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1. Introduction

Let X be a complex Banach space and B(X) the algebra of all bounded linear
operators on X. We denote by D(T'), R(T), R*(T) := Ny>1 R(T™), N(T), p(T),
o(T), and 0,(T) respectively the domain, the range, the hyper range, the kernel,
the resolvent and the spectrum of T, where o(T') = {\ € C\ A — T'is not bijective}
and 0,(T) = {\ € C\ A—T'is not one to one}. The function resolvent of T' € B(X)
is defined for all A € p(T) by R(A\,T) = (A — T)~ 1. The ascent and descent of an
operator T are defined by a(T) = inf{k € N\ N(T*) = N(T**1)} and d(T) =
inf{k € N\ R(T*) = R(T**1)}, respectively with the convention inf(@) = +oo.
An T € B(X) is called Drazin invertible if a(T") and d(T") are finite; in this case
a(T) =d(T) = p and by [11, Theorem 7.9], we have X = N(T?) & R(T?).

For a closed linear operator A, we say that A is Drazin invertible if there exists an
operator AP € B(X) such that R(AP) c D(A), R(I — AB) C D(A), APAAP =
AP AP A = AAP and A(I — AAP) is nilpotent. Moreover, from [6], A is Drazin
invertible if and only if A = A; & As such that A; is closed and invertible and Ag
is bounded and nilpotent. The ascent, descent and Drazin spectra are defined by

O'asc(T) = {A c C . G(A — T) = +oo},
Udsc(T> = {A eC: d()\ — T) = 4»00}7
op(T)={\ € C : A= Tis not Drazin invertible}.

An operator T € B(X) is called Fredholm operator, in symbol T € ®(X), if
(T) = dimN(T) and B(T) = codimT(X) are finite. We say that an operator
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T € B(X) is Browder, in symbol T € Br(X), if T is Fredholm operator and has
finite both ascent and descent. The essential and Browder spectra are defined by

o(T)={AeC: N—-T¢ d(X)}.
op(T)={ e C: N\—-T ¢ Br(X)}.
Let 3 > —1 and f be a continuous function. The convolution jg * f is defined
for all ¢ > 0 by
t (t—s)® . B
Jo ok f(H) = Jo F(,G-i-l) s)ds if B> —1,
fo t—sdéo() if g =—

where T' is the Euler integral giving by I'(8 + 1) = +°o 2Pe~®dx, j_1 = §o the
Dirac measure and for all g > —1

Jjg - ]0, +OO[ — R
t o
T(B+1)
Let o > 0. A strongly continuous S(t);>0 C B(X) is called an a-times integrated
semigroup, if S(0) =0 and for all ¢,s > 0
t+s (s+t—r)mt S(s+t—r)nt
Sn(t)Sn(s) = ————S,(r)dr — | ————>S,(r)dr,
ms) = [ s e - [ PR s e )

where n — 1 < a < n and S, (t)(2) = (Jn—a-1 *5)(x) for all x € X.
By (*) we deduce for all t,s > 0

S()S(s) = S(s)S(1).

Conversely, let a > 0 and let A be a linear operator on a Banach space X.

We recall that A is the generator of an a-times integrated semigroup [4] if for some
w € R we have |w, +00[C p(A) and there exists a strongly continuous mapping
S : [0, +00[— B(X) satisfying

ISH)|| < Me“" forallt>0 and some M >0

—+oo
R\ A) = )\0‘/ e S (t)ds for all A > max{w, 0},
0

in this case, (S(t))¢>0 is called the a-times integrated semigroup and the domain
of its generator A is defined by

tx
Ia+1)

t
DA)={xe X : / S(s)Axds = S(t)x — }

0
and (S(t))i>0, from the uniqueness Theorem of Laplace transforms, is uniquely
determined. In particulary, a Cy-semigroup and an integrated semigroup are also

a 0-times integrated semigroup and an 1-times integrated semigroup, respectively.
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An important example of generators of an a—times integrated semigroups is
the adjoint A* on X* for all @ > 0 where A is the generator of a Cy-semigroup on
a Banach space X. In [10], the authors have studied the different spectra of the 1-
times integrated semigroups. In this paper, we study a-times integrated semigroups
for all @ > 0. We investigate the relationships between the different spectra of a-
times integrated semigroups and their generators, precisely the ordinary, point,
Fredholm, ascent, descent, Browder and Drazin spectra.

