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Additivity of Maps Preserving Triple Product on *-ring

A. Taghavi, M. Razeghi, M. Nouri, V. Darvish and C. Li

ABSTRACT: Let A and B be two prime *-rings. Let ® : A — B be a bijective and
satisfies

@(A o) P o) P) = <I>(A) DY <I>(P) o) <I>‘(P)7
for all A€ A and P € {I,P1,I — P1} where Pj is a projection in A. The operation
e, between two arbitrary elements S and T in A is defined as Sey T = ST + \T'S*
for A € {—1,1}. Then, if ®(I) is projection, we show that ® is additive.
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1. Introduction

Let R and R be rings. We say the map ® : R — R preserves Lie product
[A,B] = AB — BA or Jordan product Ao B = AB + BA if ®(AB — BA) =
O(A)P(B) — ®(B)P(A) and P(AB + BA) = ®(A)D(B) + ¢(B)P(A), respectively
(for example, see [2,3,8,12,13,16]). The results in the mentioned papers show that,
in some sense, Jordan product or Lie product structure is enough to determine
the ring or algebraic structure. Historically, many mathematicians devoted them-
selves to the study of additive or linear Jordan or Lie product preservers between
rings or operator algebras. Such maps are called Jordan homomorphism or Lie
homomorphism. Here we only list several results [4,14,15].

Let R be a *ring. For A, B € R, we denote by Ae B = AB 4+ BA* and
[A, B]. = AB — BA*, which are two different kinds of new products. This product
is found playing a more and more important role in some research topics, and its
study has recently attracted many author’s attention.

In [5], J. Cui and C. K. Li proved a bijective map ® on factor von Neumann
algebras which preserves [A, B]. must be a x-isomorphism. Moreover, in [9] C.
Li et al, discussed the non-linear bijective map preserving A e B is also x-ring
isomorphism.

The authors in [19] weakened the conditions of the above two results. They
proved that if A and B are two C*-algebras and a map ® from A onto B that is
bijective, unital and satisfies

B(A oy P) = (4) o) B(P),
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for all A € A and P € {P;,I — Pi} where P, is a nontrivial projection in A and
A€ {—1,+1}, then, ® is x-additive.

In [11], Li, Lu and Wang assumed A to be a von Neumann algebra with no
central abelian projections and B to be a x-algebra. Suppose that a bijective map
d : A — B satisfies

o([[4, Bl Cl.) = [[2(A4), 2(B)l., 2(C)).

for all A,B,C € A where [A,B]. = AB — BA* is the skew Lie product. They
showed that the following holds:

1. ®(I) is self-adjoint central element in B with ®(14)% = I5.

2. Let U(A) = ®(I)P(A) for all A € A, then there exists a central projection
E € A such that the restriction of ¥ to AF is a linear x-isomorphism and
the restriction of ¥ to A(I — E) is a conjugate linear x-isomorphism.

Also, the authors in [10] considered the same assumptions on ® as above, but the
map P satisfies the following condition

P(AeBe()=P(A)eP(B)ed(C)

where A e B = AB + BA*. They obtained the same results.
In this paper, motivated by the above results, we consider ® : A — B which is
bijective and satisfies

q)(A o) P.)\ P) = (I)(A) o) (I)(P) o) (I)(P),

forall Ae Aand P € {I4,P1,14 — P1} where P; is a projection in A, then ® is
additive. The operation ey between two arbitrary elements S and T in A is defined
as Se\T = ST + \NT'S* for A € {—1,1}.

It is well known that ring A is prime, in the sense that AAB =0 for A, B € A
implies either A = 0 or B = 0. Also, for the real and imaginary part of an operator
T we will use R(T) and (T'), respectively.

