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Three Weak Solutions for a Class of Neumann Boundary Value

Systems Involving the (p1, . . . , pn)-Laplacian

Armin Hadjian

abstract: In this paper, we establish the existence of two intervals of positive
real parameters λ for which a class of Neumann boundary value equations involving
the (p1, . . . , pn)-Laplacian admits three weak solutions, whose norms are uniformly
bounded with respect to λ belonging to one of the two intervals. The approach is
based on variational methods.

Key Words: p-Laplacian, Neumann problem, Mmultiplicity results, Varia-
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1. Introduction

Throughout the paper, Ω ⊂ R
N (N ≥ 1) is a bounded domain with a smooth

boundary ∂Ω, pi > N (and pi ≥ 2) for 1 ≤ i ≤ n are natural numbers and λ is a
positive parameter.

The aim of this paper is to investigate the following quasilinear elliptic system

{

∆pi
ui + λFui

(x, u1, . . . , un) = ai(x)|ui|
pi−2ui in Ω,

∂ui/∂ν = 0 on ∂Ω,
(1.1)

for 1 ≤ i ≤ n, where ∆pi
ui := div(|∇ui|

pi−2∇ui) is the so called pi-Laplacian
operator, a1, . . . , an ∈ L∞(Ω) be n functions such that min1≤i≤n{ess infΩ ai} > 0,
F : Ω×R

n → R is a function such that the map x 7→ F (x, t1, t2, . . . , tn) is measur-
able in Ω for all (t1, . . . , tn) ∈ R

n and the map (t1, t2, . . . , tn) 7→ F (x, t1, t2, . . . , tn)
is C1 in R

n for a.e. x ∈ Ω, Fui
denotes the partial derivative of F with respect to

ui, and ν is the outer unite normal to ∂Ω.
Moreover, F satisfy the following additional assumptions:

(F1) for every M > 0,

sup
|(t1,...,tn)|≤M

|Fui
(x, t1, . . . , tn)| ∈ L1(Ω).
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(F2) F (x, 0, . . . , 0) = 0 for a.e. x ∈ Ω.

In recent years, many publications (see, e.g., [2,4,5,6,7,8,9,11,13] and references
therein) have appeared concerning quasilinear elliptic systems which have been
used in a great variety of applications. Multiplicity results for this kind of systems
have been broadly investigated in which the technical approach is based on the
three critical points theorems.

Bonanno in [3] established the existence of two intervals of positive real pa-
rameters λ for which the functional Φ− λJ has three critical points, whose norms
are uniformly bounded with respect to λ belonging to one of the two intervals. He
illustrated the result for a two point boundary value problem. In this paper, by
assuming that F (x, ·) has a (p − 1)-sublinear growth at ∞ and satisfies a certain
local condition near to 0, we prove the existence of two intervals Λ

′

1 and Λ
′

2 such
that, for each λ ∈ Λ

′

1 ∪ Λ
′

2, the system (1.1) admits at least three weak solutions
whose norms are uniformly bounded with respect to λ ∈ Λ

′

2.
This paper is arranged as follows. In Section 2, we recall some basic notations

and definitions and our main tool (Theorem 2.1), while Section 3 is devoted to our
main result, some consequences and one example that illustrates the result. For a
thorough account on the subject, we refer the reader to the very recent monographs
[10,12].

2. Preliminaries

First we recall for the reader’s convenience Theorem 2.1 of [3] to transfer the
existence of three solutions of the system (1.1) into the existence of critical points
of the Euler functional. Here, X∗ denotes the dual space of X .

Theorem 2.1. Let X be a separable and reflexive real Banach space; Φ : X → R

a non-negative continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗; J : X → R a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Assume that there exists x0 ∈ X such that Φ(x0) = J(x0) =
0 and that

(i) lim‖x‖→+∞(Φ(x) − λJ(x)) = +∞ for all λ ∈ [0,+∞[.

Further, assume that there are r > 0, x1 ∈ X such that:

(ii) r < Φ(x1);

(iii) sup
x∈Φ−1(]−∞,r[)

w

J(x) < r
r+Φ(x1)

J(x1).

