

Bol. Soc. Paran. Mat. (3s.) v. 38 5 (2020): 115–130. ©SPM –ISSN-2175-1188 ON LINE ISSN-00378712 IN PRESS SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i5.40392

Spectral Inclusions Between α -times Integrated Semigroups and Their Generators

A. Tajmouati, A. El Bakkali and M.B. Mohamed Ahmed

ABSTRACT: We interest to α -times integrated semigroups and we characterize the different spectra of α -times integrated semigroups using the spectra of their generators.

Key Words: α -times integrated semigroup, Descent, Ascent, Fredholm operator, Browder operator, Drazin invertible.

Contents

1 Introduction 115

2 Main results 117

1. Introduction

Let X be a complex Banach space and $\mathcal{B}(X)$ the algebra of all bounded linear operators on X. We denote by D(T), R(T), $R^{\infty}(T):=\cap_{n\geq 1}R(T^n)$, N(T), $\rho(T)$, $\sigma(T)$, and $\sigma_p(T)$ respectively the domain, the range, the hyper range, the kernel, the resolvent and the spectrum of T, where $\sigma(T)=\{\lambda\in\mathbb{C}\setminus\lambda-T\text{ is not bijective}\}$ and $\sigma_p(T)=\{\lambda\in\mathbb{C}\setminus\lambda-T\text{ is not one to one}\}$. The function resolvent of $T\in\mathcal{B}(X)$ is defined for all $\lambda\in\rho(T)$ by $R(\lambda,T)=(\lambda-T)^{-1}$. The ascent and descent of an operator T are defined by $a(T)=\inf\{k\in\mathbb{N}\setminus N(T^k)=N(T^{k+1})\}$ and $d(T)=\inf\{k\in\mathbb{N}\setminus R(T^k)=R(T^{k+1})\}$, respectively with the convention $\inf f(\varnothing)=+\infty$. An $T\in\mathcal{B}(X)$ is called Drazin invertible if a(T) and d(T) are finite; in this case a(T)=d(T)=p and by [11, Theorem 7.9], we have $X=N(T^p)\oplus R(T^p)$. For a closed linear operator A, we say that A is Drazin invertible if there exists an operator $A^D\in\mathcal{B}(X)$ such that $R(A^D)\subset D(A)$, $R(I-AB)\subset D(A)$, $A^DAA^D=A^D$, $A^DA=AA^D$ and $A(I-AA^D)$ is nilpotent. Moreover, from [6], A is Drazin invertible if and only if $A=A_1\oplus A_2$ such that A_1 is closed and invertible and A_2 is bounded and nilpotent. The ascent, descent and Drazin spectra are defined by

$$\begin{split} \sigma_{asc}(T) &= \{\lambda \in \mathbb{C} \,:\, a(\lambda - T) = +\infty\},\\ \sigma_{dsc}(T) &= \{\lambda \in \mathbb{C} \,:\, d(\lambda - T) = +\infty\},\\ \sigma_D(T) &= \{\lambda \in \mathbb{C} \,:\, \lambda - T \text{ is not Drazin invertible}\}. \end{split}$$

An operator $T \in \mathcal{B}(X)$ is called Fredholm operator, in symbol $T \in \Phi(X)$, if $\delta(T) = dim N(T)$ and $\beta(T) = codim T(X)$ are finite. We say that an operator

2010 Mathematics Subject Classification: 47D62, 47A10. Submitted November 08, 2017. Published January 17, 2018

 $T \in \mathcal{B}(X)$ is Browder, in symbol $T \in \mathcal{B}r(X)$, if T is Fredholm operator and has finite both ascent and descent. The essential and Browder spectra are defined by

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : \lambda - T \notin \Phi(X) \}.$$

$$\sigma_B(T) = \{ \lambda \in \mathbb{C} : \lambda - T \notin \mathfrak{B}r(X) \}.$$

Let $\beta \geq -1$ and f be a continuous function. The convolution $j_{\beta} * f$ is defined for all $t \geq 0$ by

$$j_{\beta} * f(t) = \begin{cases} \int_0^t \frac{(t-s)^{\beta}}{\Gamma(\beta+1)} f(s) ds & \text{if } \beta > -1, \\ \int_0^t f(t-s) d\delta_0(s) & \text{if } \beta = -1, \end{cases}$$

where Γ is the Euler integral giving by $\Gamma(\beta+1)=\int_0^{+\infty}x^{\beta}e^{-x}dx,\ j_{-1}=\delta_0$ the Dirac measure and for all $\beta>-1$

$$j_{\beta}$$
 : $]0, +\infty[$ $\rightarrow \mathbb{R}$ $t \mapsto \frac{t^{\beta}}{\Gamma(\beta+1)}$.

