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Novel Models for Obtaining the Closest Weak and Strong Efficient

Projections in Data Envelopment Analysis
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abstract: Data Envelopment Analysis (DEA) is a nonparametric method for
measuring the relative efficiency and performance of Decision Making Units (DMUs).
Determining the least distance efficiency measure and thereby identifying the best
reference point, is an important issue in recent DEA literature. In this paper, two
alternative target setting models based on quadratically constrained programming
(QCP), have been developed to allow for the low efficient DMUs to find the easiest
way to improve theirs efficiency and reach the efficient boundary. One model seeks
the closest weak efficient projection and the other suggests the most appropriate
direction towards the strong efficient frontier surface. Both of these models pro-
vide the closest projection in one stage. Finally, a proposed problem is empirically
checked by using recent data from thirty European airports.
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1. Introduction

Analyzing the performance and efficiency of organizations is a crucial challenge
of the modern business. Data Envelopment Analysis (DEA) measures the relative
efficiency of a number of homogenous Decision Making Units (DMUs) using some
inputs to produce some outputs. See [9,19] for more details.

To evaluate the performance of the DMUs in DEA framework, we assume some
axioms. DEA considers a set of input-output vectors as the production possibility

2010 Mathematics Subject Classification: 90B50, 90B99.
Submitted December 26, 2017. Published April 26, 2018

9
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.41096


10 J. Vakili, H. Amirmoshiri and M .K. Mirnia

set (PPS) assuming that all the units can convert their inputs into their outputs
under these axioms. The efficiency score of DMUs is estimated by investigating
how well the outputs are obtained. Therefore, DEA classifies the units of PPS
into the efficient and inefficient units. The efficient units lead to the maximum
achievable outputs from a given input set (or alternatively the minimum inputs
necessary to produce the given outputs). In other words, an efficient unit has no
potential improvement, whereas an inefficient unit can reach the efficient boundary
by deleting its input excess and/or augmenting the output shortfall, thereby yield-
ing an efficient target. Hence, the input-output vectors on the efficient boundary
can play the role of criteria for the inefficient DMUs to apply and indicate keys for
improving the performance of an inefficient DMU. Therefore, whenever the projec-
tion point on the efficient boundary is closer to an inefficient DMU, it is easier to
remove its inefficiency (i.e., less changes in its inputs and/or outputs is required).
Additionally, it must be stated that any efficient point can be weak efficient point
or strong efficient point. For a weak efficient point, it is impossible to improve all
its inputs and outputs in PPS; and for a strong efficient point, it is not possible to
improve any of its inputs or outputs in PPS without worsening some other inputs
or outputs. Researchers in the field of DEA have been interested in finding efficient
targets on the frontier of PPS.

In this regard, by using the weighting scheme provided by the dual prices for
calculating a composite point on the frontier, Sherman and Gold [24] determined
a projection onto the efficient frontier. However, the closest efficient point was
not obtained in their work. Briec [6] and Briec and Lesourd [7] obtained the
minimum distance to the efficient frontier and some duality results by using the
family of Hölder norms. Although, the models discussed in [6] and [7] are linear,
they considered the weak efficient frontier and their models may not obtain the
minimum distance of units to the strong efficient frontier. Moreover, these models
only just are applicable to the linear norms. In terms of Euclidean norm, Frei and
Harker [11] found projection points by minimizing the distance from inefficient
DMU to each hyperplane of the efficient frontier. Cherchye and Van Puyenbroeck
[8] determined the deviation of the observed input vector and the corresponding
reference point in terms of the cosine of the angle, and maximized the cosine to
obtain the efficient target. Gonzalez and Alvarez [14] introduced the concept of
input-specific contractions and found a relevant benchmark for inefficient units by
minimizing this contraction in the inputs required to reach the efficient subset.
Nevertheless, it does not guarantee to reach the strong efficient frontier. Lozano
and Villa [20] denoted a gradual efficiency improvement strategy that determines
a sequence of distanced targets and ends in the efficient frontier. Moreover, targets
obtained by [20] is not necessarily the closest projection to assessed unit. Aparicio
et al. [5] proposed a single-stage procedure based on solving only one mixed-
integer zero-one programming problem to obtain the minimum distance of DMUs
from the strong efficient frontier (the set of all strong efficient points) of a PPS.
However, Jahanshahloo et al. [16] used a linear bilevel programming problem.
Moreover, to obtain the minimum distance of the units from the weak efficient
boundary of a convex PPS, Jahanshahloo et al. [15] provided some linear models
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using l1 and l∞ norms and they applied the calculated distances to evaluate the
group performance of DMUs. Finally, Amirteimoori and Kordrostami [1] proposed
an Euclidean distance based measure of efficiency by stating that it searches the
shortest path to the efficient frontier of PPS. However, Aparicio and Pastor [4]
showed by a counterexample that Amirteimoori and Kordrostami’s method does
not necessarily generate the nearest efficient point and even it may fall out of PPS.
For more details see [21,22,2,12,23,3].

