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ABSTRACT. Motivated by the idea which has been introduced by M. Haiour
and S.Boulaaras (Proc. Indian Acad. Sci. (Math. Sci.) Vol. 121,No. 4,
November 2011,pp.481-493), We provide a maximum norm analysis of a theta
scheme combined with finite element Schwarz alternating method for a class
of parabolic equation on two overlapping subdomains with nonmatching grids.
We consider a domain which is the union of two overlapping subdomains where
each subdomain has its own independently generated grid. The two meshes
being mutually independent on the overlap region, a triangle belonging to one
triangulation does not necessarily belong to the other one. Under a stability
analysis on the theta scheme which given by our work in (App. Math. Comp.,
217, 6443-6450 (2011).), we establish, on each subdomain, an optimal as-
ymptotic behavior between the discrete Schwarz sequence and the asymptotic
solution of parabolic differential equations.

1. INTRODUCTION

This paper deals with the error analysis in the maximum norm, in the context
of the nonmatching grids method, of the following evolutionary equation: find
we L?(0,T; H} (2)) NC? (0,7, H~* () solution of

0
a?—Au—f—au:f, in ¥,
(1.1) uw=201in I'/T,
g:; =@ in Iy, u(.,0) = up, in Q,

where ¥ is a set in R? x R defined as ¥ = Q x [0, 7] with T"< 400 , where (2 is
a smooth bounded domain of R? with boundary T.
The function o € L* (€2) is assumed to be non-negative satisfies

(1.2) a<pB, B>0.

f is a regular function such that
feLl?(0,7,L*(Q))nC (0,7, H " (Q)).
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Let (.,.)q be the scalar product in L* () and (.,.)p, be the scalar product in
L? (Ty), where Iy is the part of the boundary defined as

Foz{xeaQ:FsuchthatV§ >0, x+§¢Q}.

Schwarz method has been invented by Herman Amandus Schwarz in 1890. This
method has been used to solve the stationary or evolutionary boundary value prob-
lems on domains which consists of two or more overlapping sub-domains (see [1],
[7], [22], [23]). We refer to ([1], [7]-[9]) , and the references therein for the analysis
of the Schwarz alternating method for elliptic obstacle problems and to the pro-
ceedings of the annual domain decomposition conference beginning with [15]. For
results on maximum norm error analysis of overlapping nonmatching grids methods
for elliptic problems we refer, for example, to [4].

In [7], we studied the overlapping domain decomposition method combined with
a finite element approximation for elliptic equation related for Laplace operator
A, where on uniform norm of an overlapping Schwarz method on nonmatching
grids has been used, where we proved that the discretization on every subdomain
converges on uniform norm norm. Furthermore, a result of asymptotic behavior
in uniform norm has been given. In this paper, similar to that in [7], we extend
the last work for evolutionary equation with mixed boundary conditions, where we
provide a maximum norm analysis of a theta scheme combined with finite element
Schwarz alternating method for a linear parabolic equations on two overlapping
subdomains with nonmatching grids. We consider a domain which is the union
of two overlapping subdomains where each subdomain has its own independently
generated grid. The two meshes being mutually independent on the overlap region,
a triangle belonging to one triangulation does not necessarily belong to the other
one. Under a stability analysis on the theta scheme which given by our work in
[3], we establish, on each subdomain, an optimal asymptotic behavior between
the discrete Schwarz sequence and the asymptotic solution of parabolic differential
equations.

The outline of the paper is as follows: In section 2, we introduce some necessary
notations, then we prove a full-discrete weak formulation of the presented problem
using the theta time scheme combined with a finite element method. In section 3 we
state a continuous alternating Schwarz sequences and define their respective finite
element counterparts in the context of nonmatching overlapping grids. Section 4 is
devoted to the asymptotic behavior of the method.

