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G. Canan Hazar Güleç and M. Ali Sarigöl

abstract: In this study we establish some identities or estimates for operator
norms and the Hausdorff measure of noncompactness of certain operators on the
spaces |Cα|k , which have more recently been introduced in [22]. Further, by applying
the Hausdorff measure of noncompactness, we determine the necessary and sufficient
conditions for such operators to be compact and so the some well known results are
generalized.
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1. Background, notation and preliminaries

Any vector subspace of w is called a sequence space, where w is the set of all
sequences of complex numbers. For ℓk (k ≥ 1, ℓ1 = ℓ) ⊂ w, we write the sets of
all k-absolutely convergent series. Let X and Y be arbitrary subspaces of w and
A = (anv) be an arbitrary infinite matrix of complex numbers. If x = (xv) ∈ w,
then we denote A-transform of the sequence x as the sequence A(x) = (An (x)) ,
i.e., An (x) =

∑∞
v=0 anvxv, provided that the series converges for v, n ≥ 0. Then, it

is called that A defines a matrix transformation from X into Y, which is denoted
by A ∈ (X,Y ) or A : X → Y if Ax = (An(x)) ∈ Y for every x ∈ X , and also the
sets

XA = {x ∈ w : A(x) ∈ X} (1.1)

is said to be the domain of the matrix A in X . Also, X is said to be an BK-
space if it is a complete normed space with continuous coordinates pn : X → C

defined by pn (x) = xn for n ≥ 0. Further, if X and Y are Banach spaces, then we
write B (X,Y ) for the set of all bounded linear operators L : X → Y, which is a
Banach space with the operator norm given by ‖L‖ = supx∈SX

‖L (x)‖Y for all L ∈
B (X,Y ), where SX denotes the unit sphere in X , that is SX = {x ∈ X : ‖x‖ ≤ 1} .
A linear operator L : X → Y is called compact if its domain is all of X and every
bounded sequence (xn) in X, the sequence (L(xn)) has a convergent subsequence
in Y. We denote the class of such operators by C (X,Y ).
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Absolute Cesàro spaces

Let Σxn be an infinite series with partial sum sn. Let (σα
n) and (tαn) be the

nth Cesàro mean (C,α) of order α with α > −1 of the sequence (sn) and (nan)
respectively, e.i.,

σα
n =

1

Aα
n

n∑

v=0

Aα−1
n−vsv,

and

tαn =
1

Aα
n

n∑

v=1

Aα−1
n−vvav

where
Aα

0 = 1, Aα
n =

(
α+n
n

)
, Aα

−n = 0, n ≥ 1,

|Aα
n | ≤ M(α)nα for all α, and Aα

n ≥ m(α)nα for α > −1. The series Σxn is said

to be summable |C,α|k with index k ≥ 1 if (see [7])

∞∑

n=1

nk−1 |∆σα
n|

k
< ∞, (1.2)

where ∆σα
n = σα

n − σα
n−1 for n ≥ 0, σα

−1 = 0. By using well known identity
tαn = n (∆σα

n) [10], condition (1.2) can be stated by

∞∑

n=1

1

n
|tαn|

k
< ∞. (1.3)

In the special case k = 1 and α = 0, summability |C,α|k reduces to summability
|C,α| [6] and summability |C, 0|k, respectively.

In a more recent paper Sarıgöl [22] has introduced the space |Cα|k for the case
α > −1, k ≥ 1 as the set of all series summable by the method |C,α|k , and shown
that it is also the domain of the matrix Tα,k = (tα,knv ) in the space lk, the space of

all k-absolutely convergent series, where tα,k00 = 1 and

tα,knv =





vAα−1
n−v

n1/kAα
n

, 1 ≤ v ≤ n,

0, v > n.

(1.4)

And also some topological structures of the space |Cα|k have been investigated
and some related matrix mappings have been characterized. We refer the reader
to [22] for relevant terminology, which also extend some well known results of
Flett [7], Orhan & Sarıgöl [17], Bosanquet [3], Mehdi [16], Mazhar [15]. Besides,
the problems of absolute summability factors and comparison of these methods is
studied by many authors in [3-7, 15-17, 25-30] and the important sequence spaces
on the matrix domains have been examined by several authors in [1-2, 8-9, 12,
18-20].



