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C∗-algebras Generated by Isometries and True Representations

Mamoon Ahmed

abstract: Let (G, P ) be a quasi-lattice ordered group. In this paper we present
a modified proof of Laca and Raeburn’s theorem about the covariant isometric rep-
resentations of amenable quasi-lattice ordered groups [7, Theorem 3.7], by following
a two stage strategy. First, we construct a universal covariant representation for
a given quasi-lattice ordered group (G, P ) and show that it is unique. The con-
struction of this object is new; we have not followed either Nica’s approach in [10]
or Laca and Raeburn’s approach in [7], although all three objects are essentially
the same. Our approach is a very natural one and avoids some of the intricacies
of the other approaches. Then we show if (G, P ) is amenable, true representations
of (G, P ) generate C∗-algebras which are canonically isomorphic to the universal
object.
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Introduction L. A. Coburn proved interesting results in [3] about C∗-algebras
generated by isometries. That paper has consequences which are relevant to this
work and are summarized in Theorem 0.1 below. This theorem is not presented in
the form originally given by the author, rather it is rephrased to draw attention to
its similarity with later results.

Theorem 0.1. There is an isometry U which generates a C∗-algebra C∗(U) that
has the following properties

1. Let C∗(V ) be the C∗-algebra generated by some isometry V . Then there is a
∗-homomorphism φV : C∗(U) → C∗(V ) such that φV (U) = V .

2. If V is non-unitary, then φV is an isomorphism.
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Which says that all C∗-algebras generated by non-unitary isometries are the same
and in some sense, universal.

J.Cuntz in [4] and [5] gave generalizations of this result. Of particular interest
in this paper are two results concerning pairwise orthogonal families of isometries.

Nica introduced a class of groups termed quasi-lattice ordered groups. To
each quasi-lattice ordered group (G,P ) there corresponds representations of P
by isometries called covariant representations. There is also a unique covariant
representation with the universal property. Nica used this universal object to de-
fine amenability, which is an interesting property of some quasi-lattice ordered
groups. The term ‘amenability’ is already used in group representation theory, but
an amenable quasi-lattice ordered group (G,P ) is not necessarily amenable in the
usual sense. However, a quasi-lattice ordered group (G,P ) is necessarily amenable
in Nica’s sense if G is amenable in the usual sense. In this paper we follow Nica’s
sense.

Nica also showed that the amenability of abelian groups can be used to establish
the results of Douglas and Murphy. Laca and Raeburn introduced a subclass of
covariant representations for a given quasi-lattice ordered group, which are called
here true representations. Based on Nica’s work, Laca and Raeburn proved the
following theorem

Theorem 0.2. Let (G,P ) be a quasi-lattice ordered group. There is a covariant
representation (A,U) of P by isometries with the properties

1. Let (B, V ) be a covariant representation of P by isometries. There is a ∗-
homomorphism φV : C∗(U) → C∗(V ) such that φV (Up) = Vp for each p ∈ P .

2. If (G,P ) is amenable and (B, V ) is a true representation then φV is an
isomorphism.

Again this theorem is not presented in the form originally given by the authors,
rather it is rephrased to draw attention to its similarity with later results.

In this paper we give a modified proof of Laca and Raeburn’s Theorem above.
We will follow Laca and Raeburn in employing a two stage strategy. First, we con-
struct a universal covariant representation for a given quasi-lattice ordered group
(G,P ). Then we show that if (G,P ) is amenable, then true representations of
(G,P ) generate C∗-algebras that are canonically isomorphic to the C∗-algebra
generated by the universal covariant representation.

In section 2, quasi-lattice ordered groups and covariant representations will be
discussed. In section 3, true representations and their properties will be discussed.
In section 4, we construct a universal covariant representation and we give our
modified proof of Laca and Raeburn’s Theorem.

1. Preliminaries

Let P be a subsemigroup of a group G with identity e such that P
⋂

P−1 = {e}.
There is a relation ‘≤ ’ on G with respect to P where x ≤ y if x−1y ∈ P . This
relation is a partial order on G which is left invariant in the sense that x ≤ y
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implies zx ≤ zy for any x, y, z ∈ G. It is the natural partial order determined by
P .

Convention 1. We now use (G,P ) to refer to the group G with the natural partial
order ≤ on G determined by P .

Definition 1.1. The partially ordered group (G,P ) is quasi-lattice ordered if every
finite subset of G with an upper bound in P has a least upper bound in P [2, Section
2].

Equivalently, (G,P ) is quasi-lattice ordered if and only if every element of G
with an upper bound in P has a least upper bound in P , and every two elements
in P with a common upper bound in P have a least upper bound in P [10, Section
2.1].

Notation 1. The least upper bound or sup of the elements x and y will be denoted
by x ∨ y.

We conclude the introduction to quasi-lattice ordered groups with the following
property which was observed by Nica [10].