2. Main result

We need the following lemmas for our theorem:

Lemma 2.1. Let A and B be two prime x-rings with an unit 14 and a nontrivial
projection Py. Let ® : A — B be a bijective map which satisfies the following
condition

(I)(AO/\PO)\P):@(A)O)\(I)(P)O)\@(P) (21)

for each A, P € A such that P is in {Ia,P1,Iqa — P1}. Then ® is unital and
®(0) =0.
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Proof. First, we show that ® is unital. We know that
(I)(I o) IO)\ I) = (I)(I) LD\ (I)(I) o) (I)(I)

It follows that
D(41) =49(1). (2.2)

On the other hand, for A = —1, we have
q)(A o_q I.,l I) = (I)(A) ®_q (I)(I) o_q q)(I)

So,
D24 —2A4%) = (P(A)P(I) — P(I)P(A)") o1 D(I).

Since @ is surjective, then there is an element A such that ®(A) = I, hence
D(2A—-2A")=0

it means that
A= A", (2.3)

Also, using (2.1) for A and I, we have
D(AeyTeyI)=D(A) ey d(I)ey,d(I)
it follows that
D(2A+2A4") = (P(A)D(I) + P(I)P(A)*) o4 O(I).
We can find A such that ®(A) = I. Then
D(2A4 + 24%) = 20(1)®(I) + 20(1)D(I)*. (2.4)
From (2.2), (2.3) and (2.4) we obtain
D(4A4) = B(4])

since @ is injective then A = I.
Now, suppose that A = I in (2.1), we have

®(IP — PI*P+ PIP — PI*) = ®(I)®(P)— ®(P)®(I)*®(P)

then
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Lemma 2.2. Let A and B be two prime x-rings with an unit 14 and a nontrivial
projection Py. Let ® : A — B be a map which satisfies

D(AeyPeyP)=>(A) e\ P(P)ey P(P)

for all A, P € A such that P is in {I4,P1,Iqa — P1}. Let A, B and T be in A such
that ®(T) = ®(A) + ®(B). Then we have

®(TP+ PT*P+ PTP+PT*) = ®(AP+ PA*P+ PAP + PAY)
+®(BP + PB*P + PBP + PBY)
(2.5)
and
®(TP - PT*P+ PTP—-PT*) = ®(AP— PA*P+ PAP — PAY)
+®(BP — PB*P + PBP — PBY)
(2.6)

Proof. We just show relation (2.5). Other relation (2.6) can be obtain in a
similar way.

Let
O(T) = ®(A) + ®(B). (2.7)
Equivalently, we have
(T)" = B(A)* + &(B)*. (2.8)
From (2.7), it follows
O(T)P(P)? 4+ ®(P)R(T)P(P)* = &(A)P(P)* +d(P)P(A)D(P)*
+®(B)®(P)? + &(P)®(B)®(P)*
(2.9)
Similarly, by (2.8) we can write
O(P)’®(T)* + &(P)O(T)*®(P) = ®(P)’®(A) + O(P)D(A)*D(P)
+®(P)?®(B) + ®(P)®(B)*®(P).
(2.10)
By adding (2.9) and (2.10) we have
®(TP + PT*P + PTP+ PT*) = ®(AP+ PA*P + PAP + PA")
+®(BP + PB*P + PBP + PB").
O

Main Theorem. Let A and B be two prime *-rings with an unit 4 and a
nontrivial projection P;. If ® : A — B is a bijective map which satisfies

(I)(AO/\PO)\P):@(A)O)\(I)(P)O)\@(P) (211)
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for all A, P € A where P isin {I4, P1,I4 — Pi}. Then, ® is additive.

Proof. Let P; be a nontrivial projection in A and P, = I4 — P;. Denote
Aij = PiAP;, 0,5 = 1,2, as a sub-ring of A. Then for every A € A we may write
A= P AP, + PLAP, + P,AP, + P,AP,. One could call it Peirce decomposition.
In all that follow, when we write A;;, it indicates that A;; € A;;.

To show additivity of ® on A, we use above decomposition of A and give some
claims that prove ® is additive on each A;;, 4,5 =1,2.

