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New Results on the Blow-up of Solutions in L? at Finite Time In7T} for
a Damped Emden-Fowler Type Degenerate Wave Equation

Khaled Zennir and Svetlin G. Georgiev

ABSTRACT: In this article we consider a new class of an Emden-Fowler type semi-
linear degenerate wave equation with memory. The main contributions here is to
exhibit that the memory lets the global solutions of the degenerate problem still
non-exist in L2 at finite time

2 72 T2 —1
InTy, st Ty = —1</ \uo|dm>(/ umﬂda}) .
p—

T1 T1

This is to extend recent result by [19] for the dissipative case.
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1. Introduction

The study of the Emden-Fowler equation originated from earlier theories con-
cerning gaseous dynamics in astrophysics around the turn of the 20-th century. The
fundamental problem in the study of stellar structure at that time was to study
the equilibrium configuration of the mass of spherical clouds of gas. In this article
we consider the nonexistence of global solutions in time of the Emden-Fowler type
semilinear wave equation with viscoelasticity in the next new form

t

t2u”(a(x)uz)l+/1t %u(lns) (a(z)um (—))mds =uP in [1,T)x(ry,re) (1.1)

S

with boundary value null and initial values

u(l,2) = up(x) € H2(r1,r2) N Hol(rl,rg),

u'(1,2) =ui(z) € H&(rl,rg)
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where p > 1, 71 and rg are real numbers and the scalar function p (so-called
relaxation kernel) is assumed to satisfy:
1. The function p : RT — RT is a C'* nonincreasing function satisfying

w(0) >0,1— / e*?u(s)ds = 1> 0. (1.2)
0
2. The self-adjoint non-positive operator of the form

Au = (a(z)uy (1))

x

represent the class of degenerate term considered in Eq.(1.2), where a € C[ry, ro]
may vanish in a subset Qg of [r1, 2] and a(x) > A% > 0 for some constant A.

The relationship between mathematics and physics succession of philosophical and
epistemological order problem. Since long times, mathematicians and physicists
have different positions on this report. The idea claiming that mathematics is the
language of physics, is one of the explanations of the problem of relations between
the two disciplines. The present research aims to extend the study of Emden-
Fowler type simple wave equation to the case when the degenerate viscoelastic
term is injected in [r1, ro] where it seems that there is no result about this topic.
Thus, a wider class of phenomena can be modeled.

Under the assumption that the gaseous cloud is under convective equilibrium (first
proposed in 1862 by Lord Kelvin [27]), Lane studied the equation

d du
—(250) + e =0 1.3
dt( a) T (1.3)
for the cases p = 1.5 and 2.5. The equation (1.3) is commonly referred to as the
Lane-Emden equation [4]. Astrophysicists were interested in the behavior of the
solutions of (1.3) which satisfy the initial condition: u(0) = 1, «/(0) = 0. Special
cases of (1.3), namely, when p = 3 the explicit solution to

d /,5du 9 B Fy
dt(t dt)thufO, w(0) =1, «'(0) =0

is u = sin(t) /¢, and when p = 5, the explicit solution to

d /,d
E(ﬁd—?) L2205 =0, w(0)=1, u'(0) =0

isu=1/y/1412/3.

Many properties of solutions to the Lane-Emden equation were studied by Ritter
[24] in a series of 18 papers published during 1878-1889. The publication of Em-
den’s treatise Gaskugeln [9] marks the end of first epoch in the study of stellar

configurations governed by (1.3). The mathematical foundation for the study of
such an equation and also of the more general equation

d

du
S () per =0, t>0 1.4
dt( dt)+ v » P2 (1.4)
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was made by Fowler [10,11,12,13] in a series of four papers during 1914-1931.
The first serious study on the generalized Emden-Fowler equation

d2

Wg +a(t)|lu|"sgnu=0, t>0
was made by Atkinson et al.
Recently, M.-R. Li in [19] considered and studied the blow-up phenomena of solu-
tions to the Emden-Fowler type semilinear wave equation

t2ust — Upe = uP  in [1,T) x (a,b)).

The main subject of this paper is to exhibit the role of the degenerate viscoelasticity,
which makes our problem (1.1) dissipative, in the Blowing up of solutions in L? at
finite time

2 2 [ TZ -1
InT, st Ty = —T] = —(/ |u0|d:c) (/ uouldz) ,
p—1 p—1

T1 T1

for Emden-Fowler type wave equation when the energy is null which will be the
main results of subsection 3.1. In the subsection 3.2, we will discus the blow up in
finite time In 7% < In 77 of problem (1.1) for large class of solution in the case when
the associated energy is negative. The questions of local existence and uniqueness
will be also considered in Section 2.