Absolute Cesàro Means 159

Further, Das [5] defined a matrix A to be absolutely kth power conservative, k
≥ 1, if A ∈ B (Ak,Ak) , where

Ak =

{
s = (sv) :

∞∑

v=1

vk−1 |∆sv|
k
< ∞

}
,

and proved every conservative Hausdorff matrix H ∈ B (Ak,Ak) . Note that there
exists a relation between Ak and |C0|k obtained in the special case α = 0 if A lower
triangular matrix. In fact, x ∈ |C0|k if and only if s ∈ Ak, and so A ∈ (Ak,Ak) iff

Ã ∈ (|C0|k , |C0|k), where

ãnv =

{ ∑n
r=v (anr − an−1,r) , 0 ≤ v ≤ n
0, v > n.

(1.5)

For real number α and nonnegative integers n we use the notation

∆αxn =

∞∑

v=n

A−α−1
v−n xv,

whenever the series convergent and throughout the paper k∗ denotes the conjugate
of k > 1, i.e., 1/k + 1/k∗ = 1, and 1/k∗ = 0 for k = 1.

The following known results play important roles in our investigation.
Lemma 1.1. [31] Let 1 < k < ∞. Then, A ∈ (ℓk, ℓ) if and only if

‖A‖(ℓk,ℓ) = sup
N





∞∑

v=0

∣∣∣∣∣
∑

n∈N

anv

∣∣∣∣∣

k∗




1/k∗

< ∞,

where N is any finite set of positive numbers.
However following lemma is more useful in many cases, which gives equivalent

norm.
Lemma 1.2. [23] Let 1 < k < ∞. Then, A ∈ (ℓk, ℓ) if and only if

‖A‖
∗
(ℓk,ℓ)

=






∞∑

v=0

(
∞∑

n=0

|anv|

)k∗





1/k∗

< ∞,

and there exists 1 ≤ ξ ≤ 4 such that ‖A‖(ℓk,ℓ) =
1
ξ ‖A‖

∗
(ℓk,ℓ)

.

The second part of this lemma is easily seen by following the lines in [23] that

‖A‖(ℓk,ℓ) ≤ ‖A‖∗(ℓk,ℓ) ≤ 4 ‖A‖(ℓk,ℓ) .

Lemma 1.3. [11] Let 1 ≤ k < ∞. Then, A ∈ (ℓ, ℓk) if and only if

‖A‖(ℓ,ℓk) = sup
v

{
∞∑

n=0

|anv|
k

}1/k

< ∞.
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Lemma 1.4. Let α > −1 and 1 ≤ k < ∞, then, |Cα|k is norm isomorphic to
the space lk, i.e., |Cα|k

∼= lk.

Proof. To prove the theorem, we need a linear bijection preserving the norm
between |Cα|k and lk. Now, consider transformation Tα,k : |Cα|k → lk defined by

Tα,k
0 (x) = x0, T

α,k
n (x) =

1

n1/kAα
n

n∑

v=1

Aα−1
n−vvxv. (1.6)

The linearity of Tα,k is obvious. Furthermore, it is trivial that if Tα,k(x) = 0, then
x = θ. So, Tα,k is injective. Let Tα,k(x) = y ∈ lk be given, and take the sequence
x as

x0 = y0, xn =
1

n

n∑

v=1

v1/kA−α−1
n−v Aα

v yv, n ≥ 1.

Then we have ‖x‖|Cα|k
= ‖y‖lk < ∞, 1 ≤ k < ∞, which gives x ∈ |Cα|k . Thus,

Tα,k is surjective and norm preserving, which completes the proof.

Hausdorff measure of noncompactness

If S and H are subsets of a metric space (X, d) and ε > 0 then S is called an
ε-net of H , if, for every h ∈ H, there exists an s ∈ S such that d (h, s) < ε; if
S is finite, then the ε-net S of H is called a finite ε-net of H. If Q is a bounded
subset of the metric space X, then the Hausdorff measure of noncompactness of Q
is defined by

χ(Q) = {ε > 0 : Q has a finite ε-net in X} ,

and χ is called the Hausdorff measure of noncompactness.