Lemma 1.2. Let (G,P ) be a quasi-lattice ordered group. If x, y ∈ G have a
common upper bound in P and z ∈ G satisfies z(x∨ y) ∈ P then zx and zy have a
common upper bound in P . If, in addition, z ≤ zx ∨ zy, then zx ∨ zy = z(x ∨ y).

Definition 1.3. Let (G,P ) be a quasi-lattice ordered group. A representation of
(G,P ) by isometries is a pair (A, V ) consisting of a unital C∗-algebra A and a map
V from P to A that satisfies the following three conditions:

(i) Ve = 1A;

(ii) V ∗
p Vp = 1A for all p ∈ P ;

(iii) VpVq = Vpq for all p, q ∈ P .
If in addition V satisfies

VpV
∗
p VqV

∗
q =

{

Vp∨qV
∗
p∨q, if p, q have a common upper bound in P ;

0, otherwise.

then V is a covariant isometric representation.

Notation 2. The C∗-algebra generated by the set {Vp : p ∈ P} will be denoted by
C∗(V ). We write AV = {VpV

∗
p : p ∈ P} and BV = {VpV

∗
q : p, q ∈ P}.

Remark 1.4. A covariant isomeric representation of the quasi-lattice ordered
group (G,P ) may be defined as a pair (A, V ) consisting of a unital C∗-algebra
A and a map V from P to A such that

1. Ve = 1A;

2. VpVq = Vpq for all p, q ∈ P ,
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3. V ∗
p Vq =

{

Vp−1(p∨q)V
∗
q−1(p∨q), when p, q have a common upper bound in P ;

0, otherwise.

To see that the first definition implies the second, notice first that if p, q ∈ P
have no common upper bound in P then the covariance condition gives

VPV
∗
p VqV

∗q = 0

and hence
V ∗
p Vq = (V ∗

p Vp)V
∗
p Vq(V

∗
q Vq) = 0

However if p, q have a common upper bound in P , then

V ∗
p Vq = (V ∗

p Vp)V
∗
p Vq(V

∗
q Vq) = V ∗

p Vp∨qV
∗
p∨qVq.

But p ≤ p ∨ q, so p−1(p ∨ q) ∈ P . Therefore,

Vp∨qV
∗
p∨q = VpVp−1(p∨q)V

∗
q−1(p∨q)V

∗
q

thus the result follows. The reverse implication is easily checked.

Example 1.5. Any representation (A, V ) of a totally ordered group (G,P ) by
isometries is covariant. To see this, let p, q ∈ P and suppose that p ≤ q. Then
p−1q ∈ P and

V ∗
p Vq = V ∗

p VpVp−1q = Vp−1q = Vp−1(p∨q)V
∗
q−1(p∨q)

where p ∨ q=max{p, q}=q. Similarly if q ≤ p then

V ∗
p Vq = V ∗

q−1p = Vp−1(p∨q)V
∗
q−1(p∨q).

Thus (A, V ) is covariant.

1.1. The Toeplitz representation

For any quasi-lattice ordered group (G,P ), the semigroup P has an important
representation known as the Toeplitz or Weiner-Hopf representation (B(ℓ2(P )),T).
Where B(ℓ2(P )) is the C∗-algebra of bounded linear operators on the Hilbert space

ℓ2(P ) := {h : P → C :
∑

p∈P

|h(p)|2 <∞}

with pointwise addition, scalar multiplication and inner product

(h, k) :=
∑

s∈P

h(s)k(s).

The map T : P → B(ℓ2(P )) is defined for each p ∈ P and h ∈ ℓ2(P ) by

(Tph)(q) =

{

h(p−1q), if p−1q ∈ P (ie. p ≤ q) ;
0, otherwise,
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for all q ∈ P .
Now,

∑

q∈P

|(Tph)(q)|
2 =

∑

{q∈P :q−1p∈P}

|h(p−1q)|2 =
∑

s∈p−1P
⋂

P

|h(s)|2 = ‖h‖2,

this is true since p−1P
⋂

P = p−1(P
⋂

pP ) = p−1pP = P . Thus for each p ∈ P
and h ∈ ℓ2(P ), Tph ∈ ℓ2(P ). In fact, Tp is an isometry, since

‖Tph‖
2 =

∑

q∈P

|(Tph)(q)|
2 = ‖h‖2.

Notice also that Te is the identity. Next note that for all p, q, s ∈ P such that
(pq)−1s ∈ P and h ∈ ℓ2(P ),

(Tpqh)(s) = h(q−1p−1s) = (Tqh)(p
−1s) = (TpTqh)(s)

since p−1s ∈ qP ⊂ P . Notice also that (pq)−1s /∈ P , then (Tpqh)s = 0 and either
p−1s /∈ P , in which case (Tp(Tqh))s = 0, or else q−1(p−1s) /∈ P , so (Tqh)(p

−1s) =
0. In any case, TpTq = Tpq for all p, q ∈ P , and (B(ℓ2(P )),T) is a representation
of (G,P ) by isometries.