In this paper, two models, whose all constraints are linear except one, are
proposed to calculate the minimum distance from the weak and strong efficient
frontiers. Although the presented models are not linear, they have the following
advantages:

• Proposed models select the most appropriate efficient target for the evaluated
DMUs in one stage directly with the least effort.

• Our models have a few constraints in comparison with some similar models
in obtaining the closest efficient targets in one stage.

• Mentioned models can be applied for each arbitrary distance function and
efficiency measurements; for instance, ‖.‖p, p ∈ [1,∞], the RAM (Range Ad-
justed Measured) efficiency measure in Cooper et al. [10], the SBM (Slack
Based Measure), BRWZ measure by Silva [21] and etc.

• There exist several algorithms for solving quadratically constrained program-
ming (QCP) problems efficiently. In fact, QCP is closely related to other fields
in mathematical programming. Hence, the results that are already achieved
and will be achieved in the future in these fields of research could be beneficial
for obtaining the closest efficient targets.

• The proposed models discuss both weak and strong efficient frontiers.

• Due to the flexibility of the proposed models, monotonicity, translation and
unit invariant features can be considered in these models.

Finally, a numerical example will be discussed through one of the proposed models.
The numerical example has been taken from reference [25] and it will be discussed
again in here in order to compare our model with the DFMmethod in the referenced
work.

The paper is organized as follows. DEA is reviewed in Section 2. The main
results of the paper are presented in Section 3. A numerical example is provided
and the proposed model is compared with the DFM method [25] in Section 4.
Finally, conclusions are made in Section 5.

2. Preliminaries

In this section, we first present some preliminaries about DEA. Consider a set
of n observed DMUs, {DMU1,DMU2,. . .,DMUn}. Assume that each DMUj (j =



12 J. Vakili, H. Amirmoshiri and M .K. Mirnia

1, 2, . . . , n) produces s outputs yj = (y1j , y2j , . . . , ysj)
t ∈ R

s
+, yj 6= 0s, using m

inputs xj=(x1j , x2j , . . . , xmj)
t∈R

m
+ , xj 6= 0m.

The performance of each DMU is evaluated with respect to the efficient boundary
of the so-called production possibility set. The mathematical form of the two most
famous PPSs are

Tc = {(x,y) ∈ R
m
+ × R

s
+ |x ≥

n
∑

j=1

λjxj , y ≤

n
∑

j=1

λjyj , λj ≥ 0; j = 1, 2, . . . , n}

Tv =

{

(x,y) ∈ R
m
+ × R

s
+ |x ≥

∑n

j=1 λjxj , y ≤
∑n

j=1 λjyj ,
∑n

j=1 λj = 1, λj ≥ 0; j = 1, 2, . . . , n

}

.

which correspond to constant and variable returns to scale (CRS and VRS),
respectively. Now, two concepts related to the efficient frontier are defined as
follows.

Definition 2.1. (x,y) ∈ T is called a weak efficient point if there is no other
(x̄, ȳ)∈ T such that (x̄,−ȳ)< (x,−y).

Definition 2.2. (x,y) ∈ T is called a strong efficient point if there is no other
(x̄, ȳ)∈ T such that (x̄,−ȳ) ≤ (x,−y) and strict inequality holds in at least one
component.

Denoting the weak efficient frontier by ∂W(T ) and the strong efficient frontier
by ∂S(T ), we have

∂S(T ) ⊆ ∂W(T ).

If (x,y) ∈T and (x,y) /∈ ∂W(T ), (x,y) is called an inefficient point.

There are a lot of models in DEA for measuring technical efficiency of DMUs.
Let (xo,yo) ∈ Tc be an input-output vector under consideration. The input-
oriented CCR multiplier model corresponding to (xo,yo) is as follows:

max utyo

s.t. vtxo = 1
utyj − vtxj ≤ 0; j = 1, 2, . . . , n
u ≥ 0

v ≥ 0.