2. Preliminaries, local Existence of unique solution

We omit the space variable = of u(x,t),u (x,t) and for simplicity reason denote

u(z,t) = wand '(z,t) = v/, when there is no confusion, where v’ = Lu, v’ = C‘Ii—;u.
The constants ¢ used throughout this paper are positive generic constants which
may be different in various settings.

Define the space
ro
Vo = {w € L3(r1,m) : / a(z)|ugPdz < co,w(r1) = w(ry) = 0} (2.1)
1
which is a Hilbert space endowed with the norm
T2
ful?, = [ alus s

Note that

1
luell2 < mllﬂllva
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for any u € V,. Indeed, we have

[

T2
/ |u, |*da
r1

= /:2 %|uz|2d9€

1 [
A% [,

IN

a(x)|ug|*du

1
= i,

whereupon we get the desired estimate.
Under some suitable transformations, we can get the local existence of solutions to
Eq. (1.1). Consider the integral

/; %u(lns) (a(m)ul (é)) ds.

In it we make the change s = e¥ and we get

/j %u (Ins) (a(:u)ul (é))x ds = /Olnt 1(y) (a(@)us (te™))_ dy.

Therefore we get the equation

Int
£ = (@), + [ u) (@@ (te7), dy =, in [1T) x (rara). (22
0
Taking the transform
T=1Int, v = u, Upr = Vpa,

then

/ — "
u =t 1’U7—, t2u = —Ur +Vrr,

equation (1.1) takes the form
vrr — (a(x)ve), + /OT w(s) (a(x)ve(r — 5)),ds =vr +0” in [0,InT) X (r1,72),
v(z,0) = uo(z), ur(z,0)=wui(x)

v(ri, ) =v(re,7) =0 (2.3)
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Let

v(r,a) = e Pu(r, z),

T/2 1
UT(Taz) =e€ ’LUT(T,SC)+§’U(T,ZL'),

/2 /2 1 /2
Vrr(T,2) = €72 wer (T, 2) + 7w, (1, 2) + 1€ w(T,x),

then (2.3) can be rewritten as

then

167

Wrr — (a(z)we)s + e /> / e u(s) (a(2)wa (T — 5))uds = iw + P2 (2.4)
0

The following technical Lemma will play an important role.

Lemma 2.1. For any w € C! (O,T,Hl(rl,rg)) we have for any monincreasing

differentiable function « satisfying (1) > 0

/ ol / "5 /2u(r — 5)(a(@)wa($))ew (r)dsd

T1 0

2dr "
— g [ ePutsyis [ ate) () do
go ) (0 =) [T otolun(r) -t Panis
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Proof. We have

/ a(r) [ eutr = s)a(wyua (o)) (s
— o) [ eutr—s) | (@)l (rYuwe (5)dads
= o) [ ePutr =) [l o) e () = oo ()] dods

~al) [ i) [ wly (7Yl s (r)dieds.

Consequently,

2

1 " 2
—5@ (1)e* (T — ) /Tl a(x) |wg(s) — wy (7)|” dads
+%a/(r)/0 2 1u(s)ds /le a(z) |we (7)|? dads.

This completes the proof.
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We introduce the modified energy associated to problem (2.4)

2Ew(7'):/r2 |wT|2d:c+(1f/T e*/? u(s)ds) / a(z)|wy [*ded

T1 0 T1

+/OT e u(r — ) /T2 a(z) |wa(s) — wa (7)|? dads

1

1 2 Gy [
—1/ |w|*dx — +1e( En / |w[PH du. (2.5)
(21 p r

1

and

T2 1 T2
2E,(0) = / (ug — in)de —|—/ a(z)|ugy [ dx
1 T1

T2 2 ) +1
Jr/ upurdx — —— |uolP T da.
T1 p + 1 1

Direct differentiation, using (1.2), (2.4), leads to
El (1) <0.
We now can obtain Lemma 2.2.
Lemma 2.2. Suppose that v € C1(0, T, H}(r1,72)) NC?(0, T, L*(r1,72)) is a solu-

tion of the semi-linear wave equation (2.4). Then for T > 0,

—1 [T wens [T
Ew(T)ng(O)—;ﬁ i et / |w|P+ dads, (2.6)