For a quasi-lattice ordered group (G,P ), the Toeplitz representation is covari-
ant. To see this, note first that for p ∈ P and h, k ∈ ℓ2(P ),

(T∗
ph, k) = (h,Tpk)

=
∑

s∈P

h(s)(Tpk)(s)

=
∑

{s∈P :p−1s∈P}

h(s)k(p−1s)

=
∑

t∈p−1P∩P

h(pt)k(t),

where again p−1P ∩ P = P . By the uniqueness of the adjoints, (T∗
ph)(t) = h(pt)

for all t ∈ P , and so given s ∈ P

(TpT
∗
ph)(s) =

{

(T∗
ph)(p

−1s), if p ≤ s
0, otherwise

=

{

h(s), if p ≤ s
0, otherwise.

It follows that for all p, q, s ∈ P and h ∈ ℓ2(P ),

(TpT
∗
pTqT

∗
qh)(s) =

{

h(s), if p ≤ s and q ≤ s
0, otherwise.

Hence TpT
∗
pTqT

∗
q = 0 if p and q have no common upper bound in P . Finally,

if (G,P ) is quasi-lattice ordered, p ≤ s and q ≤ s if and only if p ∨ q ≤ s, and
therefore TpT

∗
pTqT

∗
q = Tp∨qT

∗
p∨q.
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2. True Representations

Definition 2.1. A covariant representation (A, V ) of a quasi-lattice ordered group
(G,P ) is called a true representation if

∏

p∈F (1 − VpV
∗
p ) 6= 0 for all finite subsets

F of P\{e}.

Remark 2.2. The name ‘true’ reflects that Vp is a true isometry (that is, VpV
∗
p 6=

1) for all p ∈ P .

We consider the following examples to illustrate the importance of true repre-
sentations.

2.1. Totally ordered groups

A representation (A, V ) of a totally ordered group (G,P ) by isometries is true
if and only if Vp is non-unitary for all p ∈ P . To see this, recall that all such
representations are covariant. Notice that any p, q ∈ P are comparable, so with
out loss of generality, suppose that p ≤ q. Then

(1− VpV
∗
p )(1− VqV

∗
q ) = 1− VpV

∗
p − VqV

∗
q + Vp∨qV

∗
p∨q = 1− VpV

∗
p

since p ∨ q = max{p, q} = q. Similarly for a finite subset F ⊂ P we have
∏

p∈F

(1 − VpV
∗
p ) = 1− VtV

∗
t

where t = min{p ∈ F}. Hence
∏

p∈F = 0 if and only if VtV
∗
t = 1, and the result

follows.

2.2. The Toeplitz representation

The Toeplitz representation of a quasi-lattice ordered group (G,P ) is a true
representation. To see this, consider δe ∈ ℓ2(P ), defined by

δe(s) =

{

1 if s = e,

0 otherwise.

Then for any p ∈ P \ {e}, (T∗
pδe)(s) = δe(ps) = 0 for all s ∈ P , and hence

(1 − TpT
∗
p)δe = δe. This gives

(
∏

p∈F (1 − TpT
∗
p)
)

δe = δe for any F ⊂ P , and the
result follows.

2.3. Free Products

Let (G,P ) be the free products of the family {(Gi, Pi) : i ∈ I} where I is a finite
set and (Gi, Pi) = (Z,N) for every i ∈ I. We claim that a covariant representation
(A, V ) of (G,P ) is true if and only if

∑

i∈I

Vai
V ∗
ai
< 1( that is 6= 1)
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in which ai denote the element ρi(1) ∈ G, where ρi is the canonical group homo-
morphism from Gi into G.
It is easily verified that for i, j ∈ I, Vai

V ∗
aj

= 0 unless i = j. Hence if (A, V ) is
covariant,

0 6=
∏

i∈I

(1− Vai
V ∗
ai
) = 1−

∑

i∈I

Vai
V ∗
ai

and so
∑

i∈I Vai
V ∗
ai

6= 1. Now suppose that
∑

i∈I Vai
V ∗
ai

6= 1 and consider a finite
set F ⊂ P . For each p ∈ F , there is i ∈ I such that the first element in the reduced
word p is some power of ai. Following Cuntz’ results in [4,5] one can see that

1− Vai
V ∗
ai

≤
∏

i∈I

(1 − VpV
∗
p )

and thus
∏

i∈I(1−Vai
V ∗
ai
) 6= 0 for all finite F ⊂ P if and only if

∏

i∈I(1−Vai
V ∗
ai
) 6=

0.

Lemma 2.3. Let (G,P ) be a quasi-lattice ordered group. If F is a finite subset of
P and x ∈ P satisfies p � x for all p ∈ F , then the representation (A, V ) is true
implies

Q = VxV
∗
x

∏

p∈F

(1 − VpV
∗
p )

is a non-zero projection.