(2.1)

If there is a solution (u∗,v∗) for Model (2.1) such that u∗tyo = 1, then (xo,yo) is
a weak efficient point. Besides the optimality value 1, (u∗,v∗) > (0,0) implies the
strong efficiency of (xo,yo). It is worth to note that one of the observed DMUs is
a strong efficient unit. Another model is the well-known additive model which can
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be formulated under constant returns to scale as follows:

max 1s− + 1s+

s.t.
n
∑

j=1

λjxj + s− = xo

n
∑

j=1

λjyj − s+ = yo;

λ ≥ 0

s− ≥ 0

s+ ≥ 0.

(2.2)

Note that Model (2.2) maximizes ‖.‖1 distance from the (xo,yo) to the strong
efficient frontier.

Now, the target setting for an inefficient DMU is discussed. Let DMU under
evaluation be inefficient. It is possible to determine a projection on the efficient
frontier through decreasing its inputs or/and augmenting its outputs. The coordi-
nates of this projection on the efficient frontier will be the targets for the mentioned
DMU. With the oriented framework, for inefficient DMU, increasing the outputs
without requiring any decrease in the inputs is called output-oriented inefficiency.
Alternatively, decreasing the inputs without requiring any increase in the outputs
is called input-oriented inefficiency. In most applications, in practice, technical
efficiency measure includes both input-saving and output-expanding components
which is called non-oriented. In DEA models the distance between DMUs and
the efficient frontier of the PPS is sometimes approximated to evaluate the perfor-
mance of DMUs, thereby determining the efficient targets. Sometimes the furthest
projection is obtained from the traditional DEA models such as Model (2.2) for
inefficient unit under evaluation due to the maximizing slack variables. However,
recently some authors argue that the distance should be minimized instead of max-
imized in order to find targets as similar as possible to the inefficient DMU under
evaluation. The idea behind this viewpoint is that the closer the efficient projection
to the DMU under evaluation, the easier it is to reach the efficient frontier with less
variation in its inputs and outputs. In this regard, on one hand, some researchers
focus their works on finding all defining hyperplanes to obtain projection points
which is NP-hard from computational point of view [17,18]. On the other hand,
some researchers attempt to present a mathematical programming problem [5,16].
Similarly, this alternative is again associated with a NP-hard problem. Therefore,
target settings have not been satisfactorily found from the viewpoint of computa-
tional complexity and further effort is required to develop new models in order to
solve the problem. In the next section, two models will be proposed which can be
solved easier for finding the closest weak and strong targets. All of the constraints
in these models are linear except one.

3. Models based on the least distance to the efficient boundary of PPS

Having stated, we are interested in identifying of the targets on the weak and
strong efficient frontier for each inefficient decision making unit.
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3.1. Model for determining the closest weak efficient projection

Here, a new model is proposed to obtain the targets on the weak efficient
frontier based on arbitrary norm. Consider the following pair of primal and dual
programming problems corresponding to (x,y).

Primal

max t

s.t.

n
∑

j=1

λjxij ≤ xi − t, i = 1, 2, . . . ,m

n
∑

j=1

λjyrj ≥ yr + t, r = 1, 2, . . . , s

λj ≥ 0, j = 1, 2, . . . , n
t ≥ 0.

(3.1)

Dual

min −(
s

∑

r=1

uryr −
m
∑

i=1

vixi)

s.t.

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n

s
∑

r=1

ur +

m
∑

i=1

vi ≥ 1

ur ≥ 0, r = 1, 2, . . . , s
vi ≥ 0, i = 1, 2, . . . ,m.

(3.2)

Consider (λ∗, t∗) and (u∗,v∗) as the optimal solutions of Models (3.1) and
(3.2), respectively. The following lemma and theorem are provided to validate
these models.

Lemma 3.1. (x,y) ∈ ∂W(Tc) if and only if t∗ = 0.