Let $\alpha \geq 0$. A strongly continuous $S(t)_{t\geq 0} \subseteq \mathcal{B}(X)$ is called an α -times integrated semigroup, if S(0) = 0 and for all $t, s \geq 0$

$$S_n(t)S_n(s) = \int_t^{t+s} \frac{(s+t-r)^{n-1}}{\Gamma(n)} S_n(r) dr - \int_0^s \frac{(s+t-r)^{n-1}}{\Gamma(n)} S_n(r) dr, \tag{*}$$

where $n-1 < \alpha \le n$ and $S_n(t)(x) = (j_{n-\alpha-1} * S)(x)$ for all $x \in X$. By (*) we deduce for all $t, s \ge 0$

$$S(t)S(s) = S(s)S(t).$$

Conversely, let $\alpha \geq 0$ and let A be a linear operator on a Banach space X. We recall that A is the generator of an α -times integrated semigroup [4] if for some $\omega \in \mathbb{R}$ we have $]\omega, +\infty[\subseteq \rho(A)$ and there exists a strongly continuous mapping $S: [0, +\infty[\to \mathcal{B}(X) \text{ satisfying}]$

$$||S(t)|| \le Me^{\omega t}$$
 for all $t \ge 0$ and some $M > 0$
 $R(\lambda, A) = \lambda^{\alpha} \int_{0}^{+\infty} e^{-\lambda t} S(t) ds$ for all $\lambda > \max\{\omega, 0\}$,

in this case, $(S(t))_{t\geq 0}$ is called the α -times integrated semigroup and the domain of its generator A is defined by

$$D(A) = \{x \in X : \int_0^t S(s)Axds = S(t)x - \frac{t^{\alpha}x}{\Gamma(\alpha+1)}\}$$

and $(S(t))_{t\geq 0}$, from the uniqueness Theorem of Laplace transforms, is uniquely determined. In particulary, a C_0 -semigroup and an integrated semigroup are also a 0-times integrated semigroup and an 1-times integrated semigroup, respectively.

An important example of generators of an α -times integrated semigroups is the adjoint A^* on X^* for all $\alpha>0$ where A is the generator of a C_0 -semigroup on a Banach space X. In [10], the authors have studied the different spectra of the 1-times integrated semigroups. In this paper, we study α -times integrated semigroups for all $\alpha>0$. We investigate the relationships between the different spectra of α -times integrated semigroups and their generators, precisely the ordinary, point, Fredholm, ascent, descent, Browder and Drazin spectra.

2. Main results

Lemma 2.1. [4, Proposition 2.4] Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}\subseteq \mathcal{B}(X)$ where $\alpha\geq 0$. Then for all $x\in D(A)$ and all $t\geq 0$ we have

1.
$$S(t)x \in D(A)$$
 and $AS(t)x = S(t)Ax$.

2.
$$S(t)x = \frac{t^{\alpha}}{\Gamma(\alpha+1)}x + \int_0^t S(s)Axds$$
.

Moreover, for all $x \in X$ we get $\int_0^t S(s)xds \in D(A)$ and

$$A \int_0^t S(s)xds = S(t)x - \frac{t^{\alpha}}{\Gamma(\alpha+1)}x.$$

Now, we give the following lemma.

Lemma 2.2. Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$ where $\alpha > 0$. Then for all $\lambda \in \mathbb{C}$ and all $t \geq 0$, we have

1. For all $x \in D(A)$

$$D_{\lambda}(t)(\lambda - A)x = \left[\int_{0}^{t} e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right] x.$$

where

$$D_{\lambda}(t)x = \int_{0}^{t} e^{\lambda(t-s)} S(s)xds.$$

2. For all $x \in X$, $D_{\lambda}(t)x \in D(A)$ and

$$(\lambda - A)D_{\lambda}(t)x = \left[\int_{0}^{t} e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]x.$$

Proof. 1. By Lemma 2.1, we know that for all $x \in D(A)$

$$S(s)x = \frac{s^{\alpha}}{\Gamma(\alpha+1)}x + \int_{0}^{s} S(r)Axdr.$$

Then, since $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, we obtain

$$S'(s)x = \frac{s^{\alpha - 1}}{\Gamma(\alpha)}x + S(s)Ax.$$

Therefore, we conclude that

$$D_{\lambda}(t)Ax = \int_{0}^{t} e^{\lambda(t-s)}S(s)Axds$$

$$= \int_{0}^{t} e^{\lambda(t-s)}[S'(s)x - \frac{s^{\alpha-1}}{\Gamma(\alpha)}x]ds$$

$$= \int_{0}^{t} e^{\lambda(t-s)}S'(s)xds - \int_{0}^{t} e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}xds$$

$$= S(t)x + \lambda D_{\lambda}(t)x - \int_{0}^{t} e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}xds$$

Finally, we obtain for all $x \in D(A)$

$$D_{\lambda}(t)(\lambda - A)x = \left[\int_{0}^{t} e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]x.$$

2. Let $\mu \in \rho(A)$. From proof of Lemma 2.1, we have for all $x \in X$

$$R(\mu, A)S(s)x = S(s)R(\mu, A)x.$$

Hence, for all $x \in X$ we conclude

$$R(\mu, A)D_{\lambda}(t)x = R(\mu, A) \int_{0}^{t} e^{\lambda(t-s)} S(s)xds$$
$$= \int_{0}^{t} e^{\lambda(t-s)} R(\mu, A)S(s)xds$$
$$= \int_{0}^{t} e^{\lambda(t-s)} S(s)R(\mu, A)xds$$
$$= D_{\lambda}(t)R(\mu, A)x.$$