Here Φ−1(]−∞, r[)
w

denotes the closure of Φ−1(] − ∞, r[) in the weak topology.
Then, for each

λ ∈ Λ1 :=







Φ(x1)

J(x1)− sup
x∈Φ−1(]−∞,r[)

w

J(x)
,

r

sup
x∈Φ−1(]−∞,r[)

w

J(x)






,
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the equation
Φ′(x) − λJ ′(x) = 0 (2.1)

has at least three solutions in X and, moreover, for each h > 1, there exists an
open interval

Λ2 ⊆









0,
hr

r J(x1)
Φ(x1)

− sup
x∈Φ−1(]−∞,r[)

w

J(x)









and a positive real number σ such that, for each λ ∈ Λ2, the equation (2.1) has at
least three solutions in X whose norms are less than σ.

In the sequel, X will denote the Cartesian product of the n Sobolev spaces
W 1,pi(Ω) for 1 ≤ i ≤ n, i.e., X = W 1,p1(Ω)×W 1,p2(Ω)× · · · ×W 1,pn(Ω) equipped
with the norm

‖(u1, u2, . . . , un)‖ :=

n
∑

i=1

‖ui‖pi
,

where

‖ui‖pi
:=

(∫

Ω

|∇ui(x)|
pidx+

∫

Ω

ai(x)|ui(x)|
pidx

)1/pi

for 1 ≤ i ≤ n, which is equivalent to the usual one.
Put

k := max

{

sup
ui∈W 1,pi (Ω)\{0}

maxx∈Ω |ui(x)|
pi

‖ui‖
pi
pi

: for 1 ≤ i ≤ n

}

. (2.2)

Since pi > N for 1 ≤ i ≤ n, the embedding X →֒ (C0(Ω))n is compact, and so
k < +∞. It follows from Proposition 4.1 of [1] that

sup
ui∈W 1,pi (Ω)\{0}

maxx∈Ω |ui(x)|
pi

‖ui‖
pi
pi

>
1

‖ai‖1
for 1 ≤ i ≤ n,

where ‖ai‖1 :=
∫

Ω
|ai(x)|dx for 1 ≤ i ≤ n, and so 1

‖ai‖1

≤ k for 1 ≤ i ≤ n. In

addition, if Ω is convex, it is known [1] that

sup
ui∈W1,pi (Ω)\{0}

max
x∈Ω |ui(x)|

‖ui‖pi
≤ 2

pi−1

pi max

{

( 1

‖ai‖1

) 1

pi ,
diam(Ω)

N
1

pi

( pi − 1

pi −N
m(Ω)

)

pi−1

pi
‖ai‖∞

‖ai‖1

}

for 1 ≤ i ≤ n, where m(Ω) is the Lebesgue measure of the set Ω, and equality
occurs when Ω is a ball.

We recall that a function u = (u1, . . . , un) ∈ X is said to be a (weak) solution
of the system (1.1) if

∫

Ω

n
∑

i=1

|∇ui(x)|
pi−2∇ui(x)∇vi(x)dx − λ

∫

Ω

n
∑

i=1

Fui
(x, u1(x), . . . , un(x))vi(x)dx

+

∫

Ω

n
∑

i=1

ai(x)|ui(x)|
pi−2ui(x)vi(x)dx = 0
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for all v = (v1, . . . , vn) ∈ X .
For all c > 0 we denote by K(c) the set

{

(t1, . . . , tn) ∈ R
n :

n
∑

i=1

|ti|
pi

pi
≤ c

}

.

This set will be used in some of our hypotheses with appropriate choices of c.

3. Main results

Our main result is the following theorem.

Theorem 3.1. Assume that there exist n+1 positive constants r and si for 1 ≤ i ≤
n, with si < pi for 1 ≤ i ≤ n, and two functions α ∈ L1(Ω) and w = (w1, . . . , wn) ∈
X such that

(j)
∑n

i=1

‖wi‖pi
pi

pi
> r;

(jj)

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx <

r

∫

Ω

F (x,w1(x), . . . , wn(x))dx

2

n
∑

i=1

‖wi‖
pi
pi

pi

;

(jjj) F (x, t1, . . . , tn) ≤ α(x) (1 +
∑n

i=1 |ti|
si) for a.e. x ∈ Ω and all (t1, . . . , tn) ∈

R
n.