Proof: To prove necessary condition, let (x,y) ∈ ∂W(Tc) and by contradiction
suppose that t∗ 6= 0. Since (λ∗, t∗) is an optimal solution of Model (3.1), (x −
1mt∗,y + 1st

∗) ∈ Tc and dominates (x,y) which contradict the assumption of the
weak efficiency of (x,y).
For the sufficient condition, let t∗ = 0 and by contradiction assume that (x,y) /∈
∂W(Tc). Thus, there exists (x̄, ȳ) ∈ Tc such that x̄ < x and ȳ > y.
Assume that x̄ + 1mt̄ ≤ x and ȳ − 1s t̄ ≥ y where t̄ 6= 0. Since (x̄, ȳ) ∈ Tc, there
exists λ̄ ∈ R

n such that

{

λ̄X ≤ x̄

λ̄Y ≥ ȳ
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where X = [x1,x2, . . . ,xm] and Y = [y1,y2, . . . ,ys]. It is clear that (λ̄, t̄) is a
feasible solution of Model (3.1) and this is contradictory with t∗ = 0. ✷

Theorem 3.2. (x,y) ∈ ∂W(Tc) if and only if (x,y) satisfies in the following
equations.

n
∑

j=1

λjxij ≤ xi, i = 1, 2, . . . ,m

n
∑

j=1

λjyrj ≥ yr, r = 1, 2, . . . , s

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n

s
∑

r=1

ur +
m
∑

i=1

vi ≥ 1,

s
∑

r=1

uryr −

m
∑

i=1

vixi = 0,

ur ≥ 0, r = 1, 2, . . . , s
vi ≥ 0, i = 1, 2, . . . ,m
λj ≥ 0, j = 1, 2, . . . , n
yr ≥ 0, r = 1, 2, . . . , s.

(3.3)

Proof: Considering the duality strong theorem for both of the above primal (3.1)
and dual (3.2) Models and t = 0 in the optimality, the proof is trivial. ✷

Now, consider the following model.

min ‖(xo,yo)− (x,y)‖ (3.4.1)

s.t.

n
∑

j=1

λjxij ≤ xi, i = 1, 2, . . . ,m (3.4.2)

n
∑

j=1

λjyrj ≥ yr, r = 1, 2, . . . , s (3.4.3)

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n (3.4.4)

s
∑

r=1

ur +

m
∑

i=1

vi ≥ 1, (3.4.5)

s
∑

r=1

uryr −

m
∑

i=1

vixi = 0, (3.4.6)

vi ≥ 0, i = 1, 2, . . . ,m (3.4.7)
ur ≥ 0, r = 1, 2, . . . , s (3.4.8)
λj ≥ 0 j = 1, 2, . . . , n (3.4.9)
xi ≥ 0, i = 1, 2, . . . ,m (3.4.10)
yr ≥ 0, r = 1, 2, . . . , s. (3.4.11)

(3.4)



16 J. Vakili, H. Amirmoshiri and M .K. Mirnia

Suppose that (v∗,u∗,λ∗,x∗,y∗) be the optimal solution to Model (3.4). The opti-
mal value and solution of this model provide the minimum distance and the closest
weak efficient target of (xo,yo) by an arbitrary measure ‖.‖, respectively. Utilizing
a linear norm such as ‖.‖1 and ‖.‖∞ of p-norms, the objective function can be
converted to a linear function.

3.2. Model for determining the closest strong efficient projection

In this section, we propose a new model to identify a strong efficient projection.
This approach is based on minimizing the distance of a point to the strong efficient
frontier by ‖.‖. It is a Quadratically Constrained Programming problem which
identifies a new efficiency improvement projection to a given inefficient unit within
the CRS technology of DEA. The presented approach leads to the closest strong
efficient targets by means of a single stage procedure which is easy to perform and
directly yields the closest strong projection unit.

Let (xo,yo) ∈ Tc be an inefficient point under evaluation and let (v∗,u∗, λ∗,
x∗,y∗) be an optimal solution of Model (3.5). Then (x∗,y∗) is the closest strong
efficient projection to (xo,yo):

min ‖(xo,yo)− (x,y)‖ (3.5.1)

s.t.

s
∑

r=1

uryr −

m
∑

i=1

vixi = 0 (3.5.2)

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n (3.5.3)

n
∑

j=1

λjxij ≤ xi, i = 1, 2, . . . ,m (3.5.4)

n
∑

j=1

λjyrj ≥ yr, r = 1, 2, . . . , s (3.5.5)

ur ≥ 1, r = 1, 2, . . . , s (3.5.6)
vi ≥ 1, i = 1, 2, . . . ,m (3.5.7)
λj ≥ 0, j = 1, 2, . . . , n (3.5.8)
xi ≥ 0, i = 1, 2, . . . ,m (3.5.9)
yr ≥ 0, r = 1, 2, . . . , s. (3.5.10)

(3.5)

In fact, if (x∗,y∗, λ∗,u∗,v∗) is an optimal solution of Model (3.5), then ( u∗

v∗tx∗
,

v∗

v∗tx∗
) is an optimal solution of the input-oriented CCR multiplier model corre-

sponding to (x∗,y∗) with the optimal value 1.