Proof: Notice that Q∗ = Q since (VpV
∗
p )

∗ = VpV
∗
p for all p ∈ P . Also QQ = Q

since VpV
∗
p VpV

∗
p = VpV

∗
p and (1 − VpV

∗
p )(1 − VpV

∗
p ) = (1 − VpV

∗
p ) for all p ∈ P

which is true by the covariance condition. Hence Q is a projection.
Now, for every p ∈ F we have,

VpV
∗
p Vx = VpVp−1(p∨x)V

∗
x−1(p∨x) = VxVx−1(p∨x)V

∗
x−1(p∨x)

and this is true by the covariance condition. Thus

Vx∗ [VxV
∗
x

∏

p∈F

(1− VpV
∗
p )]Vx =

∏

p∈F

(1− Vx−1(p∨x)V
∗
x−1(p∨x))

since V ∗
x Vx = 1. The last expression does not equal zero since (A, V ) is true and

x−1(p ∨ x) 6= e (otherwise x = p ∨ x and p ≤ x). Hence

VxV
∗
x

∏

p∈F

(1− VpV
∗
p ) 6= 0

as required. ✷

Proposition 2.4. A true representation (A, V ) of a quasi-lattice ordered group
(G,P ) has the following properties
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1. Let a =
∑

p∈F γpVpV
∗
p ∈ span(AV ) where F is a finite subset of P and γp ∈ C

for all p ∈ F . Then ‖a‖ = max
{

|
∑

p∈S γp| : S ∈ i(F )
}

, where i(F ) is the
set of initial segments of F .

2. The set BV is linearly independent with span(BV ) dense in C∗(V ).

3. For each finite subset F ⊂ P and S ∈ i(F ) there is a nonzero projection
QF,S ∈ span(AV ) such that for all p, q ∈ F

QF,SVpV
∗
q QF,S =

{

QF,S if p = q ∈ S
0 otherwise.

4. There is a continuous linear map ΦV of C∗(V ) onto span(AV ) such that

ΦV (VpV
∗
q ) =

{

VpV
∗
p , if p = q

0, otherwise.

Recall that:

1. The C∗-algebra generated by AV is commutative and hence any product in
span(AV ) may be rearranged as necessary.

2. For a quasi-lattice ordered group (G,P ) and a finite subset F of P . A subset
I of F is an initial segment if and only if whenever x, y ∈ F , x ≤ y and y ∈ I
imply that x ∈ I.

Proof:

1. For each initial segment S ⊂ F , define

XS = {p ∈ F \ S : p and ∨ S have c.u.b. in P}

and

PS =

{

V∨SV
∗
∨S if XS = φ;

V∨SV
∗
∨S

∏

p∈XS
(1− VpV

∗
p ) othewise.

Now if XS = φ then V ∗
∨SPSV∨S = 1 and hence PS 6= 0. Also if XS 6= φ then

PS 6= 0 by Lemma 2.3 since S ∈ i(F ) and hence p � ∨S for all p ∈ F \ S.
We claim that the set {PS : S ∈ i(F )} has the properties:

(a) For each p ∈ F and S ∈ i(F )

VpV
∗
p PS =

{

PS if p ∈ S
0 otherwise,

(b) For all S,B ∈ i(F ),

PBPS =

{

PS if S = B
0, otherwise,
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(c)
∑

S∈i(F ) PS = 1.

To prove the above claims, notice that if p ∈ S, then p ∨ S = ∨S so by the
covariance condition

VpV
∗
p PS = Vp∨SV

∗
p∨S

∏

p∈XS

(1− VpV
∗
p ) = PS .

Moreover, VpV
∗
p PS 6= 0 implies p ∈ S. To see this, notice that for

VpV
∗
p V∨SV∨S

to be nonzero, p must share a common upper bound with S. In which case,
VpV

∗
p PS contains the factor VpV

∗
p (1− VpV

∗
p ) = 0 unless p ≤ S, so p ∈ S.

Next consider S,B ∈ i(F ). If S = B then PSPB = PS by Lemma 2.3.
However, if S 6= B then by the covariance condition there is some z ∈ (S \
B)

⋃

(B \ S) and so PSPB contains a factor

V∨SV
∗
∨S(1− VzV

∗
z )V∨BV

∗
∨BVS∨BV

∗
S∨B − VS∨z∨BV

∗
S∨z∨B.

But S ∨ z ∨B = S ∨B, so PSPB = 0.

Also,

1 =
∏

p∈F

(VpV
∗
p + (1 − VpV

∗
p ))

=
∑

S⊂F

∏

p∈S

VpV
∗
p

∏

p∈F\S

(1− VpV
∗
p )

=
∑

S∈i(F )

V∨SV
∗
∨S

∏

p∈F\S

(1− VpV
∗
p )

=
∑

S∈i(F )

PS .