Then, for each

λ ∈ Λ
′

1 :=

]

n
∑

i=1

‖wi‖
pi
pi

pi
∫

Ω

F (x,w1(x), . . . , wn(x))dx−

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

,

r
∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

[

,

the system (1.1) admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

Λ
′

2 ⊆

[

0,
hr

r

∫

Ω
F (x,w1(x), . . . , wn(x))dx

∑n
i=1

‖wi‖pi
pi

pi

−

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

]

and a positive real number σ such that, for each λ ∈ Λ
′

2, the system (1.1) admits
at least three weak solutions in X whose norms are less than σ.
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Proof: In order to apply Theorem 2.1, we begin by setting

Φ(u) :=

n
∑

i=1

‖ui‖
pi
pi

pi
(3.1)

and

J(u) :=

∫

Ω

F (x, u1(x), . . . , un(x))dx (3.2)

for all u = (u1, . . . , un) ∈ X. It is known that Φ and J are well defined and
continuously Gâteaux differentiable functionals with

Φ′(u)(v) =

∫

Ω

n
∑

i=1

|∇ui(x)|
pi−2∇ui(x)∇vi(x)dx

+

∫

Ω

n
∑

i=1

ai(x)|ui(x)|
pi−2ui(x)vi(x)dx

and

J ′(u)(v) =

∫

Ω

n
∑

i=1

Fui
(x, u1(x), . . . , un(x))vi(x)dx

for every u = (u1, . . . , un), v = (v1, . . . , vn) ∈ X, as well as Φ is sequentially weakly
lower semicontinuous (see Proposition 25.20 of [15]). Also, Φ′ : X → X∗ is a
uniformly monotone operator in X (for more details, see (2.2) of [14]), and since
Φ′ is coercive and hemicontinuous in X , by applying Theorem 26.A of [15], Φ′

admits a continuous inverse on X∗.
We claim that J ′ : X → X∗ is a compact operator. To this end, it is enough

to show that J ′ is strongly continuous on X . For this, for fixed (u1, . . . , un) ∈
X , let (u1m, . . . , unm) → (u1, . . . , un) weakly in X as m → +∞. Then we
have (u1m, . . . , unm) converges uniformly to (u1, . . . , un) on Ω as m → +∞ (see
[15]). Since F (x, ·, . . . , ·) is C1 in R

n for every x ∈ Ω, the derivatives of F are
continuous in R

n for every x ∈ Ω, so for 1 ≤ i ≤ n, Fui
(x, u1m, . . . , unm) →

Fui
(x, u1, . . . , un) strongly as m → +∞. By the Lebesgue control convergence the-

orem, J ′(u1m, . . . , unm) → J ′(u1, . . . , un) strongly as m → +∞. Thus we proved
that J ′ is strongly continuous on X , which implies that J ′ is a compact operator
by [15, Proposition 26.2]. Hence the claim is true.

Thanks to the assumption (jjj), for each λ > 0 one has

lim
‖u‖→+∞

(Φ(u)− λJ(u)) = +∞.

Also, from (j) and (3.1) we get Φ(w) > r. Due to (2.2), for each ui ∈ W 1,pi(Ω)

sup
x∈Ω

|ui(x)|
pi ≤ k‖ui‖

pi
pi

for 1 ≤ i ≤ n, so we have

sup
x∈Ω

n
∑

i=1

|ui(x)|
pi

pi
≤ k

n
∑

i=1

‖ui‖
pi
pi

pi
= kΦ(u) (3.3)
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for every u = (u1, . . . , un) ∈ X . From (3.3), for each r > 0 we obtain

Φ−1(]−∞, r]) =

{

u = (u1, . . . , un) ∈ X : Φ(u) ≤ r

}

=

{

u = (u1, . . . , un) ∈ X :

n
∑

i=1

‖ui‖
pi
pi

pi
≤ r

}

⊆

{

u = (u1, . . . , un) ∈ X :

n
∑

i=1

|ui(x)|
pi

pi
≤ kr for all x ∈ Ω

}

,

and, since Φ−1(]−∞, r[)
w
= Φ−1(]−∞, r]), owing to our assumptions, we have

sup
u∈Φ−1(]−∞,r[)

w

J(u) ≤

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

<

r

∫

Ω

F (x,w1(x), . . . , wn(x))dx

2

n
∑

i=1

‖wi‖
pi
pi

pi

< r

∫

Ω

F (x,w1(x), . . . , wn(x))dx

r +

n
∑

i=1

‖wi‖
pi
pi

pi

=
r

r +Φ(w)
J(w).