Therefore, we obtain for all $x \in X$

$$\begin{split} D_{\lambda}(t)x &= \int_0^t e^{\lambda(t-s)}S(s)xds \\ &= \int_0^t e^{\lambda(t-s)}S(s)(\mu-A)R(\mu,A)xds \\ &= \mu \int_0^t e^{\lambda(t-s)}S(s)R(\mu,A)xds - \int_0^t e^{\lambda(t-s)}S(s)AR(\mu,A)xds \\ &= \mu \int_0^t e^{\lambda(t-s)}R(\mu,A)S(s)xds - \int_0^t e^{\lambda(t-s)}S(s)AR(\mu,A)xds \\ &= \mu R(\mu,A) \int_0^t e^{\lambda(t-s)}S(s)xds - \int_0^t e^{\lambda(t-s)}S(s)AR(\mu,A)xds \\ &= \mu R(\mu,A)D_{\lambda}(t)x - D_{\lambda}(t)AR(\mu,A)x \end{split}$$

$$\begin{split} &=\mu R(\mu,A)D_{\lambda}(t)x-\left[S(t)R(\mu,A)x+\lambda D_{\lambda}(t)R(\mu,A)x\right.\\ &-\int_{0}^{t}e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}R(\mu,A)xds\big]\\ &=\mu R(\mu,A)D_{\lambda}(t)x-\left[R(\mu,A)S(t)x+\lambda R(\mu,A)D_{\lambda}(t)x\right.\\ &-R(\mu,A)\int_{0}^{t}e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}xds\big]\\ &=R(\mu,A)\left[(\mu-\lambda)D_{\lambda}(t)x-S(t)x+\int_{0}^{t}e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}xds\right] \end{split}$$

Therefore, for all $x \in X$ we have $D_{\lambda}(t)x \in D(A)$ and

$$(\mu - A)D_{\lambda}(t)x = (\mu - \lambda)D_{\lambda}(t)x + \int_{0}^{t} e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} x ds - S(t)x.$$

Finally, for all $x \in X$ and all $\lambda \in \mathbb{C}$ we obtain

$$(\lambda - A)D_{\lambda}(t)x = \left[\int_{0}^{t} e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]x.$$

Thanks to Lemma 2.2, we obtain automatically the next corollaries.

Corollary 2.3. [10, Lemma 2.1] Let A be the generator of an integrated semigroup $(S(t))_{t\geq 0}$. Then for all $\lambda\in\mathbb{C}$, $t\geq 0$ and $x\in D(A)$

$$D_{\lambda}(t)(\lambda - A)x = \left[\int_{0}^{t} e^{\lambda(t-s)} ds - S(t) \right] x.$$

Moreover, for all $x \in X$ we have

$$(\lambda - A)D_{\lambda}(t)x = \left[\int_{0}^{t} e^{\lambda(t-s)}ds - S(t)\right]x.$$

Corollary 2.4. Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$ and $\alpha > 0$. Then for all $\lambda \in \mathbb{C}$, $n \in \mathbb{N}$ and $t \geq 0$ we have

1. For all $x \in X$

$$(\lambda - A)^n [D_{\lambda}(t)]^n x = \left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha - 1} x}{\Gamma(\alpha)} ds - S(t) \right]^n x.$$

2. For all $x \in D(A^n)$

$$[D_{\lambda}(t)]^{n}(\lambda - A)^{n}x = \left[\int_{0}^{t} e^{\lambda(t-s)} \frac{s^{\alpha-1}x}{\Gamma(\alpha)} ds - S(t)\right]^{n}x.$$

3.
$$N[\lambda - A] \subseteq N[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)].$$

4.
$$R[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)] \subseteq R[\lambda - A].$$

5.
$$N[\lambda - A]^n \subseteq N[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n$$
.

6.
$$R[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n \subseteq R[\lambda - A]^n$$
.

7.
$$R^{\infty} \left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right] \subseteq R^{\infty} [\lambda - A].$$

In the upcoming theorem, we characterize the different spectra of the α -times integrated semigroups.

Theorem 2.5. Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$ and $\alpha > 0$. Then for all $t \geq 0$

1.
$$\int_0^t e^{(t-s)\sigma(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma(S(t)).$$

2.
$$\int_0^t e^{(t-s)\sigma_p(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma_p(S(t)).$$

3.
$$\int_0^t e^{(t-s)\sigma_e(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma_e(S(t)).$$

Proof.

1. Let $\lambda \in \mathbb{C}$ such that for all $t \geq 0$

$$\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \notin \sigma(S(t)),$$

then the operator $\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)$ is invertible with $F_{\lambda}(t)$ its inverse. Using Lemma 2.2, we obtain for every $x \in D(A)$

$$x = F_{\lambda}(t) \left[\int_{0}^{t} e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right] x$$
$$= F_{\lambda}(t) \left[D_{\lambda}(t)(\lambda - A) \right] x$$
$$= \left[F_{\lambda}(t) D_{\lambda}(t) \right] (\lambda - A) x.$$

On the other hand, also from Lemma 2.2, we obtain for every $x \in X$

$$x = \left[\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right] F_{\lambda}(t) x;$$

$$= \left[(\lambda - A) D_{\lambda}(t) \right] F_{\lambda}(t) x;$$

$$= (\lambda - A) \left[D_{\lambda}(t) F_{\lambda}(t) \right] x.$$

Since we know that $S(t)F_{\lambda}(t) = F_{\lambda}(t)S(t)$, then

$$F_{\lambda}(t)D_{\lambda}(t) = D_{\lambda}(t)F_{\lambda}(t).$$

Finally, we conclude that $\lambda - A$ is invertible and hence $\lambda \notin \sigma(A)$.

2. Let $\lambda \in \sigma_p(A)$, then there exists $x \neq 0$ such that

$$x \in N(\lambda - A)$$
.