1

Proof. Taking the L? product of (2.4) with w, yields
2 T2 t
/ Werwrdr — / ((a(x)wz)z - 677—/2/ e 1u(s) (a(x)wa(t — s))zds)wde
71 T1 0
— i/ ’ ww,dx +/ ’ eP=DT/20P 0 di.
1 T

Thus, by Lemma 2.1 with a(7) = e~ 7/2, we have

1 d T2 t ro
Ed_{/ |wT|2dx+(1—/ eS/Q,u(s)ds)/ a(x)|w, |*dx
L/

0 r1

1 d T )
-z s/2 _ _ 2

+ 2dT/O e’ u(r s)/ a(x) |wy(s) — wy (7)|” dads
1 T

d 2 1 d (™
— |w||*dx + ——— eP=UT2y Pty da
8dr J,, p+1ldr /.,
I 2(p—;11) /T2 e(p—l)T/pr-‘,-ldz
p 1
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1 T / T2
+ —a(T)/ (es/Q,u(T — s)) / a(z) |we(s) — we ()| dads
2 0 71
1 "2 9
= 5h(m) | alz) jwe ()] do
et
1 1 T s/2 " 2
+ e (1) [ e u(r—s) a(x) |wg(8) — wy (7)|” deds
0 r1
1 S T2
— §a’(7)/ es/2u(s)ds/ a(z) |we (7)]? da.
0 T1
Then, by conditions on u,« and (2.5), the assertion (2.6) is proved. |

3. Blow up results
3.1. First result for F,(0) =0

Under small amplitude initial data, we prove that w blows up in L? at finite
time In7T™ in the following Theorem 3.1.

Theorem 3.1. Suppose that w € CY(0,T, H}(r1,72)) N C%(0, T, L?(r1,72)) is a
weak solution of equation (2.4) with

e(0) := / uou(x)dz > 0, E,.(0)=0
and 0 <rg —r; < 1. Then there exists T} such that
ro
/ lu(t,z)|*de — +oo  ast — Ty,
1

where
2 frf |uo|dx

17 =

Before we beginning to prove Theorem 3.1, we need to state and prove the next
intermediate Lemma

Lemma 3.2. Suppose that w is a weak solution of equation (2.4). Then

T2 p1
/ ez SwPt (s, x)dx

1

1 ) t T2 1 T2
> 1%{/ lws|?dax + (1—/ eS/Q,u(s)ds)/ a(x)|w, |*dr — 1/ |w|2dac}

1 0 1 1

+ /OT e u(r — ) /T2 a(z) lwe(s) — wy (7)|* deds — (p + 1)Ew(0)e%ls

1
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p2 1 s o1 T2 t T2
+ 5 / ez (577 {/ |ws |2da + (1 f/ 65/2/L(S)d8)/ a(x)|we|?dx | dr
0 71 0 1

2 _ s _ T2
r-1 —lepTl(s_T)/ |w|*dxdr
1

> Jy 4
p2 - 1 s p—1 T " 2
5 eT(sfr) / 65/2/14(7— — 5)/ 0,(:6) |’LU1(S) - wI(T)| dxds.
0 0 "
Proof. Set

L(s) = p+1/ / |w|PTt dxdr,

F) = [ wParr - [ ePuman [ ol

T1 0 T1

- i/ |w|2d:c+/ es/Qu(Tfs)/ a(x) |wz(s)7wz(7)|2dzds,

T1 0 T1

By Lemma 2.1 and Lemma 2.2, Eq.(2.6) can be rewritten as

E,0)>F-2L"+(p—-1)L, (3.1)
therefore,
yd p o 1
(GT;éL)/ _ —215(L/ p L)
1 poay
> 3¢S - Bu(0))
and
p—1 1 s p—1
L > 5/ S (E(r) — By (0))dr
0
1 p—1 E,(0) p—1
> = 2" F(r)d 1—e—2°
- 2/0 (r) p— ( )’
and

this implies

/ / |w|p+1dxdr
p+1
t T2
>5[ e [Cnpde e 0= [ e [ a@he.pa)
1 0 T

1 s 1 p2 2
+§/0 fZeT(S_T) /T1 lw|?dx dr
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1 S pe T ) T2
—|—§/ eTl(s_T)/ eé/Qlu(r—s)/ a(z) |we(s) — we ()| deds
0 0 T1
E,0), p1,
_ Eul )(eTlé ~1),
p—1
and