2. THE DISCRETE PARABOLIC EQUATION

The problem (1.1) can be reformulated into the following continuous parabolic
variational equation: find u € L? (O, T, H} (Q)) solution of



ou

(875’”> +a(u,v) = (f,v) + (p, ), ,

u=01in I'/T,

(2.1) ou
a—n = in Iy,

u® (z,0) = u} in Q,
where a (.,.) is the bilinear form defined as:
(2.2) u,v € Hy () : a(u,u) = (Vu, Vu) — (agu, u)

2.1. The space discretization. Let 2 be decomposed into triangles and 7, de-
notes the set of those elements, where h > 0 is the mesh size. We assume that
the family 75 is regular and quasi-uniform. We consider the usual basis of affine
functions ¢; i = {1, ...,m (h)} defined by ¢, (M) = d;; where M is a vertex of the
considered triangulation. We introduce the following discrete spaces V}, of finite
element

ve (L2(0,T, Hy () nC (0, T, H; (2)))
such that vy |k= P1, k € Th,

() _
(23) ‘/h - Vp, (70) = Vo in Q7 ﬁ = TP in Fo,

on

vp, =0 in T\Iy,

where P, Lagrangian polynomial of degree less than or equal to 1 and 7y, is an
interpolation operator on I'y.
We consider 7, be the usual interpolation operator defined by
m(h)

TRV = ZU (M;) ¢; () -

i=1

2.1.1. The discrete maximum principle assumption (DMP). We assume
the matrices whose coefficients a (¢;,¢;) are M-matrix ([12] and [13]). For con-
venience in all the sequels, C' will be a generic constant independent on h.It can
be approximated the problem (1.1) by a weakly coupled system of the following
parabolic equation v € H! ()

(2.4) (?:’U)Q +a(u,v) = (f,v)g + (¥ V)p, -

We discretize in space, i.e., we approach the space Hg by a space discretization of
finite dimensional V}, C (L? (0,7, Hj (2)) N C (0, T, H} (Q2))) , we get the following
semi-discrete system of parabolic equation

(25) (Fon) 0 o) = (Foon = w)e + (10,
Q
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2.2. The time discretization. Now we apply the #-scheme in the semi-discrete
approximation (2.5). Thus we have, for any 6 € [0,1] and k=1,...,p

(uf’ — u’,ﬁfl,vh)g + (At)a (ui’k, vh) =

(2.6)
(At) [(fl’ e,k‘, ’Uh)Q + (@iﬁe’kfuh)ro] 9
where
ui’k =0uf + (1 —0)ui™?,
(2.7) fOF=0f+(1—-0) "
and
(2.8) o P =008+ (1-0) "
k1
By multiplying and dividing by ¢ and by adding ﬁ, v, | to both parties of

the inequalities (1.1), we get

0,k—1

0.k
Uy ( 0.k ) _(fok U
(9&’“”)9” Un" 5 Vh (f AL ’”’L>Q+

+ (we’k,vh)m , Up € Vh(@)'

(2.9)

Then, the problem (2.9) can be reformulated into the following coercive discrete
system of parabolic quasi-variational inequalities

(2.10) b (ufl’kmh) = (fa”C + ,uuf;l,vh)ﬂ + (we’k,vh)ro , Uh, ufl’k S Vh(“")7

where

b (ufb’k,vh> =pu (ui’k,vh)g +a (ui’k,vh) , Up € Vh(ip),

(2.11)
_ L _r

M= %At~ 0T
Theorem 1. see [7] . Under suitable regularity of the solution of problem (1.1),
there exists a constant C' independent of h such that
(2.12) 1€ = ¢Il < Ch? [log A .
Lemma 1. (see [18]) Let w € H' () N C () satisfies a (w,d) + A (w,¢) > 0 or
all nonnegative ¢ € H' (Q) and w >0 on T, then w > 0 on Q.

~ ~0,k
Notation 1. (Fo*k, goe’k); (Fa’k, ée’k) be a pair of data and Cg’k = 5‘(F9’k, gpa’k);C =

O(FO* 3"F) the corresponding solutions to (2.10) .