The following result is an important tool to compute the Hausdorff measure of
noncompactness of a bounded subset of the BK space ℓk, k ≥ 1.

Lemma 1.5. [21] Let Q be a bounded subset of the normed space X where
X = ℓk, for 1 ≤ k < ∞ or X = c0.If Pn : X → X is the operator defined by
Pr (x) = (x0, x1, ..., xr, 0, ...) for all x ∈ X, then

χ(Q) = lim
r→∞

(
sup
x∈Q

‖(I − Pr) (x)‖

)
,

where I is the identity operator on X.
If X and Y be Banach spaces and χ1 and χ2 be Hausdorff measures on X

and Y, then, the linear operator L : X → Y is said to be (χ1, χ2)-bounded
if L (Q) is bounded subset of Y for every bounded subset of X and there ex-
ists a positive constant M such that χ2 (L (Q)) ≤ M χ1 (Q) for every bounded
Q of X. If an operator L is (χ1, χ2)-bounded then the number ‖L‖(χ

1
,χ

2
) =

inf {M > 0 : χ2 (L (Q)) ≤ Mχ1 (Q) for all bounded Q ⊂ X} is called the (χ1, χ2)-
measure of noncompactness of L. In particular, we write ‖L‖(χ,χ) = ‖L‖χ for
χ1 = χ2 = χ.



Absolute Cesàro Means 161

Lemma 1.6. [14] Let X and Y be Banach spaces, L ∈ B (X,Y ) and SX =
{x ∈ X : ‖x‖ ≤ 1} denote the unit sphere in X. Then,

‖L‖χ = χ (L (SX)) ,

and
L ∈ C (X,Y ) if and only if ‖L‖χ = 0.

Lemma 1.7. [13] Let X be normed sequence space and χT and χ denote
the Hausdorff measures of noncompactness on M

XT

and MX , the collections of all

bounded sets in XT andX , respectively. Then, χT (Q) = χ (T (Q) for all Q ∈ M
XT

,

where T = (tnv) is a triangular infinite matrix.

2. Main results and their applications

In this study, we establish some identities or estimates for operator norms and
the Hausdorff measure of noncompactness of certain matrix operators on |Cα|k and
also give the necessary and sufficient conditions for such operators to be compact
by applying the Hausdorff measure of noncompactness, and so the some well known
results are generalized.

Theorem 2.1. Let α > −1, δ > −1, 1 ≤ k < ∞ and D = (dnv) be given by

dnv =





1

n1/kAδ
n

∑n
j=1 jA

δ−1
n−jaj0, n ≥ 1, v = 0

vAα
v

n1/kAδ
n

∑n
j=1 jA

δ−1
n−j∆

α
(ajv

v

)
, n ≥ 1, v ≥ 1.

(2.1)

If A ∈ (|Cα| , |Cδ|k), then

‖A‖(|Cα|,|Cδ|k)
= sup

v

{
∞∑

n=0

|dnv|
k

}1/k

(2.2)

and

‖A‖χ = lim
r→∞

sup
v

{
∞∑

n=r+1

|dnv|
k

}1/k

. (2.3)

Proof. Consider the map Tα,1 : |Cα| → l and T δ,k : |Cδ|k → lk defined by
(1.4) for k = 1 and

T δ,k
0 (x) = x0, T

δ,k
n (x) =

1

n1/kAδ
n

n∑

v=1

Aδ−1
n−vvxv (2.4)

respectively. Then, by Lemma 1.4, x ∈ |Cα| iff y = Tα,1(x) ∈ l, and so ‖x‖|Cα| =

‖y‖l . Hence, since A =
(
T δ,k

)−1
oDoTα,1, it is clear that for all x ∈ |Cα| and y ∈ l,

‖A‖(|Cα|,|Cδ|k)
= sup

x 6=θ

∥∥(DoTα,1)(x)
∥∥
lk

‖x‖|Cα|

= sup
y 6=θ

‖D(y)‖lk
‖y‖l

= ‖D‖(ℓ,ℓk)
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which completes the asserted by Lemma 1.3.
Finally, let S = {x ∈ |Cα| : ‖x‖ ≤ 1} . Then, by Lemma 1.5-Lemma 1.7, it fol-

lows that

‖A‖χ = χ (AS) = χ
(
T δ,kAS

)
= χ

(
DTα,1S

)