2. Main results

Lemma 2.1. [/, Proposition 2.4] Let A be the generator of an a-times integrated
semigroup (S(t))i>0 C B(X) where o > 0. Then for all x € D(A) and all t > 0 we
have

1. S(t)x € D(A) and AS(t)x = S(t)Ax.
2. S(t)x = F(;—il)x + fot S(s)Axds.

Moreover, for all x € X we get fot S(s)xds € D(A) and
t +o
A/O S(s)xds = S(t)x — mx.
Now, we give the following lemma.

Lemma 2.2. Let A be the generator of an a-times integrated semigroup (S(t))i>o0
where o > 0. Then for all A € C and all t > 0, we have

1. For all x € D(A)

DA(D(A — A = | /O e’\(t_s)%ds St

where .
DA(t)x:/ M=) S (s)xds.
0

2. For all x € X, Dy(t)x € D(A) and

(A—A)Dx(t)z = | /0 eAWﬂ%ds —S(t)]a.

Proof. 1. By Lemma 2.1, we know that for all x € D(A)

[e3

S(s)x = mx —l—/o S(r)Axdr.

Then, since I'(aw + 1) = al'(«), we obtain
a—1

S'(s)x = %z + S(s)Ax.
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Therefore, we conclude that

t
Dy(t)Ax = /eMt*S)S(s)Aacds

Ot ga—1
= /0 M8 () — mx]ds
Y AT AR
= /0 e S'(s)xds /0 e ) xds
_ [ e s
= S(t)x+ ADr(t)z /o e o) xds
Finally, we obtain for all z € D(A)
t ga—1
Di(t) (A — A)z = | /O e’\(t_s)mds —S(t)]x.

2. Let p € p(A). From proof of Lemma 2.1, we have for all z € X
R(p, A)S(s)x = S(s)R(u, A)z.
Hence, for all z € X we conclude

R(p, A)Dx(t)z = R(u, A) /O A9 5(s)ads

t

IR, A)S(s)ads

J

N /tek(t_s)S(S)R(u,A)de
0

= Dy\(t)R(p, A)x.

Therefore, we obtain for all z € X
t
Dy(t)x :/ =98 (s)xds
0

AlmswwwAmwAmw

t t
:,u/ e”\(t_s)S(s)R(u,A)xds—/ =9 S(s)AR(p, A)xds
0 0

t t
:,u/ M) R, A)S(s)xds — / M9 S (s)AR(u, A)xds
0 0

¢ ¢
:uR(u,A)/ M9 S (s)ds — / M98 (s) AR, A)xds
0 0

—uR(1, A\Dx(t)x — DA(H) AR(p, A)a
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—uR(u, A)Dx(t)z — [S(t)R(1, A)x + ADA(HR(p, A)z

t a—1
| =9I _R w, A)zxds
| Rt Ay

—uR(u, A)Dx(t)x — [R(1, A)S()x + AR (1, A)Dx(t)z

t
CR(uA / Alt=3) 3
(1, A) ; (o)

=R(11, A)[( — \)Da(t)z — S(t)x + /O A=) %

Therefore, for all x € X we have Dy(t)z € D(A) and

a—1

xds]

xds}

(u—A)Dx(t)x = (n — N)Dx(t)x + /0 e/\(tfs)%xds — S(t)x.

Finally, for all x € X and all A € C we obtain

(A~ A)Dx(t)a = | /O e’\(t_s)%ds 5.

Thanks to Lemma 2.2, we obtain automatically the next corollaries.

Corollary 2.3. [10, Lemma 2.1] Let A be the generator of an integrated semigroup
(S(t))t>0. Then for all A\ € C, t >0 and x € D(A)

Dyt) (A= A)x = [/0 M=) ds — S(t)]a.

Moreover, for all x € X we have

(A= A)Dy(t)x = [/0 eMNt=8)gg — S(t)]a.

Corollary 2.4. Let A be the generator of an a-times integrated semigroup (S(t))i>o0
and o > 0. Then for all X € C, n € N and t > 0 we have

1. Forallx € X

a—1

- n ny— te)\(tfs)s T G — no.
(A= AP DAB)s = | X9 s s(0)
2. For all z € D(A™)
[DA(B)]" (N — A"z = | /0 eMt=9) o) ds — S(t)]"x.
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3. N[\ = A] C N[[j eXt=9)5ids — S(1)).

4. R[fy eXt=9)5—ds — S(1)] € R[]\ — A].

1

5. NA— A" C N[fy M=) 5ds — S(1)]".
6. R[fy 0= 5—=ds — S(1)]" € R\ — A]".

7. R®[fy M=) ds — S(t)] € R®[A — A].

In the upcoming theorem, we characterize the different spectra of the a-times
integrated semigroups.