Proposition 1. Under the previous notation, we have



1 ~
2.13 H ok _ o’kH < max () HFG”C — pOk %k — ~0.k .
(213) 167 =L ) {\3 R L Lm(m}
Proof. First, putting
1 ~
2.14 0.k — max () Hpek _ FMH gk — o ’
(2.14) p {3 Loo@ " I me}
then
Fok < pok HFOk _ fok
B Loo(2)
0. (A> 6k _ Ok
< Fok 4 (2 HF _ o
/6 Loo(R)
1 - ~
< FOF 4 )\max{(ﬂ> HFM _ ok 7 Hwe,k _ gk )
Loo () Loo(T)
< FOF g Aubk,

So
215)  5(C"6) < (¢"F,0) + A (40, 0), forall 6 >0, ¢ € HY(Q)
and thus
b (Ze,k7¢) <b (Ce,k +M9,k7¢) _ (Fe,k + )\Mg’k7¢)-
On the other hand,we have

~0,k
(2.16) ¢F+¢—C" >00nTy.
So
0,k <0k

(2.17) b+ ¢—C " >0.
By using the result of lemma 1, we get

~0,k m _
(2.18) ¢ +¢6—C¢"">00nQ
Similarly, interchanging the roles of the couples (F%*, x%*) and (ﬁe’k, ¢e’k), we get

~0,k _
(2.19) C +op—C"">00n0Q,
which completes the proof. ([

Remark 1. Proposition 1 stays true for the discrete case.

Lemma 2. ([18]) Let w € Vj, satisfy b(w?*, ¢,) > 0 for s = 1,2..m(h)and w?* >0
on Tg.then w?* >0 on ().

~ ~0,k
Notation 2. (Fk (%) (FOF @e’k) be a pair of data and CZ’k = O(FF 0k, ¢, =
A(F?* 3%%) the corresponding solutions to (2.10) .

Proposition 2. Let DMP hold, we have
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(2.20)
0,k NMH (1)H 0.k _ 10k 0.k _ ~6.k
R <max{| = | |[F"" — F” , r 7
HCh h Loo(Q) { B Loo(9) 4 7 Loc(l"o)}
Proof. The proof is similar to that of the continuous case. O

3. Schwarz Alternating Methods for parabolic equation

We decompose (2) in two overlapping smooth subdomain 7 and 5 such that
1 = Q1 UQy, we denote by 9); the boundary of 2; and I'; = 09; N 2; and assume
that the intersection of I'; and T'j;i # j is empty. Let
) ve (L2 (0,T,Hj (Q)) nC(0,T,H} (2)))

(wy

Vol =

1
such that v = w; on I';.

We associate with problem (2.10) the following system: find (uf’k, ugk) € Vf)’k X
Vze’k solution to

bi(uf™,0) = (F"" v)ar + (6", v)ry,,
(3.1)
ba(ug™,v) = (F™" v)as + (©%F . v)rgs,
where
(3.2) bi(uf’k,v) = /(Vue’k.VUg’k + aue’k.ve’k)dx
Q;
and

0.k _ 0k R
u, " =u"" Qi =1,2

3.1. The Continuous Schwartz Sequences. Let ug be an initialization in Co
(Q),i.e.7 continuous functions vanishing on 02 such that

(3-3) b(ug,v) = (F**,v).

Starting from wy = up/Q2 , we respectively define the alternating Schwarz
sequences (u?“)on Q; such that

0,k,n
u?’k’"ﬂ € Vl(u2 ) solves of
0.k, 0,k
(34) bl(ul n+1’U) = (Fl 7'0)3
where
Fleyk — f@,k + Au?;’f*LnJrl
0.k, 0.k, n+1
and (uy™"tHon Qy such that uf™" ! e VQ( “ ) solves
0.k, 0,k
(3.5) ba(ug ™" ) = (FYF,v),
where

0.k _ 0.k 0,k—1,n+1
FP% = 7% + dug
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Theorem 2. [7] The sequences (u)t'); (up™'), n > 0 produced by the Schwarz
alternating method converge geometrically to a solution u of the elliptic obstacle
problem. More precisely, there exist ki,ka € (0,1) which depend on (Q1,75) and
(Q2,v1) such that for all n > 0,

(3.6) sup lup, — w®" | < 6765 sup |up — )|
Q1 Y1

and

(3.7 sup |up — u?"| < 815t sup lup, —uf)| .
Qo Y2

3.2. The discrete Schwartz sequences. As we have defined before, for i = 1,2,

let 7" be a standard regular and quasiuniform finite element triangulation in Q;; h;
, being the mesh size. The two meshes being mutually independent 1 N Qs , a
triangle belonging to one triangulation does not necessarily belong to the other and
for every w € C'(;) , we set
ey [ e (RO.THN @) N0 0.1 1 (@)
Vie? =
such that v = ¢ on I'gy NTga; v = 7y, (w) on Ty,

where 7, denote an interpolation operator on I'y;.

