11 � u�;k;11h





1
�




u�;k;11 � w�;k;11h





1
+



w�;k;11 � u�;k;11h





1

� Ch2 jlog hj+



w�;k;11 � u�;k;11h





1

� Ch2 jlog hj+maxf
�
1

�

�


F �;k �u�;k;11

�
� F �;k

�
u�;k;11h

�



1

;
��u02 � u02h��1

� Ch2 jlog hj+maxf
�
1

�

�


F �;k �u�;k;11

�
� F �;k

�
u�;k;11h

�



1

;


u02 � u02h

2

� Ch2 jlog hj+maxf�



u�;k;11 � u�;k;11h





1

;


u02 � u02h

2 :

We then have to distinguish between two cases

(4.10) maxf�



u�;k;11 � u�;k;11h





1

;


u02 � u02h

2g = �


u�;k;11 � u�;k;11h





1

or

(4.11) maxf�



u�;k;11 � u�;k;11h





1

;


u02 � u02h

2g = 

u02 � u02h

2 :

(4.10) implies8>><>>:



u�;k;11 � u�;k11h





1

� Ch2 jlog hj+ �



u�;k;11 � u�;k;11h





1
;



u02 � u02h

2 � �


u�;k;11 � u�;k;11h





1

;

then 8>>><>>>:



u�;k;11 � u�;k;11h





1
� Ch2 jlog hj

1� � :



u02 � u02h

2 � �


u�;k;11 � u�;k;11h





1

� �Ch2jlog hj
1�� :

(4.11) implies 8><>:



u�;k;11 � u�;k;11h





1
� Ch2 jlog hj+



u02 � u02h

2
�


u02 � u02h

2 ;

so, by multiplying (4.11) by � we get

(4.12) �



u�;k;11 � u�;k;11h





1

� �Ch2 jlog hj+ �


u02 � u02h

2 :

So,�



u�;k;11 � u�;k;11h





1

is bounded by both �Ch2j log hj+�


u02 � u02h

2and 

u02 � u02h

2,

this implies that

(4.13) �


u02 � u02h



2
� �Ch2 jlog hj+ �



u02 � u02h

2 ;
or

(4.14) �Ch2 jlog hj+ �


u02 � u02h

2 � 

u02 � u02h

2 ;
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that is (4.13) implies

(4.15)


u02 � u02h

2 � �Ch2 jlog hj

1� �
and (4.14) implies

(4.16)


u02 � u02h

2 � �Ch2 jlog hj

1� � :

It follows that only the case (4.13) is true, that is,

(4.17)


u02 � u02h

2 � �Ch2 jlog hj

1� � ;

then

�



u�;k;11 � u�;k;11h





1
� Ch2 jlog hj+



u02 � u02h

2
� Ch2 jlog hj+ �Ch

2 jlog hj
1� �

� Ch2 jlog hj
1� � :

So, in both cases (4.10) and (4.11), we have

(4.18)



u�;k;11 � u�;k;11h





1
� Ch2 jlog hj

1� � :

Similarly, we have in 
2


u�;k;12 � u�;k;12h





2
� Ch2 jlog hj+




w�;k;12 � u�;k;12h





2

� Ch2 jlog hj+maxf
�
1

�

�


F �;k �u�;k;12

�
� F �;k

�
u�;k;12h

�



2
;
���u�;k;11 � u�;k;11h

���
2
g

� Ch2 jlog hj+maxf
�
1

�

�


F �;k �u�;k;12

�
� F �;k

�
u�;k;12h

�



2
;



u�;k;11 � u�;k;11h





1
g

� Ch2 jlog hj+maxf�



u�;k;12 � u�;k;12h





2
;



u�;k;11 � u�;k;11h





1
g:

So

(4.19) maxf�



u�;k;12 � u�;k;12h





2
;



u�;k;11 � u�;k;11h





1
g = �




u�;k;12 � u�;k;12h





2

or

(4.20) maxf�



u�;k;12 � u�;k;12h





2
;



u�;k;11 � u�;k;11h





1
g =




u�;k;11 � u�;k;11h





1
:

cases (4.19) implies


u�;k;12 � u�;k;12h





2
� Ch2 jlog hj+ �




u�;k;12 � u�;k;12h





2
;




u�;k;11 � u�;k;11h





1
� �




u�;k;12 � u�;k;12h





2



11

so 8>>>>>>>>><>>>>>>>>>:




u�;k;12 � u�;k;12h





2
� Ch2 jlog hj

1� � ;



u�;k;11 � u�;k;11h





1

� �



u�;k;12 � u�;k;12h





2

� �Ch2 jlog hj
1� � � Ch2 jlog hj

1� � ;

while case (4.20) implies

(4.21)

8>><>>:



u�;k;12 � u�;k;12h





2
� Ch2 jlog hj+




u�;k;11 � u�;k;11h





1

�



u�;k;12 � u�;k;12h





2
�



u�;k;11 � u�;k;11h





1
:

;

So, by multiplying (4.21) by � we get

(4.22) �



u�;k;12 � u�;k;12h





2
� �Ch2 jlog hj+ �




u�;k;11 � u�;k;11h





1
:

Hence �



u�;k;12 � u�;k;12h





2
is bounded by both �Ch2jloghj+ �




u�;k;11 � u�;k;11h





1
and


u�;k;11 � u�;k11h





1
, then

(4.23)



u�;k;11 � u�;k;11h





1
� �Ch2 jlog hj+ �




u�;k;11 � u�;k;11h





1

or

(4.24) Ch2 jlog hj+ �



u�;k;11 � u�;k;11h





1
�



u�;k;11 � u�;k;11h





1
;

which (4.23) implies

(4.25)



u�;k;11 � u�;k;11h





1
� �Ch2 jlog hj

1� � <
Ch2 jlog hj
1� �

or (4.24) implies

(4.26)
�Ch2 jlog hj
1� � �




u�;k;11 � u�;k;11h





1
<
Ch2 jlog hj
1� � :

Hence, (4.23) and (4.24) are true because they both coincide with (4.18). So, there
is either a contradiction and thus case (4.19) is impossible or case (4.20) is possible
only if

(4.27)



u�;k;11 � u�;k;11h





1
= �Ch2 jlog hj+ �




u�;k;11 � u�;k;11h





1
;

that is

(4.28)



u�;k;11 � u�;k;11h





1
=
�Ch2 jlog hj
1� � ;
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thus 


u�;k;12 � u�;k;12h





2
� Ch2 jlog hj+




u�;k;11 � u�;k;11h





1

� Ch2 jlog hj+ �Ch
2 jlog hj
1� �

� Ch2 jlog hj
1� � ;

that is, both cases (4.19) and (4.20) imply

(4.29)



u�;k;12 � u�;k;12h





2
� Ch2 jlog hj

1� � :

Now, let us assume that

(4.30)



u�;k;n2 � u�;k;n2h





2
� Ch2 jlog hj

1� �
and prove that 8>>>><>>>>:




u�;k;n+11 � u�;k;n+11h





1
� Ch2 jlog hj

1� �


u�;k;n+12 � u�;k;n+12h





2
� Ch2 jlog hj

1� �
�

Theorem 3. Let h = max (h1; h2). Then, for n large enough, there exists a
constant C independent of both h and n such that

(4.31)



u�;k;n+1i � u�;k;n+1ih





1
� ch2 jlog hj

1� � ; 8i = 1; 2:

Proof. Let us give the proof for i = 1. The one for i = 2 is similar and so will be
omitted. Indeed, Let � = �1�2, then making use of Theorem 2 and Lemma 3, we
get 


u�;k1 � u�;k;n+11h





1
�




u�;k1 � u�;k;n+11





1
+



u�;k;n+11 � u�;k;n+11h





1

� �n1 �
n
2

��u0 � u��
1
+
ch2 jlog hj
1� �

� �2n
��u0 � u��

1
+
ch2 jlog hj
1� � :

So, for n large enough, we have

(4.32) �2n � h2

and thus 


u�;k1 � u�;k;n+11h





1
� ch2 + ch2 jlog hj

� ch2 jlog hj ;
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which is the desired result. �

4.3. Asymptotic behavior. This section is devoted to the proof of main result
of the present paper, where we prove the theorem of the asymptotic behavior in
L1-norm for parabolic variational inequalities, where we evaluate the variation in
L1 between uh (T ) ; the discrete solution calculated at the moment T = p�t and
u1, the asymptotic continuous solution of (2.11)

Theorem 4. According to the results of the proposition 3 and the theorem 3, we
have
for the �rst case � � 1

2

(4.33)



u�;p;n+11h � u1





1
� C

�
h2 jlog hj+

�
1

1 + ��t

�p�
;

and

(4.34)



u�;p;n+12h � u1





1
� C

�
h2 jlog hj+

�
1

1 + ��t

�p�
;

and for the second case 0 � � < 1

2

(4.35)



u�;p;n+11h � u1





1
� C

�
h2 jlog hj+

�
2

2 + � (1� 2�) � (A)

�p�
and

(4.36)



u�;p;n+12h � u1





1
� C

�
h2 jlog hj+

�
2

2 + � (1� 2�) � (A)

�p�
;

where C is a constant independent of h and k:

Proof. We have


u�;p;2n+1h � u1




1
�



u�;p;2n+1h � u1h





1
+ ku1h � u1k1 :

Using the proposition 3 and the theorem 3, we have for � � 1

2


u�;p;2n+1h � u1




1
� C

�
h2 jlog hj3 +

�
1

1 + ��t

�p�
;

and for 0 � � < 1

2
we have


u�;p;2n+1h � u1




1
� C

�
h2 jlog hj3 +

�
2

2 + � (1� 2�) � (�)

�p�
The proof for (4.35) and (4.36) case is similar. �

Remark 2. It can be seen in the previous estimates (4.33) up to (4.36),
�

1

1 + ���t

�p
;

�
2

2 + � (1� 2�) � (�)

�p
; goes

to 0 when p tend to in�nity. Therefore, the estimation order for both the coercive
and noncoercive problems is


u1 � u1;n+1

1h





L1(�
1)

� Ch2 jlog hj3
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and 


u1 � u1;n+1
2h





L1(�
2)

� Ch2 jlog hj3 :
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