Theorem 2.5. Let A be the generator of an a-times integrated semigroup (S(t))i>o0
and o > 0. Then for allt >0

1. fyet=0e M Lrds C o(S(1)).

2. f (t—s a'p(A)s

o )ds C o,(S(t)).

39 f elt— s)ae(A)S( ds C o.(S(t)).
Proof.

1. Let A € C such that for all t > 0

te(t s)AS s
[ e E s g otsion,

then the operator fot e(t=)A Ty ds — S(t) is invertible with F)\(t) its inverse.
Using Lemma 2.2, we obtain for every z € D(A)

r = t b= 2 s — x
B[ P ds = 500)

EX(@)[DA@) (X — Az
[F)\(ﬁ)D,\ (t)]()\ — A).T

On the other hand, also from Lemma 2.2, we obtain for every x € X

r = te(t_s))‘sa_1 s — x;
[ et s = SO B

= [A=ADr(O]FN(t)z;
= (A= A)[DrB) (D))

Since we know that S(t)F\(t) = Fi(t)S(t), then
Fx(t)Da(t) = Da(t)Fx(t).
Finally, we conclude that A — A is invertible and hence A ¢ o(A).
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2. Let X € 0,,(A), then there exists z # 0 such that
xe NA—A).

From Corollary 2.4, we get

ze N[/O e<t*S>A;CE;) ds — S(1)].

Therefore we conclude that

te(tfs))‘sail seo .
| e s e oso)

3. Let A € C such that

Cean s
et s g (s,

Then we have

5[/0 elt— s))\F( )ds — 8(t)] < +oo andﬂ[/o e(t= 5)/\51_‘(0() ds — S(t)] < +o0.

Therefore, by Corollary 2.4, we conclude that
I[N — A] < +ooand B[X — A] < 400,

and hence
Ao (A).

|

The important following lemma concerning the a-times integrated semigroups.

Lemma 2.6. Let A be the generator of an a-times integrated semigroup (S(t))i>o
where o > 0. Then for all N € C, allt >0 and all z € X

1. We have the identity
(A= A)La(t) + @x([0) DA (t) = oA (D)1,

where Ly(t fo e~ Dy(s)ds, oy (t) = eM and ¢, (1) fo Jo e % F(a) _drdr.
Moreover, the operator Ly (t) is commute wzth each one of Dy(t)and (A — A).

2. For all n € IN*, there exists an Ly ,(t) € B(X) such that

(A = A) Lo (t) + [ (O] [DAD]" = [oA (0]

Moreover, the operator Ly ,(t) is commute with each one of D(t) and A — A.
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3. For all n € IN*, there exists an operator Dy, (t) € B(X) such that
(A= AL + Dan(t)DA(t) = [d5()]" 1.

Moreover, the operator Dy ,(t) is commute with each one of Dx(t), Lx(t) and
A—A.

4. For all n € IN*, there exists an operator Ky ,(t) € B(X) such that

(A — A)"En(8) + [Dan @] [DA)]" = [0 ()™ L,

Moreover, the operator Ky ,(t) is commute with each one of Dx(t), Dy ,(t)
and A\ — A.

Proof. 1. Let u € p(A). By Lemma 2.2, for all z € X we have Dy(s)z € D(A)
and hence

t
Ly(t)x / e~ Dy (s)zds
0

= /0 e M R(u, A)(n — A)Dx(s)zds

R(M,A)[u/o ef/\SD,\(s)xds—/O e M AD, (s)xds]

t
= R(u, A)[pLx(t)x — / e M AD, (s)xds]
0
Therefore for all x € X, we have Ly(t)x € D(A) and
t
(w—A)Lx(t)x = pLa(t)x — / e AD)(s)xds.
0

Thus

t
ALA(t):c:/ e AD)(s)xds.
0
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Hence, we conclude that

(A — A)Ly(t)x =ALx(t)x — /O t e M AD)(s)xds
ALy ()7 — /O LN AD(s)
B /0 BYes T)F
AL = [ Dys)eds
/ / Als— T> xdrds— / t e S (s)xds
ALt A0+ / /

t
e M / M9 8(s)xds
0

= t Sef/\rrailx rds — e T
_/0 /0 ) drd Di(t)
(A1) — @ (t) DA (1)]

)xdr—i-S( s)z|ds

xdrds

where ¢, (t) fo NG 7>‘” deS and @, (t) = e M.
Therefore, we obtain

(A = A)La(1) + oA (1) DA(t) = oA (D)1

Since S(s)S(t) = S(t)S(s) for all s,¢ > 0, then Dy(s)S(t) = S(t)Da(s).
Hence

DA(t)Dx(s) = /O A= S(r) Dy (s)dr
= /te’\(t_T)S(r)DA(s)dr

0
= /te/\(tr)DA(s)S(T)dT

0

= D)\(S)/o A S (Y dr
= D)\(S)D)\(t).
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Thus, we deduce that

DA(t)LA(?)