= lim
r→∞

sup
y∈Tα,1S

‖(I − Pr)D(y)‖lk = lim
r→∞

sup
v

{
∞∑

n=r+1

|dnv|
k

}1/k

where Pr : lk → lk is defined by Pr(y) = (y0, y1, ..., yr, 0, ...). This proves the
theorem together with Lemma 1.3.

Now, by combining this theorem with Lemma 1.6, we can characterize the
compact operators in the class (|Cα| , |Cδ|k).

Corollary 2.2. Under hypotheses of Theorem 2.1,

A ∈ C (|Cα| , |Cδ|k) if and only if lim
r→∞

sup
v

∞∑

n=r+1

|dnv|
k
= 0.

If A is chosen as a diagonal matrix, i.e., ann = εn, zero otherwise, then A ∈
(|Cα| , |Cδ|k) states the form of summability factors that Σεvxv is summable |Cδ|k
when Σxv is summable |Cα| , and also I ∈ (|Cα| , |Cδ|k) means the comparisons of
these methods, i.e., |Cα| ⊂ |Cδ|k , where I is identity matrix. For the case α, δ > −1
and A = I, Theorem 2.1 reduces to the following result, which includes the norm
of operators characterizing the class of Flett [7] and shows that this operators are
not compact.

Corollary 2.3. If α > −1, δ > α + 1/k∗ and k ≥ 1, then |Cα| ⊂ |Cδ|k , i.e.,
I ∈ (|Cα| , |Cδ|k) ,

‖I‖(|Cα|,|Cδ|k)
= sup

v
vAα

v





∞∑

n=v

(
Aδ−α−1

n−v

n1/kAδ
n

)k




1/k

and

I /∈ C (|Cα| , |Cδ|k) .

Proof. Let r be given and σ (v, r) = vAα
v





∞∑

n=r+1

(
Aδ−α−1

n−v

n1/kAδ
n

)k





1/k

for v ≥ 1.

Then, by Theorem 2.1, ‖LI‖χ = limr→∞ supv σ (v, r). Now, take into account
Aα

n ≤ M(α)nαfor all α and Aα
n ≥ m(α)nα for α > −1, n ≥ 1, and δ > α + 1/k∗,

we get, for v = r + 1,

σ (v, v − 1) ≥ m1

∞∑

n=v

A
(δ−α−1)k
n−v

nA
(δk)
n
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= m1

∫ 1

0

(1− x)
δk

xv−1
∞∑

n=v

A
(δ−α−1)k
n−v xn−vdx (2.5)

= m1

∫ 1

0

(1− x)δk xv−1 (1− x)−δk+αk+k−1 dx ≥
m1

vαk+k

which gives σ (v, r) ≥ m1, where m1 is a positive constant not always the same in
(2.5) different occasion. The term-by-term integration is legitimate, since every-
thing is positive. Thus, we obtain ‖LI‖χ 6= 0, which proves the result by Lemma
1.6.

If it is chosen that δ ≥ 0 and α is nonnegative integer, k ≥ 1 and A is a
diagonal matrix with ann = εn, zero otherwise, in Theorem 2.1, then we can obtain
following result, in which matrix transformation also characterized by Bosanquet
[4] and Mehdi [16] for k = 1 and k ≥ 1, respectively.

Corollary 2.4. [16] If A ∈ (|Cα| , |Cδ|k) for k ≥ 1, δ ≥ 0 and nonnegative
integer α , then

‖LA‖(|Cα|,|Cδ|k)
= sup

v
vAα

v





∞∑

n=v

∣∣∣∣∣∣

n∑

j=v

Aδ−1
n−jA

−α−1
j−v εj

n1/kAδ
n

∣∣∣∣∣∣

k




1/k

.