From Corollary 2.4, we get

$$x \in N[\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)].$$

Therefore we conclude that

$$\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \in \sigma_p(S(t)).$$

3. Let $\lambda \in \mathbb{C}$ such that

$$\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \notin \sigma_e(S(t)).$$

Then we have

$$\delta \left[\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right] < +\infty \text{ and } \beta \left[\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right] < +\infty.$$

Therefore, by Corollary 2.4, we conclude that

$$\delta[\lambda - A] < +\infty \text{ and } \beta[\lambda - A] < +\infty,$$

and hence

$$\lambda \notin \sigma_e(A)$$
.

The important following lemma concerning the α -times integrated semigroups.

Lemma 2.6. Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$ where $\alpha > 0$. Then for all $\lambda \in \mathbb{C}$, all $t \geq 0$ and all $x \in X$

1. We have the identity

$$(\lambda - A)L_{\lambda}(t) + \varphi_{\lambda}(t)D_{\lambda}(t) = \phi_{\lambda}(t)I,$$

where $L_{\lambda}(t) = \int_{0}^{t} e^{-\lambda s} D_{\lambda}(s) ds$, $\varphi_{\lambda}(t) = e^{\lambda t}$ and $\varphi_{\lambda}(t) = \int_{0}^{t} \int_{0}^{\tau} e^{-\lambda r} \frac{r^{\alpha-1}}{\Gamma(\alpha)} dr d\tau$. Moreover, the operator $L_{\lambda}(t)$ is commute with each one of $D_{\lambda}(t)$ and $(\lambda - A)$.

2. For all $n \in \mathbb{N}^*$, there exists an $L_{\lambda,n}(t) \in \mathfrak{B}(X)$ such that

$$(\lambda - A)L_{\lambda,n}(t) + [\varphi_{\lambda}(t)]^n [D_{\lambda}(t)]^n = [\phi_{\lambda}(t)]^n I.$$

Moreover, the operator $L_{\lambda,n}(t)$ is commute with each one of $D_{\lambda}(t)$ and $\lambda - A$.

3. For all $n \in \mathbb{N}^*$, there exists an operator $D_{\lambda,n}(t) \in \mathcal{B}(X)$ such that

$$(\lambda - A)^n [L_{\lambda}(t)]^n + D_{\lambda,n}(t) D_{\lambda}(t) = [\phi_{\lambda}(t)]^n I.$$

Moreover, the operator $D_{\lambda,n}(t)$ is commute with each one of $D_{\lambda}(t)$, $L_{\lambda}(t)$ and $\lambda - A$

4. For all $n \in \mathbb{N}^*$, there exists an operator $K_{\lambda,n}(t) \in \mathfrak{B}(X)$ such that

$$(\lambda - A)^n K_{\lambda,n}(t) + [D_{\lambda,n}(t)]^n [D_{\lambda}(t)]^n = [\phi_{\lambda}(t)]^{n^2} I,$$

Moreover, the operator $K_{\lambda,n}(t)$ is commute with each one of $D_{\lambda}(t)$, $D_{\lambda,n}(t)$ and $\lambda - A$.

Proof. 1. Let $\mu \in \rho(A)$. By Lemma 2.2, for all $x \in X$ we have $D_{\lambda}(s)x \in D(A)$ and hence

$$\begin{split} L_{\lambda}(t)x &= \int_{0}^{t} e^{-\lambda s} D_{\lambda}(s) x ds \\ &= \int_{0}^{t} e^{-\lambda s} R(\mu, A) (\mu - A) D_{\lambda}(s) x ds \\ &= R(\mu, A) [\mu \int_{0}^{t} e^{-\lambda s} D_{\lambda}(s) x ds - \int_{0}^{t} e^{-\lambda s} A D_{\lambda}(s) x ds] \\ &= R(\mu, A) [\mu L_{\lambda}(t) x - \int_{0}^{t} e^{-\lambda s} A D_{\lambda}(s) x ds] \end{split}$$

Therefore for all $x \in X$, we have $L_{\lambda}(t)x \in D(A)$ and

$$(\mu - A)L_{\lambda}(t)x = \mu L_{\lambda}(t)x - \int_{0}^{t} e^{-\lambda s} AD_{\lambda}(s)xds.$$

Thus

$$AL_{\lambda}(t)x = \int_{0}^{t} e^{-\lambda s} AD_{\lambda}(s)xds.$$

Hence, we conclude that

$$\begin{split} (\lambda - A)L_{\lambda}(t)x &= \lambda L_{\lambda}(t)x - \int_{0}^{t} e^{-\lambda s}AD_{\lambda}(s)xds \\ &= \lambda L_{\lambda}(t)x - \int_{0}^{t} e^{-\lambda s} \left[\lambda D_{\lambda}(s)x - \int_{0}^{s} e^{\lambda(s-r)} \frac{r^{\alpha-1}}{\Gamma(\alpha)}xdr + S(s)x\right]ds \\ &= \lambda L_{\lambda}(t)x - \lambda \int_{0}^{t} e^{-\lambda s}D_{\lambda}(s)xds \\ &+ \int_{0}^{t} e^{-\lambda s} \int_{0}^{s} e^{\lambda(s-r)} \frac{r^{\alpha-1}}{\Gamma(\alpha)}xdrds - \int_{0}^{t} e^{-\lambda s}S(s)xds \\ &= \lambda L_{\lambda}(t)x - \lambda L_{\lambda}(t)x + \int_{0}^{t} \int_{0}^{s} e^{-\lambda r} \frac{r^{\alpha-1}}{\Gamma(\alpha)}xdrds \\ &- e^{-\lambda t} \int_{0}^{t} e^{\lambda(t-s)}S(s)xds \\ &= \int_{0}^{t} \int_{0}^{s} e^{-\lambda r} \frac{r^{\alpha-1}}{\Gamma(\alpha)}xdrds - e^{-\lambda t}D_{\lambda}(t)x \\ &= \left[\phi_{\lambda}(t)I - \varphi_{\lambda}(t)D_{\lambda}(t)\right]x, \end{split}$$