Claim 1. For each A1 € A1 and Aqs € A1 we have
D(A11 + A12) = P(A11) + P(A12).
Proof. Since ® is surjective, we can find T' € A such that
O(T) = ®(A1n) + P(Ar2). (2.12)
Using (2.5) to (2.12) for Py, we get

®(TP, + P T*P, + P,TP, + P,T*)
= (I)(Allpl + P1A>{1P1 +PiAn P+ PlATl)
+O(A1oP + PLA] P+ PLA P+ PLAY,).

From that T = T11 + T12 + Tgl + TQQ, it follows that
O(Th1 +Tor +T7; + Ty + 17, +T51) = (A1 + Ajy + A + ATy) + €(0).

So, we have
D271 4 277 + Tor + T5,) = P(2411 + 247,).

Since @ is injective , we obtain
2T11 + 2T + To1 + T3, = 2411 + 247,

In fact,
4%(T11) = 4%(1411) and %(Tgl) =0. (213)

Similarly, by applying (2.6) to (2.12) for P;, we obtain

&(TP, — PT*P, + P,TP, — P,T*)
= (I)(Aupl — PlAT1P1 + P1A11P1 — PlAil)
+(I)(A12P1 — PlAT2P1 + P1A12P1 — PIATQ)

By knowing that T' = T11 + 112 + To1 + Tho, it follows that
O(T1y + Ty —T7y + Ty — 17y — T57) = (A1 — Ajq + A — Af) + €(0).

So, we have
O(2T11 — 217, + To1 — Tyy) = (2411 — 247,).
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Since @ is injective , we obtain
2Ty, — 215 + Ty — T3, = 2411 — 247,

Therefore,
4%(T11> = 48(1411) and %(Tgl) =0.
By considering (2.13) and (2.14), we have T11 = A1 and T = 0.
On the other hand, by applying (2.5) to (2.12) for P, we have
O(TPy + PyT*Py + Py TPy + PoT¥)
=P(A11 P+ P A P + P2 A1 Py + P AY)
+P(A12Ps + Po ATy Po + Py Ao Py + Py AT).

It follows that

O(Tog + Thg + Top + Tz + 11y + T5y) = ®(A12 + Al,) + €(0).

So, we have
D(2To0 + 275, + Tio + T1) = P(A12 + AT,).

Since @ is injective , we obtain
2Ts + 21355 + Tho + 17y = A1z + Al,.

Hence,
%(ng) =0 and %(Tu) = m(A12)

Similarly, by applying (2.6) to (2.12) for P,, we obtain

(TP, — P,T*Py + PyTPy — P, T%)
= (I)(AHPQ — PQAT1P2 + P2A11P2 — PQATl)
+(I)(A12P2 — PQATQPQ + P2A12P2 — PQATQ)

It leads to

O(Tog + Thg — Top + Tog — Toy — T1y) = ®(A12 — Al,) + €(0).

So, we have
D(2Tog — 2T, + Tio — Th) = P(A12 — AT,).

Since @ is injective , we obtain
2T22 — 2T2*2 + T12 — T1*2 = A12 — ATQ

Therefore,
S(TQQ) =0 and S(Tlg) = S(A12)

Combining (2.15) and (2.16), we have T2 = Aj2 and Tas = 0.

(2.14)

(2.15)

(2.16)
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Claim 2. For each A3 € Ao and Ay € Asy, we have
O(A12 + A1) = P(A12) + ©(Aa).
Proof. By surjectivity of ®, we can find T € A, such that
O(T) = P(A12) + P(A21). (2.17)
By using (2.5) for (2.17) for Py, we have

®(TP, + P.T* P, + PTP, + P,T)
= ®(A1 Py + PLAT,PL + PLA1R P+ PLATY,)
+® (A Py + PLAS Py + Py Ay Py + P AYY)

It follows that
O(T1y + Toy + 177 + Ty + 117 +T57) = @(Aar + A3) + €(0).