S T2
p—1
/ / ez "wPT(r, x) dx dr
0 1

1 S e ) T2 t ) T2
> Pl eTl(é_T){/ lws|?dx + (1 —/ eé/Q,u(s)ds)/ a(x)|w, |*dx| dr

N 2 0 1 0 ™1
1 s 1 p2 "2

Jr% ; fZeT(S_T) /T1 |w|?dxdr

p+1 ° 2l(s—r) T s/2 " 2
+T ez e u(t — s) a(x) |wg(s) — we(7)|” daeds

0 0 T1

p+1 =1y
P B 0) (5 1),

2 LB o)~ 1)

and

T2 po1
/ ez SwPt (s, x)dx

1

1 T2 t T2 1 T2
> 1% {/ lws|?dx + (1 —/ eS/Q,u(s)ds)/ a(x)|w, |*dr — 1/ |w|2dac}
0

T1 T1 T1

+ /OT e 2pu(r — s) /T2 a(@) [wa(s) — we(7)|? dwds — (p + 1)Ey (0)e ™ *

1

p2 -1 s o1 T2 t T2
+ 5 / e (7 {/ lws|*dx + (1 —/ es/2u(s)ds)/ a(m)|wm|2dac} dr
0 T 0 T

1 1

21 1 r2
+2 / f—eTl(s_T)/ |w|*dadr
2 0 4 T

1

2 o 1 S 1 T T2
+ / eT<H>/ /2y — s)/ a(2) [10s (5) — wa(F) duds.  (3.2)
0 0 1
This complets the proof. O

We are now ready to prove Theorem 3.1

Proof. (Theorem 3.1)
Let

A(s) = / lw(s, z)|*dx,
then we have

Al(s) = 2/ wws (s, z)dx.

1
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and

T2 T2
A'(s) = 2/ wwss(s,x)dx—i—Q/ w? (s, x)dx

T1 1

By Lemma 2.1, Lemma 3.2 and (3.2), we obtain

A”(S) 22((/; es/2u(5>d5 -1 /T2 a(x)|wz|2dz) (3.3)

1

1 () T2
+2(1/ |w|2d:c+/ |ws|2dz)

T1 T1

2 [ el - [ ato) a(s) = ()] dads

1

2+ ([ Pusts —1) [ et Pas)

r1

1 " 2 " 2
+2(p+1)(Z lw?dz + [ |ws] dx)

T1 1

@+DAZW%W$/WMMWA@me¢ws

1

4 (p?—1) / e%(s—r)((/t e*?p(s)ds — 1) /Tz a($)|wz|2dx)

0 0 1

S p1 1 T2 T2
+(p2f1>/ B3 -n) (Z/ |w|2d:c+/ |w5|2d:c)
0 T1 T1

1) /O B (=) /O /2u(r — 5) / a(2) |15 (5) — wa (7)|? dzds

1

—2(p+ 1) By (0)e"T*
IR Sk S AT
Z[(p+3)/ |ws|*dx — T/ [w] dz]

T

+@—DO—Ae”%@M$/TM@mA%w

1

+@D£l”%vﬁ/WMMWA@mwwwws

1
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—2(p + 1) Ey(0)e™7*

S e ) T2 1 T2
+ (p* — 1)/ eTl(‘S_T)(/ |ws|?dx + Z/ |w|2dx) dr
0

T1 T1

w070 [[em e ([T et - [ atol o) ar

T1

1) / B (=) / e/ 2u(r — 5) / a(2) [ws (5) — wa (7)|? dudsdr.

0 0 1

As in [19], let us set

J(S) :A(S)ik, I{/’:T >0
Then
J'(s) = —kA(s)"F71A/(s),
and
J"(s) = —kA(s)""2[A(s)A"(s) = (k + 1)A'(5)?]
< —kA(s)"FH[AY(s) — 4(k +1) :12 w2dzx]. (3.4)

Since E,(0) = 0, we have

A(s) — 4(k + 1)/ lws|?dx

T1

T2 pfl T2
> [p+3) [ wPdo— 2= [ ]
1 T1

T

+(p—-1)(1 - /0 e*2pu(s)ds) /T2 a(x)|w, |2 dx

T1

S p1 T2 1 T2
+(p* — 1)/ ez (577) (/ |w |2dx — Z/ |w|2d:c) dr
0

T1 T1

+(p2f1>/sep—;1(s—r) ((1/t e*2pu(s)ds) /Tza(z)|wm|2dz) dr

0 0 1

+p—1) /0 e Pu(r —s) / " (o) wa(5) — wa () duds

T1

+(p* - 1)/ et (s=7) / e 2p(r — s)/ a(z) |we(s) — we (7)|? dadsdr
0 0

1

74(k+1)/ lws |*dz,

1
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whereupon,

A"(s) —4(k + 1)/ |ws|*da

1

200 [ et [t la -t [

0 T1 1

T2

|w|2d$}

+(p-1) /0 e*Pu(r - s) / " (@) wa(5) — wa () duds

S p—1 1 T2
+ (p* — 1)/ eT(S*T)(/ |w, |*dx — 1 / |w|2dz) dr
0 r

1 T1

+(p? — 1)/56’%%—»((1 — /t e*2pu(s)ds) /Tza(z)|wx|2dz)d7’