where $\phi_{\lambda}(t) = \int_0^t \int_0^s e^{-\lambda r} \frac{r^{\alpha-1}}{\Gamma(\alpha)} dr ds$ and $\varphi_{\lambda}(t) = e^{-\lambda t}$. Therefore, we obtain

$$(\lambda - A)L_{\lambda}(t) + \varphi_{\lambda}(t)D_{\lambda}(t) = \phi_{\lambda}(t)I.$$

Since S(s)S(t)=S(t)S(s) for all $s,t\geq 0$, then $D_{\lambda}(s)S(t)=S(t)D_{\lambda}(s)$. Hence

$$D_{\lambda}(t)D_{\lambda}(s) = \int_{0}^{t} e^{\lambda(t-r)}S(r)D_{\lambda}(s)dr$$

$$= \int_{0}^{t} e^{\lambda(t-r)}S(r)D_{\lambda}(s)dr$$

$$= \int_{0}^{t} e^{\lambda(t-r)}D_{\lambda}(s)S(r)dr$$

$$= D_{\lambda}(s)\int_{0}^{t} e^{\lambda(t-r)}S(r)dr$$

$$= D_{\lambda}(s)D_{\lambda}(t).$$

Thus, we deduce that

$$\begin{split} D_{\lambda}(t)L_{\lambda}(t) &= D_{\lambda}(t)\int_{0}^{t}e^{-\lambda s}D_{\lambda}(s)ds \\ &= \int_{0}^{t}e^{-\lambda s}D_{\lambda}(t)D_{\lambda}(s)ds \\ &= \int_{0}^{t}e^{-\lambda s}D_{\lambda}(s)D_{\lambda}(t)ds \\ &= \int_{0}^{t}e^{-\lambda s}D_{\lambda}(s)dsD_{\lambda}(t) \\ &= L_{\lambda}(t)D_{\lambda}(t). \end{split}$$

Since for all $x \in X$ $AL_{\lambda}(t)x = \int_0^t e^{-\lambda s} AD_{\lambda}(s)xds$ and for all $x \in D(A)$ $AD_{\lambda}(s)x = D_{\lambda}(s)Ax$, then we obtain for all $x \in D(A)$

$$(\lambda - A)L_{\lambda}(t)x = \lambda L_{\lambda}(t)x - AL_{\lambda}(t)x$$

$$= \lambda L_{\lambda}(t)x - \int_{0}^{t} e^{-\lambda s} AD_{\lambda}(s)xds$$

$$= \lambda L_{\lambda}(t)x - \int_{0}^{t} e^{-\lambda s} AD_{\lambda}(s)xds$$

$$= \lambda L_{\lambda}(t)x - \int_{0}^{t} e^{-\lambda s} D_{\lambda}(s)Axds$$

$$= \lambda L_{\lambda}(t)x - L_{\lambda}(t)Ax$$

$$= L_{\lambda}(t)(\lambda - A)x.$$

2. Since $(\lambda - A)L_{\lambda}(t) + \varphi_{\lambda}(t)D_{\lambda}(t) = \phi_{\lambda}(t)I$, then for all $n \in \mathbb{N}^*$ we obtain

$$\begin{split} [\varphi_{\lambda}(t)D_{\lambda}(t)]^{n} &= & [\phi_{\lambda}(t)I - (\lambda - A)L_{\lambda}(t)]^{n} \\ &= & \sum_{i=0}^{n} C_{n}^{i} [\phi_{\lambda}(t)]^{n-i} [-(\lambda - A)L_{\lambda}(t)]^{i} \\ &= & [\phi_{\lambda}(t)]^{n}I - (\lambda - A)\sum_{i=1}^{n} C_{n}^{i} [\phi_{\lambda}(t)]^{n-i} [-(\lambda - A)]^{i-1} [L_{\lambda}(t)]^{i} \\ &= & [\phi_{\lambda}(t)]^{n}I - (\lambda - A)L_{\lambda,n}(t), \end{split}$$

where

$$L_{\lambda,n}(t) = \sum_{i=1}^{n} C_n^i [\phi_{\lambda}(t)]^{n-i} [-(\lambda - A)]^{i-1} [L_{\lambda}(t)]^i.$$

Therefore, we have

$$(\lambda - A)L_{\lambda,n}(t) + [\varphi_{\lambda}(t)]^n [D_{\lambda}(t)]^n = [\phi_{\lambda}(t)]^n I.$$

Finally, for commutativity, it is clear that $L_{\lambda,n}(t)$ commute with each one of $D_{\lambda}(t)$ and $\lambda - A$.

