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Ornstein-Uhlenbeck Semigroup on the Dual Space of Gelfand-Shilov
Spaces of Beurling Type
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ABSTRACT: We use a previously obtained topological characterization of Gelfand-
Shilov spaces 25 of Beurling type to characterize its dual (25)/ using Riesz Rep-

resentation Theorem. Using the characterization of the dual space (Zﬁ)’ equipped
with the weak topology, we study the action of Ornstein-Uhlenbeck semigroup on
the dual space (22)'.
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1. Introduction

In mathematical analysis, distributions (generalized functions) are objects
which generalize functions. They extend the concept of derivative to all integrable
functions and beyond, and used to formulate generalized solutions of partial differ-
ential equations. They play a crucial role in physics and engineering where many
non-continuous problems naturally lead to differential equations whose solutions
are distributions, such as the Dirac delta distribution. The theory of generalized
functions devised by L. Schwartz was to provide a satisfactory framework for the
Fourier transform (see [9]).

Some other types of distributions called ultradistributions have also been stud-
ied by Gelfand and Shilov (see [4]) which are well-known in the theory of tempered
ultradistribution. S. Pilipovic obtained structural theorems and defined the con-
volution for Gelfand-Shilov spaces of Roumieu and Beurling type (see [6], [7], [8]).
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In this paper, we use the characterization of Gelfand-Shilov spaces of Beurl-
ing type of test functions of tempered ultradistribution in terms of their Fourier
transform obtained in [1] to prove structure theorem for functionals in dual space
(¥8)'. Using the structure theorem of the dual space(X2)" equipped with the weak
topology, we study the action of Ornstein-Uhlenbeck semigroup on the dual space
(Z5)"

The symbols C*, C§°, LP, etc., denote the usual spaces of functions defined
on R", with complex values. We denote || the Euclidean norm on R", while |||,
indicates the p-norm in the space LP, where 1 < p < oo. In general, we work on the
Euclidean space R™ unless we indicate other than that as appropriate. The Fourier
transform of a function f will be denoted by F(f) or f and it will be defined as
Jgn €727 f () dz. With G we denote the Banach space of continuous functions
vanishing at infinity with supremum norm.

2. Preliminary definitions and results

In [1], J. Chung et al proved symmetric characterizations for Gelfand-Shilov
spaces via the Fourier transform in terms of the growth of the function and its
Fourier transform which imposes no conditions on the derivative.

Theorem 2.1. ([1]) The space %2 can be described as a set as well as topologically
by
8 _ w:R® = C: p is continuous and for all
« k:071,27 et pk10 ((P)<ij7ﬂ.k70 ((P) <Cx>' ’

1/
oHlel

/6 ~
where pio (p) = SOH s o () = ||eMe] SOH :
o0 o0
The space X7, equipped with the family of semi-norms

(o2

N = {pr,0,mro : k € No},

1s a Fréchet space.

Remark 2.2. For o > 1, the function |0|1/a : [0,00) = [0,00) has the following
properties:

1. |o|1/a s increasing, continuous and concave,
2. |t|1/a >a+bln(l+t) for some a € R and some b > 0.

Remark 2.3. Let us observe for future use that if we take N > % is an integer,
then

Cy = / e~ NIl gy < o0, for all a > 1,

where b is the constant in Property 2 of Remark 2.2. Moreover, Property 1 in
Remark 2.2 implies that |o|1/a is subadditive.
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Remark 2.4. If 7 € R" and a > 1, then there exist N € N and a constant C' > 0
such that || < CeNITY In fact, since

7] < 1+ |r] = 17D

and applying Property 2 in Remark 2.2, there exist a € R and b > 0 such that

|7_|1/a —a
In(1 + ) < H——*
Hence,
7| < 14| = O
7|1/ —a a |r|te
< e v =eTbe b
< C’eNMl/a

where C = e~ % >0 and N > % 18 an integer.

3. Characterization of the dual space (%)’

Theorem 3.1. (/5])Given a functional L in the topological dual of the space Co,
there exists a unique regular complexr Borel measure p so that

L(p) = /n pdyu.

Moreover, the norm of the functional L is equal to the total variation |u| of the
measure . Conversely, any such measure u defines a continuous linear functional
on Cy.

Theorem 3.2. Given L € ¥ — C, then the following statements are equivalent :
(i) L e (S5)

(ii) There exist two regular complex Borel measures puy, and u, of finite total
variation and k € Ny such that

L= ek|m|1/adu1 + ek‘g‘l/ﬁdﬂz;
in the sense of (X2)'.