Now, we define the discrete counterparts of the continuous Schwarz sequences
defined in (3.4) and (3.5) .

Indeed, let ugp, be the discrete analog of ug, defined in (3.3), we respectively,
0,k,n
define by uf’f’"“ € Vh(1 ") such that

(3.8) by (ui)’:’""’l,v) = (Fe’k(u(;}f’"ﬂ), v),Yv € Vh(@); n >0

0,k,n+1 (ufim )
and uy), eV, such that

(3.9) by (uS T v) = (FOF (WS ), v e Vh(“o); n > 0.

4. MAXIMUM NORM ANALYSIS OF ASYMPTOTIC BEHAVIOR

4.1. Error Analysis for the stationary case. We begin by introducing two
discrete auxiliary sequences and prove a fundamental lemma.

4.1.1. Two auziliary Schwarz sequences. For w9, = uJ, , we define the se-
9,00,'7:.)

6,00,n+1 6,00,n+1 0,00,n+1 Uy
quences w j, and wy}, such that ugj, eV solves

(4.1) by (w2t vy = (FOF (ufoomth) ), o e Vh(f);n >0,

6,00,n+1 (uél)}m’nJrl)
b b ]
and wy}, eV, solves

(4.2) by (w2 v) = (FOF (ul2> ™) v), vo e Vi in > 0,
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0, oo n+1 0,00,n+1

respectively. It is then clear that w; and ws), are the finite element

approximation of u?°*"*! and w5 bt defined in (4.1), (4.2), respectively. Then,
( 0kn+1)H <A 9kn+1H

Therefore, making use of standard maximum norm estimates for linear parabolic
problems, we have

as F'%% () is continuous,

(independent ¢ of n).

0,k,n 0,k,n

(4.3) [ o < Ch?[log h|

where C is a constant independent of both h and n.

Notation 3. From now on, we shall adopt the following notations: |.[; = || r,),

2 = ooy, I = l-llzeey) » Mo = llpooqr,), and we set wp, = mhy = .

4.2. Tterative discrete algorithm. We give our following discrete algorithm

9 k,n
(4.4) Wb g htetd g Bkt ¢ ()

ih ih

where uzk is the solution of the problem (2.10) and the first iteration u{ is

solution of (3.3).

Proposition 3. [3]Under the previous hypotheses and notations, we have the fol-

1
lowing estimate of convergence if 6 > 3
1 k
0,k,n+1
(4.5) Huh - UZOHOO < (H@At) [ur” = unolloo »

1
if 0§9<§,weh(we

k
2
0,k2n+1 oo __

where p (A) is the spectral radius of the elliptic operator.

Lemma 3. Let p = 2 Then, under assumption (1.2), there exists a constant C

independent of both h and n such that

2
(4.7) ‘ w o Ch”[logh|

i 1—p

0,00,n+1 _  60,00,n+1
i Uip,

) - ) -

Proof. We know from standard error estimate on uniform norm for linear problem
[17] that there exists a constant C' independent of h such that

(4.8) [|u® — u?LHL:(Q) < Ch?|loghl| .
1
Since ;3 <pr< 1, then 1 < p/ (1 — p) and
h? |log h
(4.9) ||ug - uthz < Ch*|logh| < pC'lfMgL
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Let us now prove (4.7) by induction. Indeed for n = 1, using the result of Propsi-
tionl, we have in €2y

S 0,k,1 < 0,k,1 0,k,1 + 0,k,1 0,k,1
U’ = Uy’ L Uy’ —wyy” Wy = Uy
2 0,k,1 0.k,1
< Ch*|logh| + le — Uy} H1

7u[2)h||2

g<%W%m+mw<)Hﬂk@%ﬁ—ﬁ*@%ﬂHJ@—ﬁm
1
< Ch?|logh| + max{( ) HFG ok ( 8.k, 1) — FOF (ufhk 1) H , Hug
1
< Ch?|logh| + max{p Hu?’k’l u?hk 1H , Hug — uthQ )

We then have to distinguish between two cases

(4.10) max{p ‘ 0.k1 uf}lk’lHl ,||u8—u8h||2} ZPHu?’kl ufhlel
or
(4.11) max{p”u(f’k1 u?,le ,Hug—uthz} = Hug —uthQ.