So, we have
(2111 + 217, + Tor + T31) = P(Aa1 + A3;)

Since @ is injective, we have

2T + 217, + To1 + T3y = Ao + A3
Therefore, we have

4AR(T11) =0 and R(T21) = R(A21). (2.18)
In a similar way applying (2.6) to (2.17) for P;, we have

43(T11) =0 and (T21) = S(A21). (2.19)

By (218) and (219), we obtain T11 =0 and T21 = Agl.
By using(2.5) for P, in (2.17) , we have

@(TQQPQ + TPy + P2T2*2 + P2T1*2 + PyToo Py + P2T2*2P2>
=DP(A12 P+ PoAlg + PoA1oPs + Po AT, Ps)
+P(Ay1 Po+ Po ALy + PoAoi Po + PoAS ).

So, we have
D(2Too + Tha + 215, + T15) = P(A12 + AT).

Since @ is injective, we have
2T + Tho + 2155 + 115 = A1 + Al
it follows that

Tos + 1oy + PyTPy + PyT*Py + PoTPo + PoT* Py = Ajo + Ajs.
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So,
Too+To5 + (PL+ Po)T Py + PT* (P + Pa) = Ao + A,

Hence, we obtain
Tog + Ty + ITPy + PoT*1 = A1o + Af,.

Multiplying the both sides of the above equality by P; we obtain Tis = Ajs. Since
Ti1o = Ays , from the equality

2T59 + Tho + 275, + 115 = Aja + Al

we have Ths 4+ To, = 0. So, 2R (Ts2) = 0.
If we use (2.6) for P in (2.17), we have $(Ta2) = 0. So, we obtain Thy = 0,712 =
Alg. It means that T = A12 + Agl. O
Lemma 2.3. ®(4R(A)) = 4R(P(A)).

Proof. By applying (2.11) for I and knowing that ® is unital, we have

DA+ A"+ A+ A") = D(Ae; e ])
= ©(A) e (1) e (1)
= (2(A)2(I) + 2(1)2(A)")) o1 2(I)
= PA)+D(A)" +P(A) + D(A)".

So, (4R(A)) = 4R(P(A)). Similarly, we can prove ®(4iI(A)) = 4i(P(A)). O

Claim 3. For each Ay € A1, Ay € Aoy, we have
D(A11 + Ag) = P(A11) + P(A2).

Proof. We prove ®(2A11 + 2A51) = P(2A11) + P(2421). Since P is surjective,
there exists T' € A such that

P(2T) = ®(2411) + ®(2421). (2.20)
By using (2.5) for P = P; in (2.20), Claim 1 and Lemma 2.3, we have

(2T P, + 2P, T* + 2P, TP, + 2P, T*P,)
= ®(241, P, + 2P A%, + 2P A Py + 2P AT Py)
+®(245 Py + 2Py A}y + 2Py Ay Py + 2Py A%, Py).

So, we have

2Ty, Py + 2T, Py + 2P\ T}, + 2P\ T3, + 2P, Ty Py + 2P TS, Py)
= ®(241, P, + 2P A%, + 2P Ay Py + 2P A% Py)
+ (249, Py + 2Py A%y + 2Py Ay Py + 2P A% Py).
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On the other hand, by Lemma 2.3, we can write

D(ATyy + 2Ty + AT}, +2T5) = (4411 + 4A4%)) + B(242; + 2435))
= O(4R2411) + O(4RA3)
= AR(P(2A11) + P(43))
= 4AR((2411 + 43)))
= O(4R24;; + 4RAL)
= O(8RA + 4RAy)

therefore
@(8§RTH + 4§RT21) = @(83%/111 + 4§RA21).

Since @ is injective, we have
8RTYy + ARTo = 8RA + 4R A2 .
In a similar way using (2.6) for P; = P; in (2.20) we have
83T +45T5; = 8FA1; +4SAs;.

So, we have
8Th1 + 4T = 8A;11 + 4A,;.