3. For all $n \in \mathbb{N}^*$, we obtain

$$\begin{split} [(\lambda-A)L_{\lambda}(t)]^n &= & [\phi_{\lambda}(t)I - \varphi_{\lambda}(t)D_{\lambda}(t)]^n \\ &= & \sum_{i=0}^n C_n^i [\phi_{\lambda}(t)]^{n-i} [-\varphi_{\lambda}(t)D_{\lambda}(t)]^i \\ &= & [\phi_{\lambda}(t)]^n I - D_{\lambda}(t) \sum_{i=1}^n C_n^i [\phi_{\lambda}(t)]^{n-i} [\varphi_{\lambda}(t)]^i [-D_{\lambda}(t)]^{i-1} \\ &= & [\phi_{\lambda}(t)]^n I - D_{\lambda}(t)D_{\lambda,n}(t), \end{split}$$

where

$$D_{\lambda,n}(t) = \sum_{i=1}^n C_n^i [\phi_{\lambda}(t)]^{n-i} [\varphi_{\lambda}(t)]^i [-D_{\lambda}(t)]^{i-1}.$$

Therefore, we have

$$(\lambda - A)^n [L_{\lambda}(t)]^n + D_{\lambda}(t) D_{\lambda,n}(t) = [\phi_{\lambda}(t)]^n I.$$

Finally, for commutativity, it is clear that $D_{\lambda,n}(t)$ commute with each one of $D_{\lambda}(t)$, $L_{\lambda}(t)$ and $\lambda - A$.

4. Since we have $D_{\lambda}(t)D_{\lambda,n}(t) = [\phi_{\lambda}(t)]^n I - (\lambda - A)^n [L_{\lambda}(t)]^n$, then for all $n \in \mathbb{N}$

$$\begin{split} [D_{\lambda}(t)D_{\lambda,n}(t)]^n &= & \left[[\phi_{\lambda}(t)]^n I - (\lambda - A)^n [L_{\lambda}(t)]^n \right]^n \\ &= & \left[\phi_{\lambda}(t) \right]^{n^2} I - \sum_{i=1}^n C_n^i \left[[\phi_{\lambda}(t)]^n \right]^{n-i} \left[(\lambda - A)^n [L_{\lambda}(t)]^n \right]^i \\ &= & \left[\phi_{\lambda}(t) \right]^{n^2} I \\ &- (\lambda - A)^n \sum_{i=1}^n C_n^i \left[[\phi_{\lambda}(t)]^{n(n-i)} (\lambda - A)^{n(i-1)} [L_{\lambda}(t)]^{ni} \right] \\ &= & \left[\phi_{\lambda}(t) \right]^{n^2} I - (\lambda - A)^n K_{\lambda,n}(t), \end{split}$$

where $K_{\lambda,n}(t)=\sum_{i=1}^n C_n^i [\phi_\lambda(t)]^{n(n-i)} (\lambda-A)^{n(i-1)} [L_\lambda(t)]^{ni}$. Hence we obtain

$$[D_{\lambda}(t)]^n [D_{\lambda,n}(t)]^n + (\lambda - A)^n K_{\lambda,n}(t) = [\phi_{\lambda}(t)]^{n^2} I.$$

Finally, the commutativity is clear.

Now, we interest to the relation between the ascent and the descent of the α -times integrated semigroups and their generators.

Proposition 2.7. Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$ and $\alpha>0$. Then for all $\lambda\in\mathbb{C}$ and all $t\geq 0$, we have

1.
$$d\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha+1}}{\Gamma(\alpha+1)} ds - S(t)\right] = n$$
, then $d[\lambda - A] \leq n$.

2.
$$a[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha+1}}{\Gamma(\alpha)} ds - S(t)] = n$$
, then $a[\lambda - A] \le n$.

Proof.

1. Let $y \in R[\lambda - A]^n$, then there exists $x \in D(A^n)$ satisfying

$$(\lambda - A)^n x = y.$$

Since $d\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha+1}}{\Gamma(\alpha)} ds - S(t)\right] = n$, therefore

$$R[\int_0^t e^{\lambda(t-s)}\frac{s^{\alpha+1}}{\Gamma(\alpha)}ds - S(t)]^n = R[\int_0^t e^{\lambda(t-s)}\frac{s^{\alpha+1}}{\Gamma(\alpha)}ds - S(t)]^{n+1}.$$

Hence there exists $z \in X$ such that

$$\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha+1}}{\Gamma(\alpha)} ds - S(t)\right]^n x = \int_0^t e^{\lambda(t-s)} \frac{s^{\alpha+1}}{\Gamma(\alpha)} ds - S(t)\right]^{n+1} z.$$

On the other hand, by Lemma 2.6, we have

$$(\lambda - A)L_{\lambda,n}(t) + [\varphi_{\lambda}(t)]^n [D_{\lambda}(t)]^n = [\phi_{\lambda}(t)]^n I,$$

with $L_{\lambda,n}(t),\,D_{\lambda}(t)$ and $(\lambda-A)$ are pairwise commute. Thus, we have

$$\begin{split} [\phi_{\lambda}(t)]^{n}y &= (\lambda - A)^{n}[\phi_{\lambda}(t)]^{n}x \\ &= (\lambda - A)^{n}[(\lambda - A)L_{\lambda,n}(t) + [\varphi_{\lambda}(t)]^{n}[D_{\lambda}(t)]^{n}]x \\ &= (\lambda - A)^{n}(\lambda - A)L_{\lambda,n}(t)x + [\varphi_{\lambda}(t)]^{n}(\lambda - A)^{n}[D_{\lambda}(t)^{n}]x \\ &= (\lambda - A)^{n+1}L_{\lambda,n}(t)x + [\varphi_{\lambda}(t)]^{n}[\int_{0}^{t}e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}ds - S(t)]^{n}x \\ &= (\lambda - A)^{n+1}L_{\lambda,n}(t)x + [\varphi_{\lambda}(t)]^{n}[\int_{0}^{t}e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}ds - S(t)]^{n+1}z \\ &= (\lambda - A)^{n+1}L_{\lambda,n}(t)x + [\varphi_{\lambda}(t)]^{n}[(\lambda - A)^{n+1}[D_{\lambda}(t)]^{n+1}z] \\ &= (\lambda - A)^{n+1}[L_{\lambda,n}(t)x + [\varphi_{\lambda}(t)]^{n}[D_{\lambda}(t)]^{n+1}z]. \end{split}$$