Lemma 3.3. Problem (3.5) is feasible.

Proof: It is known that one of the observed DMUs such as DMUk is strong ef-
ficient. So, there exist an optimal solution (ū, v̄) > 0 to Model (2.1) correspond-
ing to DMUk. Thus, ūtyk − v̄txk = 0 and the constraints (3.5.3), (3.5.6) and
(3.5.7) are satisfied at (ū, v̄) (Note that ū and v̄ can be multiplied by a large
number to satisfy (3.5.6) and (3.5.7) if it is necessary). On the other hand, since
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DMUk ∈ Tc, there exists λ̄ ∈ R
n
+ such that Xλ̄ ≤ xk, Yλ̄ ≥ yk. Therefore,

(u,v,λ,x,y) = (ū, v̄, λ̄,xk,yk) is a feasible solution of Model (3.5). ✷

Theorem 3.4. For the optimal solution of Model (3.5), (u∗,v∗, λ∗,x∗,y∗), (x∗,y∗)
is the closest strong efficient projection to the unit under evaluation (xo,yo).

Proof: It is obvious that Problem (3.5) is minimizing the distance between the
given point (xo,yo) and the point (x,y) by the ‖.‖ norm. Constraints (3.5.4),
(3.5.5) and (3.5.8) along with Constraints (3.5.6) and (3.5.7) implies that in the
optimality, (x,y) is a strong efficient unit. ✷

3.3. Minimum distance measure p-norm and monotonicity

Monotonicity of efficiency measure is an indispensable property for any techni-
cal efficiency measure. In other words, an axiomatic approach for finding closest
targets needs the efficiency measure satisfies weak or strong monotonicity. In detail,
the measure should not provide a better evaluation score to an inferior input-output
vector in the PPS than to a superior one. However, as far as authors know, re-
garding the practical least distance p-norm (p ∈ [1,∞]) measure in DEA literature,
satisfying these norms both the weak and strong monotonicity on the weak effi-
cient, there was no approach that meet strong monotonicity on the strongly efficient
frontier. To overcome this, several suggested solutions have been presented. Ando
et al. [2] gave weakly monotonic least distance measure with the incorporation
of a free disposable set and showed that it satisfies weak monotonicity over the
strongly efficient frontier. Using extended efficient faces and based on full dimen-
sional effcient facets instead of standard PPS, Aparicio and Pastor [3] developed an
output-oriented strongly monotonic least distance measure. Fukuyama et al. [12]
by extending the free disposable set defined in [2] and introducing the so-called
tradeoff set, developed a least distance p-norm inefficiency (efficiency) measure sat-
isfying strong monotonicity over the strongly efficient portion of the boundary. For
our model, first, we apply the free disposable set in [2] which guarantees the weak
monotonicity of the p-norm (p ∈ [1,∞]) measure on the strong efficient frontier.
Therefore, Model (3.5) can be revised as follows:

min‖(x̄, ȳ)− (x,y)‖ (3.6.1) (3.6)

s.t.

s
∑

r=1

uryr −

m
∑

i=1

vixi = 0 (3.6.2) (3.7)

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n (3.6.3) (3.8)

n
∑

j=1

λjxij ≤ xi, i = 1, 2, . . . ,m (3.6.4) (3.9)

n
∑

j=1

λjyrj ≥ yr, r = 1, 2, . . . , s (3.6.5) (3.10)
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x̄i ≥ xio, i = 1, 2, . . . ,m (3.6.6) (3.11)

ȳr ≤ yro, r = 1, 2, . . . , s (3.6.7) (3.12)

ur ≥ 1, r = 1, 2, . . . , s (3.6.8) (3.13)

vi ≥ 1, i = 1, 2, . . . ,m (3.6.9) (3.14)

λj ≥ 0, j = 1, 2, . . . , n (3.6.10) (3.15)

xi ≥ 0, i = 1, 2, . . . ,m (3.6.11) (3.16)

yr ≥ 0, r = 1, 2, . . . , s. (3.6.12) (3.17)