We can apply Theorem 2.1 at this point and obtain two intervals Λ1 and Λ2

such that if λ ∈ Λ1∪Λ2, then system (1.1) has at least three weak solutions. Next,
we derive the upper and lower bounds of Λ1 and Λ2. For each x ∈ Ω we have

r

sup
u∈Φ−1(]−∞,r[)

w

J(u)
≥

r
∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

and

Φ(w)

J(w) − sup
u∈Φ−1(]−∞,r[)

w

J(u)

≤

n
∑

i=1

‖wi‖
pi
pi

pi
∫

Ω

F (x,w1(x), . . . , wn(x))dx −

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

.
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Note also that (jj) immediately implies

n
∑

i=1

‖wi‖
pi
pi

pi
∫

Ω

F (x,w1(x), . . . , wn(x))dx −

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

<

n
∑

i=1

‖wi‖
pi
pi

pi




2
∑n

i=1

‖wi‖pi
pi

pi

r
− 1





∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

<

n
∑

i=1

‖wi‖
pi
pi

pi




r +
∑n

i=1

‖wi‖pi
pi

pi

r
− 1





∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

=
r

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx
.

Also

hr

r J(w)
Φ(w) − sup

u∈Φ−1(]−∞,r[)
w

J(u)

≤
hr

r

∫

Ω

F (x,w1(x), . . . , wn(x))dx

n
∑

i=1

‖wi‖
pi
pi

pi

−

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx

= ρ.

So

∫

Ω

sup
(t1,...,tn)∈K(kr)

F (x, t1, . . . , tn)dx < r

∫

Ω

F (x,w1(x), . . . , wn(x))dx

∑n
i=1

‖wi‖pi
pi

pi

,

and now apply (jj). Thus, by choosing x0 = 0, x1 = w, from Theorem 2.1 it follows
that, for each λ ∈ Λ

′

1 the system (1.1) admits at least three weak solutions and
there exist an open interval Λ

′

2 ⊆ [0, ρ] and a real positive number σ such that, for
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each λ ∈ Λ
′

2, the system (1.1) admits at least three weak solutions whose norms in
X are less than σ. ✷

Now, we give a particular consequence of Theorem 3.1 for a fixed test function
w. Moreover, F dose not depend on x ∈ Ω.

Corollary 3.2. Let F : Rn → R be a C1-function and assume that there exist
n + 3 positive constants γ, δ, α and si for 1 ≤ i ≤ n, with si < pi for 1 ≤ i ≤ n,
such that

(k)
∑n

i=1
δpi

pi
> γ∏

n
i=1

pi
;

(kk) max
(t1,...,tn)∈K( γ∏n

i=1
pi

)
F (t1, . . . , tn) <

γ
2k

∏
n
i=1

pi

F (δ,...,δ)
∑

n
i=1

δpi
pi

‖ai‖1

;

(kkk) F (t1, . . . , tn) ≤ α(1 +
∑n

i=1 |ti|
si) for all (t1, . . . , tn) ∈ R

n.

Then, for each

λ ∈ Λ
′

1 :=

]
∑n

i=1
δpi

pi
‖ai‖1

m(Ω)
(

F (δ, . . . , δ)− max
(t1,...,tn)∈K( γ∏n

i=1
pi

)
F (t1, . . . , tn)

) ,

γ
k
∏

n
i=1

pi

m(Ω) max
(t1,...,tn)∈K( γ∏n

i=1
pi

)
F (t1, . . . , tn)

[

,

the system
{

∆pi
ui + λFui

(u1, . . . , un) = ai(x)|ui|
pi−2ui in Ω,

∂ui/∂ν = 0 on ∂Ω,
(3.4)

for 1 ≤ i ≤ n, admits at least three weak solutions in X and, moreover, for each
h > 1, there exist an open interval

Λ
′

2 ⊆

[

0,

hγ
k
∏

n
i=1

pi

m(Ω)
(

γ
k
∏

n
i=1

pi

F (δ,...,δ)
∑

n
i=1

δpi
pi

‖ai‖1

− max
(t1,...,tn)∈K( γ∏n

i=1
pi

)
F (t1, . . . , tn)

)

]

and a positive real number σ such that, for each λ ∈ Λ
′

2, the system (3.4) admits
at least three weak solutions in X whose norms are less than σ.