0 0 1

+ (p* — 1)/ etz (5= / e p(r — s)/ a(z) |wa(s) — wy (7)|? dadsdr
0 0

T1

S _1 T2
+(+ 1)/ epT(S*T)(/ a(x)|ws|2dz) dr
0 r1

+(p+1>/056p21(5—r)((1/Otes/2ﬂ(s)ds) / a(x)|wz|2d:c)d7"

1

/OT e*p(r — s) /TT2 a(z) |wa(s) — wa (1) d:cds)

175

s = T o
+(+ 1)/ e’z (71 / e u(r — s)/ a(z) |wa(s) — we(7)|? dadsdr > 0,
0 0

T1

where ro <14 7q.
Therefore, by (3.4) we obtain that for, 7o — 1 <1, J”(s) < 0 for all s >0,

J(s) <) = 2l

and

T2 pfl T2
= / [|uo|| =P~V da — 5 6(0)/ lug|~ P+ dzs
T1

T1

T2 T2 71
= / |u0|_(p+3)d:c(/ |u0|d:vfp2 e(())s).

T1 1
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Then
2 "2 o ldz
J(s) =0 ass%T*:—M (3.5)
p—1 (0
Thus w solution of (2.4) blows up in L? at finite time T*. O

3.2. Second result for F,(0) <0

In the following theorem we shall state and prove our second blowing up result

Theorem 3.3. Suppose that w € CY(0,T, Hi(r1,m2)) N C?(0,T,L?(r1,72)) is a
weak solution of equation (1.1) with

e(0) = /T2 uour (z)dx > 0, E.(0) <0

1

and 0 < ro —ry < 1. Then, there exists T such that
1

Y 0 ast—InT}.
S u(t,z)|2dz ’

Further, we have InTy <InTY, and the estimate

T2 T2 1 p—1. 2 pe
/ w?dr > / udd — 2Eu(0)Zi [seTlé — (eTls - 1)].
1 r1 p—= 1 p— 1

Proof. By (3.3), Lemma2.1, E,(0) <0, ¢(0) > 0 and 0 < ro —r; < 1, we have

,k(/ w2dx)_k_1[A”(s) - (p+3)/

T1 T1

T2

J//(S)

IN

w?(s, z)dz}

—k:( /T2 de,r) - [ —2(p+ 1)Ew(0)epTils

1

0 1 1

+ (p—1) /0 e u(r —s) / " (@) lwals) — wp(r)]? duds

T1

(p271)/ eprl(sfr)(/ |w5|2d1'
0 1

+ (1/(: /2 (s)ds) / a(z)|wg|*dz — i/ |w|2dx)dr}

1 T1

T2

|w|2dac)

+

+ (»* - 1)/ e%(s—T)/ e 2p(r — s)/ a(x) |[we(s) — we (7)) dadsdr
0 0

T1

< 2k(p+ 1)E,(0)e"z *J(s)TF <0, (3.6)
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where k = (p — 1)/4, we can obtain the same conclusions as in Theorem 3.1.
By the inequality (3.6) and J" < 0 we can estimate J further,

1

J'(s) < 2k(p+1)E.(0)e"T 5 J(s) Tk

1 p—1
= S° ~DE0)eT I(s)E <0,

and
J(s) < JO0) 450" = DE0)eT ()

< S0 = 1B (0)e T (s) T,

and
—k(J(s)F) = J(s)TIRI(s)
< Bele gyt

and
k)t —a ) < B0y (aee - (et o)

= Eu,0)(p+1)[se ;Sfpzl(ep%lsfl)},

which implies

"2 "2 1 p—1 2 p—1
/ w?dx > / u%dz — Q&EU(O) [seTS (e — 1)]
T1 1 p— 1 p— 1

Then u solution of our initial problem (1.1) blows up in L? at finite time InT}.
This completes the proof. O
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