Second, for the sake of strong monotonicity on the strong efficient frontier, we
are going to utilize the tradeoff set which is introduced by Fukuyama et al [12].
They extended free disposable set in [2] with the incorporation of the coefficient ε.
For more details about choice of the positive value ε, see [13].

min ‖(x̄, ȳ)− (x,y)‖ (3.18.1)

s.t.
s

∑

r=1

uryr −
m
∑

i=1

vixi = 0 (3.18.2)

s
∑

r=1

uryrj −

m
∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n (3.18.3)

n
∑

j=1

λjxij ≤ xi, i = 1, 2, . . . ,m (3.18.4)

n
∑

j=1

λjyrj ≥ yr, r = 1, 2, . . . , s (3.18.5)

x̄i = xio + dxi , i = 1, 2, . . . ,m (3.18.6)
ȳr = yro − dyr , r = 1, 2, . . . , s (3.18.7)

dxk + ε(

m
∑

i=1
i6=k

dxi ) ≥ 0 k = 1, 2, . . . ,m (3.18.8)

dyk + ε(

s
∑

r=1
r 6=k

dyr) ≥ 0 k = 1, 2, . . . , s (3.18.9)

ur ≥ 1, r = 1, 2, . . . , s (3.18.10)
vi ≥ 1, i = 1, 2, . . . ,m (3.18.11)
λj ≥ 0, j = 1, 2, . . . , n (3.18.12)
xi ≥ 0, i = 1, 2, . . . ,m (3.18.13)
yr ≥ 0, r = 1, 2, . . . , s. (3.18.14)

(3.18)

Finally, it is notable that all previous results also hold in the case of the variable
returns to scale technology.

4. Empirical illustration

In the previous section two new models were proposed for determining the
weak and strong efficient targets. However, the strong efficient projections is more
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applicable and we are rather interested in finding the strong efficient target. There-
fore, to verify the proposed model, we introduce an empirical illustration based on a
real data set of 30 selected European airports (which was taken from Suzuki et al.’s
paper [25]. Suzuki et al.’s paper propose a multi-stage Distance Friction Minimiza-
tion (DFM) approach to generate an appropriate efficiency improving projection
from an inefficient DMU to the strongly efficient frontier. Additionally, projection
function for efficiency improvement is given by a Multiple Objective Quadratic
Programming (MOQP) model. Therefore, our proposed model and Suzuki et al.’s
method (DFM) are compared in terms of the role of the model. The data consists
of four inputs and two outputs as follows:
[Input 1] RN: Number of runways.
[Input 2] TS: Terminal space (m2).
[Input 3] GN: Number of gates.
[Input 4] EN: Number of employees.
[Output 1] PN: Number of passengers.
[Output 2] AM: Aircraft movements.
Figure 1 demonstrates the efficiency evaluation results of these airports through
CCR-I model.
Six of these airports are determined efficient and for the rest of airports, we apply

Figure 1: Efficiency score of 30 airports.

both Model (3.5) and DFM method Suzuki et al. [25] to identify a target on the
strong efficient frontier. The results are depicted in Table 1 and Figure 2. Note that
F1 and F2 in Table 1 refer to the Euclidean distance of the observed DMUs to the
projections produced by the DFM method and proposed model, respectively. we
have also reported the percentages of improvements which is required for inefficient
airport to reach the efficiency. Therefore, we can observe a significant difference
between the two DFM and proposed approaches. The other thing that needs to be
highlighted from this comparison is that DFM method is based on the Euclidean
distance. So, we used ‖.‖2 in the objection function of Model (3.5). However, one
can use linear norm such norms, ‖.‖1 or ‖.‖∞. Finally, for the sake of making
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the comparison easier between targets, Figure 2 is depicted which shows that the
proposed model gives a closer strong efficient projection than the DFM method.

Figure 2: Comparison of the DFM method and proposed model.

5. Conclusion

In the context of data envelopment analysis, several models have been proposed
to improve the efficiency. However, their drawbacks deemed researchers seek recent
better models. In this paper, we developed two new models based on the weak and
strong efficient frontier to locate the coordinates of efficient projection points for
inefficient DMU which is under evaluation. They involve solving only one program-
ming problem that directly yields the closest efficient targets and guarantee that
the closest efficient target is reached. Also, some discussions are made to satisfy
both weak and strong monotonicity which this is done by revising the presented
model. Finally, an empirical illustration for 30 airports was applied and the re-
sults of the proposed Quadratically Constrained Quadratic Programming model
(for ‖.‖2) and DFM method were compared to show that the proposed model in
this paper is more applicable than the DFM one.