The second last equality follows by the covariance condition, since

∏

p∈S

VpV
∗
p =

{

V∨SV
∗
∨S if S has an upper bound in P

0 otherwise

and moreover if S has an upper bound but S /∈ i(F ) then there is some
p ∈ F \ S such that p ≤ ∨S, and hence V∨SV

∗
∨S(1 − VpV

∗
p ) = 0, again by

the covariance condition. The last equality follows since if p ∈ F \ S has no
common upper bound with S then V∨SV

∗
∨S(1−VpV

∗
p ) = 1, by the covariance

condition. Notice that if S = φ the
∏

p∈S VpV
∗
p = 1 and if S = F then

∏

p∈F\S(1− VpV
∗
p ) = 1.
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Thus by claims three and one,

a =
∑

p∈F

γpVpV
∗
p (

∑

S∈i(F )

PS)

=
∑

S∈i(F )

∑

p∈F

γpVpV
∗
p PS

=
∑

S∈i(F )

(
∑

p∈S

γp)PS .

Now, for each B ∈ i(F ),

(a− (
∑

p∈S

γp)1)PB = aPB − (
∑

p∈S

γp)PB = 0

by claim two. Hence βB ∈ σ(a) since PB 6= 0.

In fact σ(a) = {
∑

p∈S γp : S ∈ i(F )}. To see this consider λ ∈ C such that
λ /∈

∑

p∈S γp for all S ∈ i(F ). Then by claim three,

a− λ1 =
∑

S∈i(F )

(
∑

p∈S

γp − λ)PS

But this has inverse
∑

S∈i(F )

(
∑

p∈S

γp − λ)−1PS

by claims two and three. Thus λ /∈ σ(a), and hence σ(a) = {
∑

p∈S γp : S ∈
i(F )}. Since span(AV ) is commutative, then by [8, Theorem 1.3.6], we have

‖a‖ = r(a) = max{|
∑

p∈S

γp| : S ∈ i(F )}.

2. Notice that span(BV ) is dense in C∗(V ) since products of the form

Vp1
V ∗
q1
Vp2

V ∗
q2
...Vpn

V ∗
qn

can be reduced to the form VpV
∗
q for some p, q ∈ P using the covariance

condition.

The proof of linear independence is by contradiction. Suppose that

a =
∑

p,q∈F

γp,qVpV
∗
q = 0

where F is a finite subset of P and {γp,q} ⊂ C are not all zero. Then the set

{q ∈ F : γp,q 6= 0 for some p ∈ F}
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is finite and nonempty, and hence has a minimal element s. Moreover, the
set

{p ∈ F : γp,s 6= 0}

is finite and nonempty and hence has a minimal element r.

Put
P1 =

∏

{p∈F :p�r}

(1− VpV
∗
p ) and P2 =

∏

{q∈F :q�s}

(1 − VqV
∗
q ).

Then for each p ∈ F such that p � r, P1Vp contains a factor

(1− VpV
∗
p )Vp = 0

and hence P1Vp = 0. Similarly for any q ∈ F such that q ≤ s, V ∗
q P2 = 0. So

now
0 = P1aP2 =

∑

{p∈F :p≤r,q≤s}

γp,qP1VpV
∗
q P2 = γr,sP1VrV

∗
s P2.

We claim that P1VrV
∗
s P2 6= 0 and thus γr,s = 0 which contradicts the choice

of r and s.

To establish the claim, notice that

V ∗
r P1VrV

∗
s P2Vs =

∏

p∈S

(1− Vr−1(p∨r)V
∗
r−1(p∨r))

∏

q∈B

(1 − Vs−1(q∨s)V
∗
s−1(q∨s))

where
S = {p ∈ F : p, r have c.u.b. in P, p � r}

and
B = {q ∈ F : q, s have c.u.b. in P, q � s}.

Now notice that r−1(p ∨ r) 6= e for all p ∈ S, otherwise p ∨ r = r and p ≤ r.
Similarly, q−1(q ∨ s) 6= e for all q ∈ B. Thus

V ∗
r P1VrV

∗
q P2Vq 6= 0

since (A, V ) is true and the claim follows.

3. Let F be a finite subset of P and S ∈ i(F ). Put

XS = {p ∈ F \ S : p and ∨ S have c.u.b. in P}

and

ZS = {z(∨S) ∨ S : z ∈ SS−1, z(∨S),∨S have c.u.b. in P} \ {∨S}.

Define

QF,S =

{

V∨SV
∗
∨S if XS ∪ ZS = φ

V∨SV
∗
∨S

∏

p∈XS∪ZS
(1− VpV

∗
p ) otherwise.
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Clearly QF,S ∈ span(AV ).

Now if XS ∪ ZS = φ then V ∗
∨SQF,SV∨S = 1 and hence QF,S 6= 0. Also note

that p � ∨S for all p ∈ F \ S since S is an initial segment of F . Moreover,
for p ∈ ZS , p ∨ S = p � ∨S. Hence QF,S 6= 0 by Lemma 2.3.