Proof: Proving (i) implies (ii): Given L € (£8)’, there exist constants k& and C
so that
L(p) < C(

1/a
eklel <,0H +

1/8
eHe! sﬂH ),

o0 (oo}

for all ¢ € Zg. Moreover, the map

E§—>GQX€0

1/a 1/8
eHIzV/ ) okle]

@ = ( %)
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is well-defined, linear, continuous and injective. Let R be the range of this map.
We define on R the map

l/a l/ﬂ/\
L (Ml o RS 3) = L (p),

for a unique ¢ € 2. The map I; : R —C is linear and continuous. By the Hahn-
Banach Theorem, there exists a functional L; in the topological dual (Cy x Cp)’ of
Co x Cp such that ||L1]| = ||l1]| and the restriction of L; to R is l;. Using Theorem
3.1, there exist regular complex Borel measures p; and p, of finite total variation
so that

Li(f,9) = / fduy +/ gdpy,
R" R"
for all (f,g) € Co x Co. If (f,g) € R, we conclude that
L(p) = / e pdpy +/ e B,
n R’Vl
for all ¢ € ¥5. In the sense of (X£), we have
L= ek‘m‘l/adm + €klg‘l/ﬂdﬂ2-
This completes the proof that (7) implies (i7). Next, we prove that (iz) implies ().

Proving (é¢) implies (i): If gy and u, are regular complex Borel measures satisfying
(i) and ¢ € X8, then

1/ 1/B
L(¢) :/ ekle! sﬂduﬁ/ M Bd .
n R'ﬂ

This implies that

IL(p)] < /ek'””'l/asoduﬁr/R M By,
< il @) | [ | il =) | [ M G
< Iull(R")/ e NI VDI
il ()| [ eI |
< Cllpy| (R™ e(N+k)|z|1/“(pHoo/ e—N\z|l/adul
+ o | (R™) ‘e(“k)‘f‘l/ﬂ@Hm/ e NI g,
< o 6<N+k>\m\”“¢Hm+ e(N+k>\f\”B¢HOO)_

It may be noted that p; and p,, employed to obtain the above inequality, are of



OU SEMIGROUP ON THE DUAL SPACE OF (GELFAND-SHILOV SPACES 75

finite total variation. This shows that L € (X2)". This completes the proof that
(#4) implies (¢). This completes the proof Theorem 3.2.
g

As an application of the structure theorem of (¥7)’ stated in Theorem 3.2, we
prove the following corollary.

Corollary 3.3. If T € (X8) and ¢ € £8, then the functional T * ¢ defined by

<T *©, ¢> = <Ty’ ((pza ¢($ + y))

coincides with the functional given by integration against the function ¥(x) =
(Ty, p(x —y)).

Proof: Using Theorem 3.2, we can write, for each = € R™,
va) = (Tpele =)= [ oo+ ()
+ / M2 g () (€)dp €).
So,
(Txp.8) = (T (0. 6z +1)
_ / ek / ol =)o) (v)
T / M T () €06y (€)
_ / e / oo =)o) (v)
T / M S (G x 9)(E)d(€)

= (M1 1y (), (ol — y), 6()))
HEFEHT 1) (), (ol — y), 6(x))

= (M1 () + T 1) (), (ol — 1), 6l@)))

= (T, (p(z —y), 6())),

for all ¢ € ¥8. This completes the proof of Corollary 3.3. O

4. Ornstein-Uhlenbeck Semigroup action on (%7)’

The second-order differential operator defined by

1
A=—sA-z-V,
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where A denotes the Laplacian and V denotes the gradient, is called Ornstein-
Uhlenbeck operator. The semi-group generated by Ornstein-Uhlenbeck operator
A is Ornstein-Uhlenbeck semi-group acting on the Hilbert space L?(y) where v is
the normalized Gaussian measure. The Ornstein-Uhlenbeck semi-group (P;)i>o =
(e)y>0 is given by

Pip(x) = - My(z,y)p(y)dy(y) = (Me(z,y), ¢(y))

where My(z,y) and ¢t > 0 is the Mehler kernel and P, is the identity. The closed
expression of the Mehler kernel M;(z,y) is given by

i ly—eta

Mi(z,y) = an/2(1 — e—2t)n/z€

Observe that M;(x,-) and M;(-,y) are both in X2 for all a, 3 > 1 because both
have exponential decay which implies that the operator P; is well defined. Then
for T € (22)" and P; = e?, where A = —%A —x -V, we can write the action of P;
on (£8) as

(T * Pr,p) = (Ty, < My(,9), ¢(2))), ¢ € T4

To prove that T+ P, — T as t — 0T in strong dual topology, it is enough to
prove the following result.

Theorem 4.1. Let B be a bounded subset of ¥ and ¢ € YB. Then p,(z) =
(My(z,-), p(z)) — ¢ in XBas t — 0% uniformly on B.

Proof: Recall that [, M;(z,y)dr = e™. We can write

1/a 1/8
I = Ml i My(z,y)p(z)dz — eI o (y)

— Ml 5 My(z,y)e(x)dz — o(y))

1/ —n
T (R My (x, y)p(x)dr — e " p(y) A My(z,y)dzx)

— ek\y\l/“( . My(z,y)(p(z) — e " p(y))dz)

= ekl | Ml y) () — o) +oly) — e ely)dr.