(4.10) implies

061 0kl 5 o610k
H — Upp H <Ch |logh|+pHu1 Uy H17

0,k,1 01@1)
b

g =il < o [ul ™ = uf

then )
H 0,k,1 emH Ch? [log h|
U = Uy, < —
1 1—0p

8 = B ll, < ol — | < eCtihostl
1
(4.11) implies
H ok1 fhk’lul < Ch? [logh| + [[u§ — u3, ||,
< ||ug = udy ||, »

so, by multiplying (4.11) by p we get

(4.12) pudt - u(f’hk’lHl < pCh? [logh| + p [|uf — uly, |, -
So,p H Bkl _ ui)}k ! is bounded by both pCh?|log h|+p ||ug — ugh|{2and [|ug — ugh||2,

this implies that
(4.13) plluz —udy |, < pCh* flog h| + p [|uy — gy,
or

(4.14) pCH2 log hl + p [ — |, < [l — 3l
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that is (4.13) implies

pCh? |log h|
(115) i ], < 2 Lo
P
and (4.14) implies
pCh? |log h|
(4.16) |ug —udp |, > —,
p
It follows that only the case (4.13) is true, that is,
pCh? |log h
(4.17) ||u(2J — “thz < —,
p
then
pluttt —ufitt|| = on?oghl+ [uf — ulsl,
Ch? |log h
< Ch?|logh| + pCH”[log h|
1—
< Ch? |log h|.
s o,

So, in both cases (4.10) and (4.11), we have

2
H 0,k,1 ue,k,1H < Ch |logh|.
1

(4.18) Uy 1h 1—p

Similarly, we have in (2

N )
S Ch2 |logh|—|—max{( )HFGIC (ug,k,l) _FG,k (ug,hk,l)‘ , u?;k,l
2
< Cn? |10gh|+max{< >HF“( R s | I (T
2
< C’h2|logh|—|—max{pHug’k’1—ughk1H2, uf ket — u?hkl‘l}.
So
0.k1 0.kl 0.k1 0.kl 0k,1 _ 0.k1
I O it Y ot At g
or
0.k1 0.kl 0k1 0kl _ || 0k1 _ 6k1
(4.20) max{pHu2 — Usp’ H2 Uy = Uy H }—Hu1 —Upp’ H1
cases (4.19) implies
R )
0.k1 _ 0.k1 < WOkl Ok
Ut = Uy LS PY2 s Tl ||,

0,k,1
— Uyj,’ ‘ }

0,k,1
Uy H1}
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SO

0.k 0kl Ch? |log h|
Ug Usp, 9 = 1— P

0,k,1 0,k 1
Uy T Uy )

)

1 1
ottt

Uap,

2 2
< pCh? |log h| < Ch?|log h|

while case (4.20) implies
oo, < ot oo,
(4.21) :
0.k1 _ 0kd|l |, 0k1 0k
P2 ~U2n ||, =% T %

So, by multiplying (4.21) by p we get

(4.22) p ’ug,k,l _ug,hk,lH2 < pCh? log h| +pHu§,k,1 _uﬁ,hk,lHl.