Multiplying the left side of the above equality by P;, we have 111 = Aj;, To1 = As.
By using (2.5) in (2.20) for P = P» we have

(2T Py + 2PT" + 2P,T* Py + 2P T Py)

= B(2A11 P + 2Py A%, + 2P, A1 Py + 2P A} )
+P(241 Py + 2P2 A%, + 2P2 Ao Po + 2P A5 Ps)

it follows that
D(2T0o Py + 2119 Py + 2PoT55 + 2P 115 + 2P Ty Py + 2Py Tho Py) = 0.
So,
O(4Too + 2T + 4T3, + 217,) = 0.

Since @ is injective 8RTHo + 4RT12 = 0.
In a similar way by using (2.6) for P = P5 in (2.20), we have 83T 4+ 43712 = 0.
So, we have

8RToo + 8iToy + ARTo + 41T = 0.

Therefore, 8T + 4715 = 0. Multiplying the above equality by P; on the left, we
have T1o = 0 and Ty, = 0. Hence, we have T'= A1y + Ajs.
In a same way, we prove that ®(Ajs + Ags) = P(A12) + P(Az2). O

Claim 4. ®(A;; + Bij) = ®(A;;) + ®(B;;).
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Proof. Above claim is equivalent to ®(24;; +2B;;) = ®(24;;) + ®(2B;;) Since
& is surjective we can find T such that
O(27T') = ®(24;5) + ©(2By;) (2.21)
We should show that T' = A;; + Bj;.
Applying (2.5) to P;, we have
O(2TP, + 2PT* P, + 2P, TP, + 2PT")
= O(24;; P, + 2P, A}, P, + 2P;A;; Py + 2P, A7)
+®(2B;; P + 2P, B}; P; + 2P, B P; + 2P, B},
it follows that
(I)(QT” + 2Tji + QT; + 2T + QT; + QTJ*l) = (I)(O)
So, we have
D(8R(Ty) + 4R(Ty:) = 0,

by injectivity, we have R(T};) = 0 and R(T};) = 0. Similarly we can show that
S(Tii) = 0 and I(Tj;) = 0.
Now By (2.5) for P we have

® (2T Pj + 2P;T*P; + 2P;TP; + 2P;T*)
= ®(24;; P + 2P; A}, P + 2P Aij Py + 2P A})
+®(2By;Pj + 2P; Bj; Pj + 2P; Bi; P; + 2P; B};.

It follows that
O(2Ty5 + 2Ty + 2T; + 2155 + 2T5; 4 2T75) = ®(2A45 + 2A7;) + ®(2By; + 2B;;),
so, we have
D(BR(Tj;) + 4R(T35)) = ©(4R(Aij)) + P(4R(B;))-
By Lemma 2.3, we have

PBR(Tj;) +4R(Ty5)) = PAR(Ay)) + C(AR(B})))
= 4?R(<1>(Az;))+4§ﬁ(( i)

= 4R ((I> i+ B* ) By Claim 2
= @(4?)?(14” + B} )) By Lemma 2.3
= ©UR(Ai;) +4R(B};))

= O(4R(A;;) +4R(B;j))-
By injectivity R(T};) = 0 and R(T;;) = R(A;;) + R(B;;). Similarly, we can show
that S(T35) = S(Aij) + S(Bij)- It leads us to ®(A;; + Byj) = ©(A4;5) + (B;j). O
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Claim 5. For each Ay € Aq1, A1 € A1o, Az € Aoy, Ass € Ao , we have
O(A11 + Arg + Ao1 + Az) = ®(A11) + P(A12) + P(A21) + P(A22).
Proof. We prove the following identity
D(2A11 + 2A12 + 2491 + 2493) = P(24711) + P(2412) + P(2491) + P(2492),
since @ is surjective, there exists
T=TH+Tio+To +TncA (2.22)

such that

By using (2.5)for P = P; in (2.22) and using Claim 3, we have

O(2TP, + 2P, T* + 2P\ TP, + 2P, T*Py)

=®(2A11 P + 2P A}, + 2P A Py + 2P A Py)
+P(2452P) + 2P A%y + 2P Asa Py + 2P A5, Py)
+P(2412P + 2P Ay + 2P Ao Py + 2P AT, Py)
+O(2421 P1 + 2P A5 + 2P Ao Py + 2P A5 Py)

then

O(4T11 + 2T + 4T, + 2T5,) = DP(4A17 +4A7,) + P(242; + 2435))
D(4R2A11) + P(4RA2)
AR(P(2A11) + P(A21))

AR(P(2A11 + A21))

= O(4R2A11 + RA21).