Proof: We prove that all assumptions of Theorem 3.1 are fulfilled with w(x) :=
(δ, . . . , δ) and r := γ

k
∏

n
i=1

pi
. If we put w(x) := (δ, . . . , δ) for each x ∈ Ω, then

we have ‖wi‖pi
= ‖ai‖

1

pi

1 δ for 1 ≤ i ≤ n. By (k) and the fact that 1
‖ai‖1

≤ k for

1 ≤ i ≤ n, we get Φ(w) =
∑n

i=1
δpi

pi
‖ai‖1 > r. The other assumptions of Theorem

3.1 are clearly satisfied. ✷
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Corollary 3.3. Let f : R → R be a continuous function. Put F (t) =
∫ t

0 f(ξ)dξ
for each t ∈ R. Assume that there exist four positive constants γ, δ, α and s with
δp > γ and s < p, such that

(l) max
t∈[− p

√
γ, p

√
γ]
F (t) < F (δ)

2k‖a‖1

;

(ll) F (t) ≤ α(1 + |t|s) for all t ∈ R.

Then, for each

λ ∈ Λ
′

1 :=

]

δp‖a‖1

pm(Ω)
(

F (δ)− max
t∈[− p

√
γ, p

√
γ]
F (t)

) ,
γ

(kp)m(Ω) max
t∈[− p

√
γ, p

√
γ]
F (t)

[

,

the problem
{

∆pu+ λf(u) = a(x)|u|p−2u in Ω,
∂u/∂ν = 0 on ∂Ω

(3.5)

admits at least three weak solutions in W 1,p(Ω) and, moreover, for each h > 1,
there exist an open interval

Λ
′

2 ⊆

[

0,
hγ

(kp)m(Ω)
(

γF (δ)
kδp‖a‖1

− max
t∈[− p

√
γ, p

√
γ]
F (t)

)

]

and a positive real number σ such that, for each λ ∈ Λ
′

2, the problem (3.5) admits
at least three weak solutions in W 1,p(Ω) whose norms are less than σ.

Finally, we present the application of Theorem 3.1 in the ordinary case with
p = 2, that Example 3.5 illustrates the result. For simplicity, we put Ω = (0, 1).
Note that in this situation we have

k = 2max{‖a‖−1
1 , ‖a‖2∞‖a‖−2

1 }.

Corollary 3.4. Let f : R → R be a continuous function. Put F (t) =
∫ t

0
f(ξ)dξ

for each t ∈ R. Assume that there exist four positive constants γ, δ, α and s with
δ2 > γ and s < 2, such that assumption (ll) in Corollary 3.3 holds, and

(m) max
t∈[−√

γ,
√
γ]
F (t) < F (δ)

2k‖a‖1

.

Then, for each

λ ∈ Λ
′

1 :=

]

δ2‖a‖1

2
(

F (δ)− max
t∈[−√

γ,
√
γ]
F (t)

) ,
γ

2k max
t∈[−√

γ,
√
γ]
F (t)

[

,

the problem
{

u′′ + λf(u) = a(x)u in (0, 1),
u′(0) = u′(1) = 0

(3.6)
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admits at least three classical solutions in C2([0, 1]) and, moreover, for each h > 1,
there exist an open interval

Λ
′

2 ⊆

[

0,
hγ

2k
(

γF (δ)
kδ2‖a‖1

− max
t∈[−√

γ,
√
γ]
F (t)

)

]

and a positive real number σ such that, for each λ ∈ Λ
′

2, the problem (3.6) admits
at least three classical solutions in C2([0, 1]) whose norms are less than σ.

Example 3.5. Consider the problem

{

u′′ + λe−uu11(12− u) = xu in (0, 1),
u′(0) = u′(1) = 0.

(3.7)

Set f(t) = e−tt11(12 − t) for all t ∈ R. A direct calculation yields F (t) = e−tt12

for all t ∈ R. Note that by choosing δ = 2, γ = 1 and a(x) = x, we have k = 8. A
simple computation shows

F (δ)

2k‖a‖1
− max

t∈[−√
γ,

√
γ]
F (t) =

29

e2
− e > 0.

Moreover, with s = 1 and α sufficiently large, the assumption (ll) is satisfied. So,
by Corollary 3.4, for each λ ∈ Λ

′

1 :=] 1
212e−2−e ,

1
16 e [, the problem (3.7) admits at

least three classical solutions in C2([0, 1]) and, moreover, for each h > 1, there exist
an open interval Λ

′

2 ⊆
[

0, h
16(28e−2−e)

]

and a positive real number σ such that, for

each λ ∈ Λ
′

2, the problem (3.7) admits at least three classical solutions in C2([0, 1])
whose norms are less than σ.
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