Hence p Hug’k’l — ug’hk’lu is bounded by both pCh2|logh| + p Hu?’k’l — u(;hk’lu and
2 1

Hu?’k’l — uf}fl , then
1
(4.23) ‘u(;’k’l — uf’hk’lHl < pCh*|logh| + p Hu?’k’l — U?}Lk71H1
or
(4.24) Ch?|logh| + p Hu‘f’k’l - u?’hk’lHl < Hu?’k’l - uf}f’l‘ o

which (4.23) implies

0,k,1 6,k,1 PCh2 |log h| Ch? |log h|
(4.25) Hu1 U H1 = 1—-p < 1-0p

or (4.24) implies
Ch? |log h Ch? |logh
P log A < Hu?,m _ “i)’hk’lH < [log |.
1—p 1 1—p

Hence, (4.23) and (4.24) are true because they both coincide with (4.18). So, there
is either a contradiction and thus case (4.19) is impossible or case (4.20) is possible
only if

(4.26)

)

(4.27) [t it = pen?oghl 4 p |[ul! — ufit|

that is

Y

6,k,1 6,k,1 PCh2 |log h|
(4.28) Hul e H1 ==
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thus
S R e
h? |log h
< Ch? llog h| + ,OC'17|%;|
Ch? |log h|
1—p

that is, both cases (4.19) and (4.20) imply

) Ch? |log h|
0,k,1 0,k,1
(4.29) A

Now, let us assume that
- Ch?|log h|

0,k,n 0,k.n
(4.30) Hu2 — Us),

2 1—p
and prove that
Ch? |log h
Hug,k,nﬂ B ug},}f,nHH < 1\_ ghl
1 P

Ch? |log h
Hug,k,n-&-l _ughk,m-lH < : |log hl
2 -p

O

Theorem 3. Let h = max (h1,ha). Then, for n large enough, there exists a
constant C' independent of both h and n such that

h2 log h
ufkm uf,;’“"“H < hlloghl iy o)
1 1-p
Proof. Let us give the proof for ¢ = 1. The one for ¢ = 2 is similar and so will be
omitted. Indeed, Let § = 6102, then making use of Theorem 2 and Lemma 3, we
get

(4.31) ‘

N e Ry Ty |
ch? |log h
< 08y |u° -, + 18]
I—p
ch? |log h
< 52n|u0—u’1 |log |
L—p
So, for n large enough, we have
(4.32) 5" < h?
and thus
Hu?’k — u?;f’"“ H < ch® 4 ch? |logh|
< ch?®|loghl,
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which is the desired result. O

4.3. Asymptotic behavior. This section is devoted to the proof of main result
of the present paper, where we prove the theorem of the asymptotic behavior in
L*°-norm for parabolic variational inequalities, where we evaluate the variation in
L*> between uy, (T), the discrete solution calculated at the moment T = pAt and
1, the asymptotic continuous solution of (2.11)

Theorem 4. According to the results of the proposition 3 and the theorem 8, we
have

1
for the first case 8 > 3
(433 [t =] < w2 pogn+ (g ) |
th o= | 1+0At) |’
and
(4.34) Hue’p’”'H — u‘X’H <C -hz [log h| + ! ]
2h S| 1+0At) |’
and for the second case 0 < 0 < %
(4.35) Hue’p’"+1 - u°°H < C |h?|logh| + 2 ’
1h 0o~ 2+6(1—20)p(A)
and
@) [udpt —w| <o frogni+ : ’
2h 0 24+0(1-20)p(A)) |’

where C' is a constant independent of h and k.
Proof. We have

0,p,2n+1 0,p,2n+1
P20+l uocH < HthL n+l g
o0

|+ a

+ fJu = vl -
oo

Using the proposition 3 and the theorem 3, we have for 6 >

1 p
e R Il

N =

14+ 0A¢

1
and for 0 < 0 < 3 we have

0.p,2n+1 o 2 3 2 b
[ u ngc[h og 7 +(2+9(1—29)p(A>> ]

The proof for (4.35) and (4.36) case is similar. O

1 P 2 P
Remark 2. It can be seen in the previous estimates (4.33) up to (4.36), (HBGAt) , <2 o= 20) (A)) ,
—20)p

to 0 when p tend to infinity. Therefore, the estimation order for both the coercive
and noncoercive problems is

oo oco,n+1 2 3
Hu el Hm(ﬁl) < Ch floghl
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and

(1]
2]

(3]

(4]

[10]
[11]

[12]

[13]

SALAH BOULAARAS!"?, MOHAMEDD CHERIF BAHI?*, AND MOHAMED HAIOUR!
1 3
Hu‘x’ — u;’Z”H H _ < Ch*|loghl”.
Lo (QQ)
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