Di\(t) /0 e Dy (s)ds

/t e~ Dy (t)Dx(s)ds
0

_ /0 e Dy (s) D (t)ds

= /te)‘SDA(s)dsDA(t)
0
= Lx(t)Dx(¢).

Since for all € X ALy(t)x = fot e M ADy(s)xds and for all z € D(A)
AD ) (s)x = Dy(s)Axz, then we obtain for all z € D(A)

()\ — A)Ly (t)x = )\L,\(t).%' — AL,\(t)x

¢

= )\L,\(t)x—/ e M AD,(s)xds
0
t

= /\L,\(t):c—/ e ADy(s)zds
0

t
= )\L,\(t)x—/ e~ Dy(s)Axds
0

= /\L,\(t):c — L)\(t)A:L'
= Ly(t)(\— A)z.

2. Since (A — A)LA(t) + ¢, (t)DA(t) = ¢, (t)I, then for all n € IN* we obtain
[oA () DA(t)]" (oA (O] = (A = A LA()]"

= D GlaOr == L@

= [0 = (A= 4) Y Clon O [=(A = AT LA

= "~ (- AL
where .

Eanl®) = 32 Cils (01" -0~ A [La(0)
Therefore, we have -

(= A)Lan(®) + a1 DAL = (6501

Finally, for commutativity, it is clear that Ly ,(¢) commute with each one of
Da(t) and A — A.
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3. For all n € IN*, we obtain
[(A=ALr@O]" = [oA( — ex(t)DA()]"
= ZCZ[%(t)]"_"[—%(t)Dx(t)]i

= [oa (] — Da(t ZC’ NG ENGINE NGl

where

Din( Z Crloa@]" oA [-Da@) ™!
Therefore, we have

(A = A [LA]" + DA®) Dan(t) = [Pr (0]

Finally, for commutativity, it is clear that D) ,,(t) commute with each one of
Di(t), Lx(t) and X — A.

4. Since we have Dy (t)Dx (1) = [¢5(t)]" ] — (A= A)"[LA(t)]", then for alln € IN
DAODAO) = [[6aO]"T = (A = A)"[La)]"]”
= [T =3 Cllon "] [ = A a1

= (eI
)\ A Zcz n(n z)()\ A)n(Z 1)[L/\( )]
= (6] T — (A — A"Kp (),

where K ,,(t) = S0, Cig, (8)]" =D (A= A)"C=D[L,(¢)]™. Hence we obtain

(DA [Dxn(8)]" 4+ (A = A" EKxn(t) = [ox(0)]" 1
Finally, the commutativity is clear.
O
Now, we interest to the relation between the ascent and the descent of the

a-times integrated semigroups and their generators.

Proposition 2.7. Let A be the generator of an «-times integrated semigroup
(S(t)i>0 and a > 0. Then for all A € C and all t > 0, we have

t —s) sot?!
1. d[f, et )F(CH_)

ds — S(t)] =n, then d]A — A] <n
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2. a[fo et 5)‘5( )d s —S(t)] =n, then a[]A — A] <n
Proof.

1. Let y € R[\ — A]"™, then there exists € D(A"™) satisfying
AN=A)"z =

Since d[f Alt=s) S( )ds — S(t)] = n, therefore

t/\(t 55 o n_ t)\(t 5S o ntl
A ) R e e s

Hence there exists z € X such that

s 5
[/ews> %—SUPx:/ A= 5 G gy,
0 () 0 I'()
On the other hand, by Lemma 2.6, we have

(A=A Lxn(t) + [ (O] [DAO]" = (oAD" 1,

with Ly ,,(t), Dx(t) and (A — A) are pairwise commute.
Thus, we have

GaO"y = (= Ao (0]

(A= A)[A = A nl) + [r O IDAD]

= O A O A+ 0] (= A DAO
= A=A L+ O]
= A=A L0+ O] N s = S

= (A= A" Lya()z + A" [(A = A" DAB)]"™ 2]
= (A= A" Lan()z + (A0 [DAB)]" 2]

Since ¢, (t) # 0 for t > 0, we conclude that y € R[]\ — A]"*! and hence

ds -S|z

RIA— A" = R[]\ — A"

Finally, we conclude that
dA—A)<n

2. Let # € N(A — A)"™! and we suppose that a[ft At=s) F(;;

then we obtain

ds — S(t)] = n,

a—1

! At—s) 5 5 — n _ te)\(tfs)s G — n+1
N[ e F(a)d SO = N[ | X9 s = s
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From Corollary 2.4, we have

t
N()\— A)n-i—l C N[/ A(t— s)F

0

hence

Thus, we have

[OA@O]"(A = Az = (A= A"(A ALM
(A -

= A=A)"MLya(t)x
= L,\,n(t)()\ — A)n+1$

= 0.