Now notice that if p = q ∈ S, VpV
∗
p V∨SV

∗
∨S = V∨SV

∗
∨S by the covariance

condition and hence QF,SVpV
∗
q QF,S = QF,SQF,S = QF,S. We claim that for

p, q ∈ F , QF,SVpV
∗
q QF,S 6= 0 implies that p = q ∈ S. To see this, notice first

that p ∈ S, otherwise QF,SVp contains a factor (1− VpV
∗
p )Vp = 0. Hence,

V ∗
∨SVp = V(∨S)−1(p∨S)V

∗
p−1(p∨S) = V ∗

p−1(∨S)

by the covariance condition and since p ≤ ∨S for all p ∈ S. Similarly q ∈ S
and V ∗

q V∨S = Vq−1(∨S). But then QF,SVpV
∗
q QF,S contains the factor

V ∗
∨SVpV

∗
q V∨S = V ∗

p−1(∨S)Vq−1(∨S).

Again by the covariance condition, p−1(∨S) and q−1(∨S) must have a com-
mon upper bound in P . it follows that

V∨SV
∗
∨SVpV

∗
q V∨SV

∗
∨S = Vp[p−1(∨S)∨q−1(∨S)]V

∗
q[p−1(∨S)∨q−1(∨S)]

by the covariance condition. Now by Lemma 1.2

p[p−1(∨S) ∨ q−1(∨S)] = pq−1(∨S) ∨ S

and similarly
q[p−1(∨S) ∨ q−1(∨S)] = qp−1(∨S) ∨ S.

Hence
V∨SV

∗
∨SVpV

∗
q V∨SV

∗
∨S = Vz(∨S)∨SV

∗
z−1(∨S)∨S

where z = pq−1. So z(∨S) ∨ S ∈ ZS otherwise QF,SVpV
∗
q QF,S contains the

factor
(1− Vz(∨S)∨SV

∗
z(∨S)∨S)Vz(∨S)∨S = 0.

Hence z(∨S)∨S = ∨S and z(∨S) ≤ ∨S. Similarly, z−1(∨S) ≤ ∨S. But then
∨S ≤ z(∨S), so z(∨S) = ∨S and z = e, giving p = q ∈ S, as required.

4. By part (2), BV is linearly independent. Define Φ̃V to be the linear extension
to span(BV ) of the map

VpV
∗
q 7→

{

VpV
∗
p , if p = q

0, otherwise.

Then Φ̃V is norm reducing. To see this, let a =
∑

p,q∈F γp,qVpV
∗
q ∈ span(BV ),

for some finite subset F ⊂ P and complex numbers γp,q. Since i(F ) is finite,
there is S ∈ i(F ) such that |

∑

p∈S γp,p| is a maximum. By (1),

‖Φ̃V (a)‖ =
∣

∣

∑

p∈S

γp,p
∣

∣
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By (3) there is a non-zero projection Q such that

QaQ =
∣

∣

∑

p∈F

γp,p
∣

∣Q = ‖Φ̃V (a)‖Q.

Now ‖Q‖ = 1 since

‖Q‖2 = ‖Q ∗Q‖ = ‖QQ‖ = ‖Q‖

and Q 6= 0. Then

‖Φ̃V (a)‖ = ‖Φ̃V (a)‖ ‖Q‖ = ‖QaQ‖ ≤ ‖a‖ ‖Q‖2 = ‖a‖.

Thus Φ̃V is contractive and has a continuous linear extension ΦV : C∗(V ) →
span(AV ) with the required property.

✷

Remark 2.5.

1. Notice that the items (1) and (2) in Proposition 2.4 each imply that (A, V )
is a true representation.

2. Notice also that (1) of Proposition 2.4 demonstrates that the norm of an
element of the algebra span(AV ) depends only on the coefficients of the set
AV , and not on the choice of true representation. In fact, this is also true
on span(AV ) by the continuity of the norm.

The next lemma shows that there is a strong similarity between any two true
representations of a quasi-lattice ordered group.

Lemma 2.6. Let (A,U) and (B, V ) be covariant representations of the quasi-
lattice ordered group (G,P ). If (A,U) is true then there is a ∗-homomorphism
Φ̃ : span(BU ) → span(BV ) such that Φ̃(UpU

∗
q ) = VpV

∗
q for all p, q ∈ P . Moreover,

if (B, V ) is true then Φ̃ is a ∗-isomorphism.

Proof: By Proposition 2.4 (2), BU is linearly independent, so the linear extension
Φ̃ of the map

UpU
∗
q 7→ VpV

∗
q

for each p, q ∈ P is well defined. Then Φ̃ is a ∗-homomorphism, since for all
p, q, r, s ∈ P such that q, r have a common upper bound,

Φ̃(UpU
∗
qUrU

∗
s ) = Φ̃(UpUq−1(q∨r)U

∗
r−1(q∨r)U

∗
s )

= Vpq−1(q∨r)V
∗
sr−1(q∨r)

= VpV
∗
q VrV

∗
s

= Φ̃(UpU
∗
q )Φ̃(UrU

∗
s )
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by the covariance condition. However if q, r have no common upper bound then

Φ̃(UpU
∗
qUrU

∗
s ) = Φ̃(0) = 0 = VpV

∗
q VrV

∗
s

by the covariance condition. Also,

[Φ̃(UpU
∗
q )]

∗ = [VpV
∗
q ]

∗ = VqV
∗
p = Φ̃([UpU

∗
q ]

∗).