Now, from a different point of view, let (pn) and (qn) be two positive sequence
with Pn = p0 + p1 + · · · + pn → ∞ and Qn = q0 + q1 + · · · + qn → ∞ as n → ∞.
By following lines in [17] , it is easy to see that |Rp| ⊂ |Rq|k if and only if A ∈
(|C0| , |C0|k) , where A defined by

anv =





qn
QnQn−1

(
Qv −

qvPv

pv

)
, 1 ≤ v ≤ n− 1

qvPv

Qvpv
, v = n

0, n > v.

(2.6)

and |Rq|k is the set of series summable absolute weighted mean, i.e.,

|Rp|k =




x = (av) :

∞∑

n=1

nk−1

∣∣∣∣∣
pn

PnPn−1

n∑

v=1

Pv−1av

∣∣∣∣∣

k

< ∞




 , k ≥ 1

So, by Theorem 2.1, we determine exactly or estimate the norms and Hausdorff
measure of noncompactness of bounded matrix operators charaterized by Orhan
and Sarıgöl [17] , which includes that of Bosanquet [3] and Sunouchi [32] for the
case k = 1.

Corollary 2.5. If 1 ≤ k < ∞ and I ∈
(
|Rp| , |Rq|k

)
, i.e. |Rp| ⊂ |Rq|k , then,

‖LI‖(|Rp|,|Rq|k)
= sup

v

{
∞∑

n=v

∣∣∣n1/k∗

anv

∣∣∣
k
}1/k

, (2.7)
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‖LI‖χ = lim
r→∞

sup
v

{
∞∑

n=r+1

∣∣∣n1/k∗

anv

∣∣∣
k
}1/k

. (2.8)

Proof. Take α = δ = 0 in Theorem 2.1. If I ∈
(
|Rp| , |Rq|k

)
, then A ∈

(|C0| , |C0|k), where A is defined by (2.6) , and so, (2.2) and (2.3) reduce to (2.7)
and (2.8), respectively.

Corollary 2.6. [24] If A is a triangular infinite matrix, then A ∈ (A1,Ak) , k ≥
1, if and only if

‖LA‖(A1,Ak)
= sup

v

{
∞∑

n=v

nk−1 |ânv|
k

}1/k

< ∞, (2.9)

and
∥∥LÂ

∥∥
χ
= lim

r→∞
sup
v

∞∑

n=r+1

nk−1 |ânv|
k .

Proof. In Theorem 2.1, take α = δ = 0. If Ã is defined by (1.5), then, A ∈

(A1,Ak) iff Ã ∈ (|C0| , |C0|k). On the other hand, it is obvious that the condition
(2.2) are reduced to (2.9) , which completes the proof.

Theorem 2.7. Let α, δ > −1, 1 < k < ∞ and D̃ =
(
d̃nv

)
be given by

d̃nv =





1

nAδ
n

n∑
i=1

Aδ−1
n−iiai0, n ≥ 1, v = 0

v1/kAα
v

nAδ
n

n∑
i=1

Aδ−1
n−ii∆

α
(aiv

v

)
, n ≥ 1, v ≥ 1.

(2.10)

If A ∈ (|Cα|k , |Cδ|), then there exists 1 ≤ ξ ≤ 4 such that

‖A‖(|Cα|k,|Cδ|) =
1

ξ






∞∑

v=0

(
∞∑

n=0

∣∣∣d̃nv
∣∣∣
)k∗






1/k∗

, (2.11)

‖A‖χ =
1

ξ
lim
r→∞





∞∑

v=0

(
∞∑

n=r+1

∣∣∣d̃nv
∣∣∣
)k∗





1/k∗

. (2.12)

Proof. Consider the maps Tα,k : |Cα|k → lk and T δ,1 : |Cδ| → l defined by
(1.4) and (2.4) for k = 1, respectively. Then, x ∈ |Cα|k iff y = Tα,k(x) ∈ lk, and

so ‖x‖|Cα|k
= ‖y‖lk . Hence, since A =

(
T δ,1

)−1
oD̃oTα,k, it is clear from Lemma

1.4 for all x ∈ |Cα|k and y ∈ lk,

‖A‖(|Cα|k,|Cδ|) = sup
x 6=θ

∥∥∥
(
T δ,1

)−1
oD̃oTα,k(x)