Since $\phi_{\lambda}(t) \neq 0$ for t > 0, we conclude that $y \in R[\lambda - A]^{n+1}$ and hence

$$R[\lambda - A]^n = R[\lambda - A]^{n+1}.$$

Finally, we conclude that

$$d(\lambda - A) < n$$
.

2. Let $x \in N(\lambda - A)^{n+1}$ and we suppose that $a[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)] = n$, then we obtain

$$N\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]^n = N\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]^{n+1}.$$

From Corollary 2.4, we have

$$N(\lambda - A)^{n+1} \subseteq N\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]^{n+1},$$

hence

$$x \in N\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]^n.$$

Thus, we have

$$\begin{split} [\phi_{\lambda}(t)]^n (\lambda - A)^n x &= (\lambda - A)^n [(\lambda - A)L_{\lambda,n}(t) + [\varphi_{\lambda}(t)]^n [D_{\lambda}(t)]^n] x; \\ &= (\lambda - A)^n (\lambda - A)L_{\lambda,n}(t) x \\ &\quad + [\varphi_{\lambda}(t)]^n (\lambda - A)^n [D_{\lambda}(t)]^n x \\ &= (\lambda - A)^{n+1} L_{\lambda,n}(t) x \\ &\quad + [\varphi_{\lambda}(t)]^n [\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n x \\ &= (\lambda - A)^{n+1} L_{\lambda,n}(t) x \\ &= L_{\lambda,n}(t) (\lambda - A)^{n+1} x \\ &= 0. \end{split}$$

Therefore, since $\phi_{\lambda}(t) \neq 0$ for t > 0, we obtain $x \in N(\lambda - A)^n$ and hence

$$a(\lambda - A) < n.$$

Finally, we characterize the different spectra of the α -times integrated semi-groups using the spectra of their generators.

Theorem 2.8. Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$ where $\alpha > 0$. Then for all $t \geq 0$

1.
$$\int_0^t e^{(t-s)\sigma_{asc}(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma_{asc}(S(t)).$$

2.
$$\int_0^t e^{(t-s)\sigma_{dsc}(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma_{dsc}(S(t)).$$

3.
$$\int_0^t e^{(t-s)\sigma_B(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma_B(S(t)).$$

4.
$$\int_0^t e^{(t-s)\sigma_D(A)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \subseteq \sigma_D(S(t)).$$

Proof.

1. Let $\lambda \in \mathbb{C}$ such that

$$\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds \notin \sigma_{asc}(S(t)).$$

Then there is $n \in \mathbb{N}$ satisfying

$$a\left[\int_{0}^{t} e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right] = n.$$

Therefore, by Proposition 2.7, we obtain $a[\lambda - A] \leq n$ and hence

$$\lambda \notin \sigma_{asc}(A)$$
.

2. Let $\lambda \in \mathbb{C}$ such that

$$\int_0^t e^{(t-s)\lambda} \frac{s^{\alpha}}{\Gamma(\alpha+1)} ds \notin \sigma_{dsc}(S(t)),$$

then there is $n \in \mathbb{N}$ satisfying

$$d\left[\int_{0}^{t} e^{(t-s)\lambda} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right] = n.$$

Therefore, by Proposition 2.7, we obtain $d[\lambda - A] \leq n$ and hence

$$\lambda \notin \sigma_{dsc}(A)$$
.

- 3. It is automatically, by the previous assertions and Theorem 2.5.
- 4. Suppose that $\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds S(t)$ is Drazin invertible, then

$$a\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right] = d\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right] = n$$

and we have

$$X = N \left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right]^n \oplus R \left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t) \right]^n.$$

Let $x \in N[\lambda - A]^n \cap R[\lambda - A]^n$, then $x \in N[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n$ and there exists $y \in X$ such that $x = (\lambda - A)^n(y)$. From Lemma 2.6, we obtain

$$\begin{split} [\phi_{\lambda}(t)]^{n^{2}}x &= (\lambda - A)^{n}[\phi_{\lambda}(t)]^{n^{2}}y \\ &= (\lambda - A)^{n}\big[[D_{\lambda}(t)]^{n}[D_{\lambda,n}(t)]^{n}y + (\lambda - A)^{n}K_{\lambda,n}(t)y\big] \\ &= [D_{\lambda,n}(t)]^{n}(\lambda - A)^{n}[D_{\lambda}(t)]^{n}y + K_{\lambda,n}(t)(\lambda - A)^{n}(\lambda - A)^{n}y\big] \\ &= [D_{\lambda,n}(t)]^{n}(\lambda - A)^{n}[D_{\lambda}(t)]^{n}y + K_{\lambda,n}(t)(\lambda - A)^{n}x\big] \\ &= (\lambda - A)^{n}[D_{\lambda}(t)]^{n}[D_{\lambda,n}(t)]^{n}y \\ &= [\int_{0}^{t} e^{\lambda(t-s)}\frac{s^{\alpha-1}}{\Gamma(\alpha)}ds - S(t)]^{n}[D_{\lambda,n}(t)]^{n}y, \end{split}$$