These properties extend to span(BU ) by the linearity of the map.
Now, suppose (B, V ) is true and Φ̃(a) = 0 for some

a =
∑

p,q∈F

γp,qUpU
∗
q ∈ span(BU )

where F is a finite subset of P and γp,q ∈ C for each p, q ∈ F . Then

∑

p,q∈F

γp,qVpV
∗
q = Φ̃(a) = 0,

so by Proposition 2.4(2) γp,q = 0 for all p, q ∈ F . Hence a = 0 and Φ̃ is injective.

It is clear that Φ̃ is surjective and the result follows. ✷

Thus the algebraic structure of span(BV ) is essentially the same irrespective of
the choice of a true representation (A, V ). It may be that for certain quasi-lattice
ordered groups there is only one way to complete this algebra as a C∗-algebra and
then all true representations must be the same. It turns out that this happens
if and only if (G,P ) is amenable. Amenability will be discussed in the next sec-
tion. However, let us point out here that amenability is in some sense a topological
restriction on the algebra span(BV ) generated by a true representation (A, V ).
Amenability can be regarded as the requirement that all norms on this algebra
with the essential C∗-algebra properties are equivalent.

3. The universal covariant representation and amenability

In this section we give two of the main results in this paper. We will follow
the two stage strategy outlined in the introduction to show Laca and Raeburn’s
Theorem. First, we construct a universal covariant representation for a given quasi-
lattice ordered group (G,P ) and show that it is unique. Then we discuss amenabil-
ity and its relationship to true representations.

Definition 3.1. A universal covariant representation (A,U) of the quasi-lattice
ordered group (G,P ) is a covariant representation such that if (B, V ) is any other
covariant representation of (G,P ), there is a unique ∗-homomorphism φ : C∗(U) →
C∗(V ) such that φ(Up) = Vp for all p ∈ P .

Theorem 3.2. Let (G,P ) be a quasi-lattice ordered group. Then there is a uni-
versal covariant representation (A,U) of (G,P ).
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Proof: Let {(B(HV ), V ) : V ∈ Λ} be the set of covariant representations of
(G,P ) on closed subspaces {HV }V ∈Λ of the Hilbert space ℓ2(P ). Define A =
B(

⊕

V ∈ΛHV ) and U : P → A by Up =
⊕

V ∈Λ Vp for each p ∈ P . We claim that
(B(

⊕

V ∈ΛHV ), U) is a covariant representation of (G,P ). To see this, first notice
that,

Ue =
⊕

V ∈Λ

Ve =
⊕

V ∈Λ

1HV
= 1.

Also,

UpUq =
⊕

V ∈Λ

Vp
⊕

V ∈Λ

Vq =
⊕

V ∈Λ

VpVq =
⊕

V ∈Λ

Vpq = Upq

for all p, q ∈ P . Finally, if p, q ∈ P have a common upper bound in P , then by the
covariance condition

U∗
pUq =

⊕

V ∈Λ

V ∗
p

⊕

V ∈Λ

Vq =
⊕

V ∈Λ

V ∗
p Vq =

⊕

V ∈Λ

Vp−1(p∨q)V
∗
q−1(p∨q)

= Up−1(p∨q)Uq−1(p∨q).

However if p, q have no common upper bound, then by the covariance condition
we have U∗

pUq =
⊕

V ∈Λ V
∗
p Vq = 0. Thus (A,U) is a covariant representation as

required.

In fact, (A,U) is true. To see this observe that T ∈ Λ, where (B(ℓ2(P )), T )
is the Toeplitz representation of (G,P ). Hence if F is a finite subset of P \ {e}
then

∏

p∈F (1 − UpU
∗
p ) 6= 0, since otherwise

∏

p∈F (1 − TpT
∗
p ) = 0 for the true

representation (B(ℓ2(P )), T ). By Proposition 2.4, BU = {UpU
∗
q : p, q ∈ P} is

linearly independent with span dense in C∗(G,P ).

Let (B,W ) be a covariant representation of (G,P ). Recall from Lemma 2.6 that
there is a ∗-homomorphism φ̃ : span(BU ) → C∗(W ) such that φ̃(UpU

∗
q ) = WpW

∗
q

for all p, q ∈ P . It remains to show that φ̃ extends to a ∗-homomorphism on C∗(U).
It will be sufficient to show that the map is norm-reducing on span(BU ).

Let a =
∑

p,q∈F γp,qUpU
∗
q ∈ span(BU ) for some finite F ⊂ P and γp,q ∈ C.