Therefore, since ¢, (t) # 0 for ¢ > 0, we obtain z € N(A — A)™ and hence

a(A—A)<n

ds - S

127

Finally, we characterize the different spectra of the a-times integrated semi-

groups using the spectra of their generators.

Theorem 2.8. Let A be the generator of an a-times integrated semigroup (S(t))i>o0

where o > 0. Then for all t > 0

1. f e(t s)(Tasc(A)s( )dS - O'asc(S(t))

2. [y el)oase s C 0geo(S(2)).

O (S(1)).

(5(2))-

4o Jyeltmorn e

Proof.
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1. Let A € C such that

te(tfs)Asail S €& Tase .
| e s # e 5(0)

Then there is n € IN satisfying

t ga—1
a[/ elt=91 ds — S(t)] = n.
0 I'(a)
Therefore, by Proposition 2.7, we obtain a[A — A] < n and hence

A ¢ 0gsc(A).

. Let A € C such that

te(tfs) s s¢o
| e s # S0

then there is n € IN satisfying

d| /0 e<t*S>A§E—;)ds —S(t)] =n.

Therefore, by Proposition 2.7, we obtain d[A — A] < n and hence
A ¢ oasc(4).

It is automatically, by the previous assertions and Theorem 2.5.

Suppose that fot eA(t’S)ﬁ—;;ds — S(t) is Drazin invertible, then

o teA(tfs)ﬂ s _ _ teA(tfs)ﬁ g — =n
| s = s =d | 9 Eas = s(0)

and we have

a—1 a—1

_ ! e)\(tfs) 5 g — n ! e)\(tfs) S G — n
X N[/O ol S e R[/O g = S

Let € N[\ — A" N R[]\ — A", then z € N[} e’\(t_s)%ds — S(t)]™ and
there exists y € X such that © = (A — A)"(y). From Lemma 2.6, we obtain

Az = (A= A)"[pr(B)]"
= (A= A" [[DAO) [Dan(®)]"y + (A — A)" K (t)y]
[Dan ()] (A — A)"[DA®)]"y + Exn(t)(A — A)"(A — A)"y]
= [Dan(®)]" (A — A)"[DA®)]"y + Exn(t)(A — A)"z]
(1)
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which implies that

t a—1
T E R/ e/\(t_s)s—ds — S()]".
[ s st

Therefore, we have
t t Safl
T € N[/ L. S)]" N R[/ M) —ds — S(t)]" = {0},
0 F(a) 0 I'(a)
and hence
NA=A)"NR(A—A)" ={0}.
Now let x € X, then by supposition there exist x y 6 X such that x = y + z,

yENfO et S)S()ds—S()] andzeRfO ds—S()]”.
So z € R(A — A)™ and by Lemma 2.6, we obtain
A=A [0 y] = (= A" [[DAO]"Drn()]"y

+(A = A)" K (t)y]
= [Dan®"(A = A" [DA(®)]"y
+A=A) (A= A) Ky a(t)y

t o
= D[ M= Sy
FA—A)" (A= A)"Kxn(t)y
= (A-A)"A=A)"Kxat)y.
Therefore, we deduce
A=A A0y = (A = A" Kaa(t)y] = 0.
Then, we obtain
w= (DO y — (A= A" Koty € N = A)",
it follows that
(oA (O] y = v+,
where v = (A — A)" Ky »(t)y € RA— A)" and u € N(A — A)™.
Finally we get for ¢t # 0,
Y+ z= vaJrz:u/nLv’,
(oA ()]
where v/ = —%— € N(A—A)" and v/ = —*— + 2z € R(A — A)".

[#x ( )
Therefore, we deduce that

X =NA—A)"®RA— A"

(o ()]

Finally, it is clear that (A — A) v Ay is nilpotent and since R(A — A)" N
N(A—A)" = {0}, then (A—A)|g(r—a)» is invertible and hence A — A is Drazin
1nvert1ble
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