which implies that

$$x \in R[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n.$$

Therefore, we have

$$x \in N\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]^n \cap R\left[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)\right]^n = \{0\},$$

and hence

$$N(\lambda - A)^n \cap R(\lambda - A)^n = \{0\}.$$

Now let $x \in X$, then by supposition there exist $x,y \in X$ such that x=y+z, $y \in N[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n$ and $z \in R[\int_0^t e^{\lambda(t-s)} \frac{s^{\alpha-1}}{\Gamma(\alpha)} ds - S(t)]^n$. So $z \in R(\lambda - A)^n$ and by Lemma 2.6, we obtain

$$\begin{split} (\lambda - A)^n \left[[\phi_{\lambda}(t)]^{n^2} y \right] &= (\lambda - A)^n \left[[D_{\lambda}(t)]^n [D_{\lambda,n}(t)]^n y \right. \\ &\quad + (\lambda - A)^n K_{\lambda,n}(t) y \right] \\ &= \left[D_{\lambda,n}(t) \right]^n (\lambda - A)^n [D_{\lambda}(t)]^n y \\ &\quad + (\lambda - A)^n (\lambda - A)^n K_{\lambda,n}(t) y \\ &= \left[D_{\lambda,n}(t) \right]^n \left[\int_0^t e^{\lambda (t-s)} \frac{s^{\alpha - 1}}{\Gamma(\alpha)} ds - S(t) \right]^n y \\ &\quad + (\lambda - A)^n (\lambda - A)^n K_{\lambda,n}(t) y \\ &= (\lambda - A)^n (\lambda - A)^n K_{\lambda,n}(t) y. \end{split}$$

Therefore, we deduce

$$(\lambda - A)^n \left[[\phi_{\lambda}(t)]^{n^2} y - (\lambda - A)^n K_{\lambda,n}(t) y \right] = 0.$$

Then, we obtain

$$u = [\phi_{\lambda}(t)]^{n^2} y - (\lambda - A)^n K_{\lambda,n}(t) y \in N(\lambda - A)^n,$$

it follows that

$$[\phi_{\lambda}(t)]^{n^2}y = v + u,$$

where $v = (\lambda - A)^n K_{\lambda,n}(t) y \in R(\lambda - A)^n$ and $u \in N(\lambda - A)^n$. Finally we get for $t \neq 0$,

$$x = y + z = \frac{u + v}{[\phi_{\lambda}(t)]^{n^2}} + z = u' + v',$$

where $u' = \frac{u}{[\phi_{\lambda}(t)]^{n^2}} \in N(\lambda - A)^n$ and $v' = \frac{v}{[\phi_{\lambda}(t)]^{n^2}} + z \in R(\lambda - A)^n$. Therefore, we deduce that

$$X = N(\lambda - A)^n \oplus R(\lambda - A)^n$$
.

Finally, it is clear that $(\lambda-A)_{|N(\lambda-A)^n}$ is nilpotent and since $R(\lambda-A)^n\cap N(\lambda-A)^n=\{0\}$, then $(\lambda-A)_{|R(\lambda-A)^n}$ is invertible and hence $\lambda-A$ is Drazin invertible.

Acknowledgment. The authors are thankful to the referee for his valuable comments and suggestions.

References

- P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
- W. ARENDT, Vector-valued Laplace Transforms and Cauchy Problems, Israel J. Math, 59 (3) (1987), 327-352.
- 3. A. Elkoutri and M. A. Taoudi, Spectral Inclusions and stability results for strongly continuous semigroups, Int. J. of Math. and Mathematical Sciences, 37 (2003), 2379-2387.
- 4. M. Heiber, Laplace transforms and $\alpha-times$ integrated semigroups, Forum Math. 3 (1991), 595-612.
- C. KAISER, Integrated semigroups and linear partial differential equations with delay, J. Math Anal and Appl. 292 (2) (2004), 328-339.
- J.J. KOLIHA AND T.D. TRAN, The Drazin inverse for closed linear operators and asymptotic convergence of C₀-semigroups, J.Oper.Theory. 46 (2001), 323–336.
- 7. C. MIAO LI AND W. QUAN ZHENG, α -times integrated semigroups: local and global, Studia Mathematica 154 (3) (2003), 243-252.
- V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras 2nd edition, Oper.Theo.Adva.Appl, 139 (2007).
- 9. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York 1983.
- 10. A. TAJMOUATI AND H. BOUA, Spectral theory for integrated semigroups, Inter Journal of Pure and Appl Math, 104 (4) (2016), 847-860.
- 11. A.E. TAYLAR AND D.C. LAY, *Introduction to Functional Analysis*, 2nd ed. New York: John Wiley and Sons, 1980.

A. Tajmouati and M.B. Mohamed Ahmed, Sidi Mohamed Ben Abdellah University,

Faculty of Sciences Dhar Al Mahraz, Fez, Morocco.

 $E\text{-}mail\ address: \verb"abdelaziz.tajmouati@usmba.ac.ma"$

 $E ext{-}mail\ address: bbaba2012@gmail.com}$

and

A. El Bakkali,

Department of Mathematics

University Chouaib Doukkali,

Faculty of Sciences, El Jadida, Morocco.

E-mail address: aba0101q@yahoo.fr