Since @ is injective, we have
SRT11 +4RTo; = 8RA 1 +4RAs;.
In a similar way, by using (2.6)for P = P; in (2.22), we have
83T +48T5; = 8FA 1 +4S A5,
So, we have
SRTY1 + 81Ty, + ARToq + 4iSTH = SRA1 + 8iTA1; +4RAy + 41T Ag

then we have
8T11 + 4T21 = 81411 + 41421.
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Multiplying the above equality by P> on the left, we have 151 = As;. So, Th1 = Aj;.
By using (2.5) for P = P, in (2.22), we have

2T Py + 2P,T" + 2P,T Py + 2P,T* Ps)

= P(2411 P + 2P A]) + 2P2 A1 Py + 2P AT Py
+O(2490 Py + 2Py Alyy + 2P3 Ago Py + 2P Ay Py)
+D(2A12P + 2Py ATo + 2Py A19Po + 2P A, Po)
+P(2412P; + 2Py A% +2P2 A1 Po + 2P AL o).

Therefore, from Claim 3 and Lemma 2.3, we have

D(ATos + 2T1o + AT, + 2T7,) = B(4Ass + 4A4%,) + B(2A415 + 24%,)
= D(4R2A55) + P(ARA1)
= ARD(2A2) + ARD(Ay,)
= AR(D(242) + B(A12))
= AR(D(24s5 + A1)
= BAR(242 + A12)),

so, we have

@(8§RTQQ + 4§RT12) = @(83%/122 + 4§RA12).

Since @ is injective, we obtain
SRTHo + 4RT19 = 8RAss + 4R A 5.
In a same way by using (2.6)for P = P, in (2.22), Lemma 2.3 and Claim 3, we have
83T oo + 43T 19 = 8FAgs + 4T3 A15.
So,
8RTo + iSToo + ART o + 4iST1o = 8RAgg + 81T Aoy + 4R A9 + 4iTAqa.

Hence, we have
8T22 + 4T12 = 81422 + 41412.

Multiplying the above equality by P, on the left, we have Toy = Agg, T1o = Ajs.
So, T'= Aqy + Agg + Ajp + Ay g

Claim 6. ® preserves the orthogonal projections Py and P> on the both sides.

Proof. By (2.11) for P; and A = 1 we have

(AP, + PA*P; + PAP, + PAY) = O(A)D(P)? + ®(P,)P(A)*d(P)
+O(P)P(A)B(P;) + ®(P)P(P;) ®(A)",
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and for A = —1, we have

O(AP, — PA™P,+ PAP, — PA) = O(A)D(P,)? - B(P)B(A) B(P)
+O(P)D(A)B(P) — B(P)B(P,) B(A)".

By adding the two above relations, using Claim 5 and Lemma 2.3 we have

20(A)D(P)? + 20(P,)®(A)D(P,) = ®(AP, + P,A*P; + P,AP; + P,A*)
+®(AP; — P AP, + PAP, — PA")
= O(Ai + Aji + Af + A + Aii + A7)
TO(Ai + Aji — Aji — Afy + Au — A5)
= O(ARA;) + P(4iSAy) + ®(Aj;)
+(I)(A;i) + @A) - ‘I)(A;i)
= ARD(A;) + 4iSD(Ay) +20(A);)
4B (Ay) +20(Aj)

= 20(Ai) +2(P(Ai) + ®(Aj))
= 20(Ay) +20(A; + Ayy)
= 20(A;) +29(AF).
So, we obtain
B(A)D(P,)* + D(P)D(A)B(P;) = D(AP) + D(Ay), (2.23)

It follows that
B(A)D(P;)? + B(P,)B(A)D(P;) = B(AP;) + B(P,AP).
By considering A = I, we have
O(P)? + B(P)D(P,) = B(P) + O(P).