∥∥∥
|Cδ|

‖Tα,k(x)‖lk

=
∥∥∥D̃
∥∥∥
(lk,l)

=
1

ξ

∥∥∥D̃
∥∥∥
∗

(ℓk,ℓ)
=

1

ξ






∞∑

v=0

(
∞∑

n=0

∣∣∣d̃nv
∣∣∣
)k∗






1/k∗
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which is desired by Lemma 1.2.
Finally, S = {x ∈ |Cα|k : ‖x‖ ≤ 1} . Then, by considering Lemma 1.5-Lemma

1.7, and Lemma 1.2, we get that there exists 1 ≤ ξ ≤ 4 such that

‖A‖χ = χ
(
T δ,1AS

)
= χ

(
D̃Tα,kS

)

= lim
r→∞

sup
y∈Tα,kS

∥∥∥(I − Pr) D̃(y)
∥∥∥
l

= lim
r→∞

∥∥∥D̃(r)
∥∥∥
(lk,l)

=
1

ξ
lim
r→∞

∥∥∥D̃(r)
∥∥∥
∗

(lk,l)

=
1

ξ
lim
r→∞






∞∑

v=0

(
∞∑

n=r+1

∣∣∣d̃nv
∣∣∣
)k∗






1/k∗

where Pr : l → l is defined by Pr(y) = (y0, y1, ..., yr, 0, ...) and D̃(r) =
(
d̃
(r)
nv

)
is

defined by

d̃(r)nv =

{
0, 0 ≤ n ≤ r

d̃nv, n > r
,

which proves the theorem together with Lemma 1.2. From Theorem 2.7 we have

Corollary 2.8. Under hypotheses of Theorem 2.7, A ∈ C (|Cα|k , |Cδ|) if and
only if

‖A‖χ = lim
r→∞





∞∑

v=0

(
∞∑

n=r+1

∣∣∣d̃nv
∣∣∣
)k∗





1/k∗

= 0.

By Theorem 2.7, we determine exactly or estimate the norms and Hausdorff
measure of noncompactness of bounded matrix operators charaterized by Mazhar
[15] .

Corollary 2.9. Let α ≥ 0, k > 1. If A ∈ (|Cα|k , |C1|) , then there exists
1 ≤ ξ ≤ 4 such that

‖LW ‖(|Cα|k,|C1|) =
1

ξ






∞∑

j=1




∞∑

n=j

∣∣∣∣∣∣

n∑

v=j

j1/kAα
j A

−α−1
v−j εv

n(n+ 1)

∣∣∣∣∣∣




k∗





1/k∗

< ∞,

where A is a diagonal matrix.
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14. E. Malkowsky and V. Rakočević, An introduction into the theory of sequence space and
measures of noncompactness, Zb. Rad. (Beogr), 9 (17) (2000), 143-234.

15. S.M. Mazhar, On the absolute summability factors of infinite series, Tohoku Math. J., 23
(1971), 433-451.

16. M.R. Mehdi, Summability factors for generalized absolute summability I, Proc. London
Math. Soc., (3),10 (1960), 180-199.

17. C. Orhan and M.A. Sarıgöl, On absolute weighted mean summability, Rocky Mountain J.
Math.,23 (3) (1993), 1091-1097.

18. M. Mursaleen, and A.K. Noman, The Hausdorff measure of noncompactness of matrix oper-
ators on some BK spaces,Oper. Matrices, 5 (3) (2011), 473-486.

19. M. Mursaleen and A.K. Noman, Compactness by the Hausdorff measure of noncompactness,
Nonlinear Anal.: TMA, 73 (8) (2010), 2541-2557.

20. M. Mursaleen and A.K. Noman, Applications of the Hausdorff measure of noncompactness in
some sequence spaces of weighted means, Comp. and Math. with App., 60 (2010), 1245-1258.
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