Observe that span(BU ) is a ∗-algebra with dimension equal to that of the Hilbert
space ℓ2(P ) and hence

‖φ̃(a)‖ ≤ sup{‖ρ(a)‖ : ρ ∈ Ω}

where Ω is the set of ∗-homomorphisms taking span(BV ) into the bounded opera-
tors on a closed subspace of ℓ2(P ). Now, since each ρ ∈ Ω is a ∗-homomorphism,
ρ ◦ U is a covariant representation of (G,P ) on a closed subspace of the Hilbert
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space ℓ2(P ). That is ρ ◦ U ∈ Λ for all ρ ∈ Ω. So now,

‖φ̃(a)‖ ≤ sup{‖ρ(
∑

p,q∈F

γp,qUpU
∗
q )‖ : ρ ∈ Ω}

= sup{‖
∑

p,q∈F

γp,q(ρ ◦ U)p(ρ ◦ U)∗q‖ : ρ ∈ Ω}

≤ sup{‖
∑

p,q∈F

γp,qVpV
∗
q ‖ : V ∈ Λ}

= ‖
⊕

V ∈Λ

(
∑

p,q∈F

γp,qVpV
∗
q )‖

= ‖
∑

p,q∈F

γp,qUpU
∗
q ‖

= ‖a‖.

Hence φ̃ has a unique continuous extension

φ : C∗(U) → C∗(W ). (3.1)

That φ is a ∗-homomorphism follows from its continuity. Any other ∗-homomor-
phism taking Up toWp for all p ∈ P must also be continuous, and hence agree with
φ on all of C∗(G,P ). ✷

Remark 3.3. In fact, any other universal covariant representation (Â, Û) of the
quasi-lattice ordered group (G,P ) is essentially the same as (C∗(U), U) in the fol-
lowing sense. There are ∗-homomorphisms φ : C∗(U) → C∗(Û) and ψ : C∗(Û) →
C∗(U) such that

φ(UpU
∗
q ) = ÛpÛ

∗
q and ψ(ÛP Û

∗
q ) = UpU

∗
q

for all p, q ∈ P . Then

ψ ◦ φ(UpU
∗
q ) = ψ(ÛpÛ

∗
q ) = UpU

∗
q .

By the linearity and continuity of ψ and φ, ψ ◦ φ(a) = a for all a ∈ C∗(U).
Similarly, φ ◦ ψ(a′) = a′ for all a′ ∈ C∗(Û), so φ and ψ are inverses. Moreover,
since φ and ψ are contractive, C∗(U) and C∗(Û) are isometrically isomorphic.
Therefore, (C∗(U), U) will be referred to as the universal covariant representation
and C∗(U) will be given the symbol C∗(G,P ).

Definition 3.4. A quasi-lattice ordered group (G,P ) is a amenable if

ΦU : C∗(G,P ) → C∗(V )

is faithful on positive elements, in the sense that if a ∈ C∗(G,P ) then ΦU (a
∗a) = 0

implies a = 0.
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We now give a technical Lemma that will be required for our next main Theorem
in this section.

Lemma 3.5. Let (G,P ) be a quasi-lattice ordered group. If (A, V ) is a covari-
ant representation of (G,P ) and φ : C∗(G,P ) → C∗(V ) is the ∗-homomorphism
supplied by Theorem 3.2 in Equation 3.1, then

ΦV ◦ φ = φ ◦ΦU

where Φ is the homomorphism in Proposition 2.4.

Proof: The maps ΦV ◦ φ and φ ◦ ΦU operate on UpU
∗
q in the following manner:

(ΦV ◦ φ)(UpU
∗
q ) = ΦV (VpV

∗
q )

=

{

VpV
∗
p , if p = q

0, otherwise

and

(φ ◦ ΦU )(UpU
∗
q ) =

{

φ(UpU
∗
p ), if p = q

φ(0), otherwise

=

{

VpV
∗
p , if p = q

0, otherwise

and thus (ΦV ◦φ)(UpU
∗
q ) = (φ◦ΦU )(UpU

∗
q ). These maps are linear and continuous,

by Theorem 3.2 and Proposition 2.4(4), this equality extends to C∗(G,P ). ✷

Theorem 3.6. The C∗-algebra generated by a true representation of an amenable
quasi-lattice ordered group (G,P ) is canonically isomorphic to the C∗-algebra gen-
erated by the universal covariant representation.

Proof: Let V be a true representation of (G,P ), and φ : C∗(G,P ) → C∗(V ) be
the ∗-homomorphism in Equation 3.1. Suppose that φ(a) = 0 for some a ∈ C∗(V ).
By Remark 2.5(2),

‖ΦU (a
∗a)‖ = ‖(φ ◦ ΦU )(a

∗a)‖

since ΦU (a
∗a) ∈ span(AU ). Thus by Lemma 3.5,

‖ΦU (a
∗a)‖ = ‖(ΦV ◦ φ)(a∗a)‖ = 0.

Hence a = 0 by hypothesis. By [8, Theorem 3.1.5], φ is an isometric ∗-isomorphism.
✷
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