Hence,
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So, we have proved ®(F;) is idempotent. Now, we prove that ®(F;) self-adjoint.
P;
(I)(PZ) = (I)<Z .1].1])
P
= ¢ (ZZ) o (I)(I) o (I)(I)

- (@ <%) (1) + (1) (%)) o1 O(I)

_ % (%) O(1)? + O(1)d (%) (1) + ®(1)D(I)*® (5)*

4
+O(1)® (%) o(I)"
P; P\"
= 20 (Z) +20 (Z)
So,
o(P) =20 (5) + 2 (5) : (2.24)
4 4
it follows that ®(P;) = ®(P;)*. O

Note that ®(P;)®(P;) = 0 for i # j.
Claim 7. For every A;; € Aij, Bij € Bij and for i # j we have ®(A;;) = By;.
Proof. For A;j € A;;, we can write
D(A;j o\ PjeyPj)=D(A;;) o\ D(P)) o) P(F)).

For A =1 the equation above converts to

DAy + A = O(A)P(F)) + B(P))P(Aiy) B(P))
+@(P))P(Ai)2(F;) + @(P)) P ()" ®(Aiy)".  (2.25)
For A = —1, we can write
D(Aij — Af;) = B(Aiy)B(P))? — B(P))P(Ai;) B(P;)

+@(P;)P(Ai)@(P;) — (P;)2(F))
From (2.25), (2.26) and Lemma 2.3 we have
D(Aij) = P(Aiy)P(F;)* + B(P))D(Ai;)D(P;). (2.27)

The above equation gives us
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and
B(P)B(A;)B(P,) = 0.

So, we have

O(Aij) C Byj.
Since @~ ! has the same property as ®, we have

Bi; € D(Ayij).
Similarly, one can prove that ®(A;;) = Bj;.
Claim 8. For every A;; € Ay we have ®(A;;) = By,

Proof. We know
D(A;; 0y Py 0y P;) = D(A;;) o\ P(P;) o)\ O(F;).

For A =1, we have

D(24i +245) = P(Au)P(F;) + (P;)P(Ai) @ (F)
+@(F;)P(Ai)2(F) + ©(F;)P(Ai)"

For A = —1, we have

(245 — 245) = O(Ay)P(P) — 2(F)P(Ai)"0(F)
+@(F;)P(Au) () — O(F;)P(Au)"

By adding (2.28) and (2.29), we obtain

AR(D(Ai)) + 4iS(D(Aii)) = 20(Aii) R(F;) + 20 (F;) P(Aii) 2 (F).

It follows that
40(A;i) = 20(Ai)2(5;) + 20(F;) (A 2(F).
By the above equation we have
O(P)D(Ais)0(P;) =0,
O(P;)P(Ai)2(F) =0

and

Therefore, we have
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(2.28)

(2.29)

(2.30)

Hence, ®(A;;) C Bj;. Since @~ has the same properties as ® then we have the

result.

d
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Claim 9. For every A;;, By € Aji, we have
O(Aj; + Bii) = P(Ay) + ©(Bis)-
Proof. For ®(T);; = ®(P;)®(T)®(P;) € B;j, we can write
O(T);;®(AP; + BP;) = ®(P;)®(T)®(P;)®(AP; + BF)).
We multiply the right side of the above equation by ®(P;) to obtain

O(T)ij®(AP;, + BP;)®(P;) = @

We showed that

O(T);;(®(AP, + BP;) — B(AP,) — ®(BP;))B(P;) = 0
for all ®(T");; € B;;, since B is prime, we have

B(AP, + BP)B(P,) = ®(AP)B(P,) + B(BP)B(P,).

Multiplying the above equation from the left side by ®(F;) and knowing that
®(A;;) = Bj; we obtain

O(Aj; + Bii) = ®(Ay) + ©(Bis)-

So, by Claims 4, 5, 9, ® is additive.
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