Taking the absolute value for both sides and applying the triangle inequality, we
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get

1/a 1/
el i My(z, y)p(z)dz — eV p(y)

M My (2, ) o) — @(y) + oly) — e M p(y)| da

1l =

3

— T

M My, y) lp(e) — oly)] do

n

_n 1/
(1= e / 1" My(2,y) [o(y)] do

= L+ L.
We estimate Is as follows:
-~ 1/a
Bo= @) [ M) ()] de
< ent(l _ e—nt) ‘ek\‘\l/“wH
o0
Using explicit formula for M;(z,y) and making the change of variable u = \%eii;,
we estimate I; as follows:
L o= / My (2, y) () — (y)| da
B 1 Klyl/e —ju? | oy —uvl—e2t o (1 —e=2t)n/2
- Tn/2(1 — e—2t)n/2 /Rne € ‘P(ie,t ) —¢(y) T E— du
nt P /I %
= 5 /R " el o (F=EEE ) — () 4+ o) — wly)| du
nt P w7
< :n/Q /}Rn eklylM o= lul? @(%)*@(%) du

ent

1a ), )2 y
+—73 /Rn ekl eIl ’w(;)—s&(y)(du

Using Mean Value Theorem, there is a point «’ on the line segment L; from
yu/ie %
e—t

o % and a point »” on the line segment Ly from —%; to y such that

y—ux/lfe*%)_(p(i) _ |u] V1 —e—2
—t ot

et e

‘s@( Ve ()]

and

(L) — olw)| = =) g

respectively. Thus, the estimate for I; above now becomes

nt . T =2t
I, en_/2/ ekl e—\UIZMfte|v@(u/)|du
m n

nt

+ € / ek|y|1/“ —|u)? |y| ( — ) |v ( ”)|du.

/2
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Using |y| < |u”| and applying Remark 2.4 for |u”|, then |y| < CeNlIV® <
1|1/«
e T for some integer N and constant C' > 0. Therefore,

e K|/~ jup? Jul V1 — €7
/n e e =

- gn/2

4 ent ek|u//|l/a€_|u|2 CeNlu
72 Jgn

5L [Vo(u')| du

//|1/<¥ 1 R
Q=) |\ ()] du

(&

< 7-‘-—”/26("-‘:-1)154/71_6—215Hek\‘\1/av(pH Hue—w

e(N+k)|'|1/aV<PH

,

o lul?

+Cr /2t (1 —e7)

’1'

The estimates obtained for I; and Iy imply that I; — 0 and I, — 0 as t — 0T
uniformly on B. Hence,

S M pte)is - w(-))H Y P—

oo

uniformly on B as well. Now we prove that

approaches 0 as t — 0T uniformly on B. To do this, we write

M R . My (z,y)p(z)dx — so(y))(C)H

(oo}

=17 By . My (z,y)p(x)dz — ¢(y))(C)
e | M@ y)e(a)dn) () - ek‘C‘I/BF(w(y))(C)’
= |kl /Bmﬂ/n e 1= 2 o(z)dx)(C) — e /%(C)‘
[ e 0 - 200)
_ [erter? (We‘“’%&we*o —B(e') +Bleh) - @(c))]

(A—e=2H¢12

T e o)

<ﬂ_7n/2ek\§\1/5 (1- 672t)7n/2

+ e 13 = 3(¢)]

:ﬂ_—n/Qek(et)l/B|e*tc|1/ﬂ(1 _ ey 6——%674% IS \A(e_té)\
klCIY/B  ~, — —~
+ e B ) - 2(0)]
/B, ¢ .1/8 (1—e=2t)[¢|?
Sﬂ_fn/2ek[(et) ]|6 t<| (1 o 67215)7,1/2 e T ’@(e—to’

+ e 13 = 3(¢)|
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(1—e=2H(¢?

a“T‘*—qm@*m

Sﬁfn/gek([(et)l/ﬂ]ﬂ)|e*f<|1/5(1 _ ey

8, _ ~
+eMT B¢ — 3(0)]
(1—e"2H(¢|2

—t|1/8
Sﬂ_—n/262k|e t<| (1 _ 6—2t)—n/2 e - _1 ’@(e_tC)’
B8\, _ ~
+eMBe ) - 2(0)]
Sﬂ_”/Q(l — 6_2’5)_"/2 e_w - 1‘ ‘ e%"‘l/ﬂaH
oo

+ 1 o)~ 3(0)|
=A; + A,

. —e2H)j¢)? .
Since e~ "5 5 1ast — 0F uniformly on compact subsets of R™, the

first term A; converges to 0 uniformly on B. Applying the Mean Value Theo-
rem for the second term As, there is a point 7 on the line segment from e~!( to ¢
such that [p(e7'¢) — P(C)] = (1 — e~ ") |¢]|V@(7)| . Using Remark 2.4, we estimate
|B(e™t¢) — P(C)] as follows:

|2(e™¢) = 2(0)] (1= e ) [CHVR(r)]

< (1—e )| |VE)
< (1 —e e NI v
< CH@NHIMV@‘ (1—eHe ™,

which implies that A, converges to 0 as t — 07. Hence,

converges to 0 uniformly on B as t — 07. This completes the proof of Theorem
4.1.

M et - o))

R™ o0

Remark 4.2. We observe that the functionals in the dual space (X2)" can be
realized as boundary values to the differential equation %u —Au=0,t>0.
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