Table 1: The projections produced by the DFM method and proposed model and
their distances from the DMU under evaluation.

I/O Data DFM
method

F1 proposed
model

F2 I/O Data DFM
method

F1 proposed
model

F2

DMU:
AMS

DMU:
ARN

(I) RN 5 0.0%

2
.
7

×
1
0
6

-4.2%

1
.
3

×
1
0
3

(I) RN 3 -
27.9%

5
.
3

×
1
0
6

-0.2%

2
.
9

×
1
0
2

(I) TS 370000 -
63.4%

0.0% (I) TS 108700 -
28.2%

0.0%

(I) GN 89 -8.8% -3.5% (I) GN 61 -
26.9%

0.0%

Continued on next page
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Table 1: The projections produced by the DFM method and proposed model and
their distances from the DMU under evaluation.

I/O Data DFM
method

F1 proposed
model

F2 I/O Data DFM
method

F1 proposed
model

F2

(I) EN 2231 0.0% -
59.6%

(I) EN 700 0.0% -
41.5%

(O) PN 39960400 6.7% 0.0% (O) PN 15100000 35.4% 0.0 %
(O) AM 392997 43.0% 0.0% (O) AM 228000 17.4% 0.0%

DMU:
BHX

DMU:
BRU

(I) RN 2 0.0%

3
.
1

×
1
0
4

-0.9%

4
.
5

×
1
0
2

(I) RN 3 -
29.4%

1
.
1

×
1
0
7

-0.2%

3
.
5

×
1
0
2

(I) TS 66488 0.0% 0.0% (I) TS 190804 -
35.2%

0.0%

(I) GN 31 -
34.5%

0.0% (I) GN 109 -
41.6%

0.0%

(I) EN 685 -
10.7%

-
66.2%

(I) EN 786 0.0% -
44.1%

(O) PN 9079172 0.0% 0.0% (O) PN 15192952 75.2% 0.0%
(O) AM 128740 24.5% 0.0% (O) AM 244633 26.4% 0.0 %

DMU:
CDG

DMU:
CGN

(I) RN 4 0.0%

3
.
4

×
1
0
5

0.0

1
.
4

×
1
0
5

(I) RN 3 0.0%

5
.
1

×
1
0
4

0.0%

1
.
6

×
1
0
3

(I) TS 542300 -
62.3%

-
25.8%

(I) TS 204000 0.0% 0.0%

(I) GN 124 -
12.3%

-
16.5%

(I) GN 40 -
35.2%

0.0%

(I) EN 4071 -
57.2%

-
71.9%

(I) EN 1890 0.0% -
85.4%

(O) PN 48122038 0.0% 0.0% (O) PN 7758000 0.0% 0.0%
(O) AM 515025 7.7% 0.1% (O) AM 153372 33.6% 0.0%

DMU:
CIA

DMU:
CPH

(I) RN 1 -
66.3%

1
.
2

×
1
0
6

-0.1%

3
.
3

×
1
0
1

(I) RN 3 -
20.8%

5
.
3

×
1
0
6

-
36.0%

8
.
5

×
1
0
2

(I) TS 10320 0.0% 0.0% (I) TS 90300 0.0% 0.0%
(I) GN 7 -

11.5%
0.0% (I) GN 106 -

52.0%
0.0%

(I) EN 136 -
13.3%

-
24.8%

(I) EN 1375 -
45.6%

-
62.0%

(O) PN 1794285 65.7% 0.0% (O) PN 17714007 29.9% 0.0%
(O) AM 37130 7.4% 0.0% (O) AM 259002 15.4% 0.0%

DMU:
DUS

DMU:
FCO

(I) RN 3 -
45.4%

1
.
2

×
1
0
7

-0.2%

2
.
1

×
1
0
3

(I) RN 4 -
29.7%

1
.
1

×
1
0
5

0.0%

1
.
6

×
1
0
3

(I) TS 231000 -
46.4%

0.0% (I) TS 285000 0.0% 0.0 %

(I) GN 104 -
40.6%

0.0% (I) GN 107 -
28.8%

0.0%

(I) EN 2394 -
53.7%

-
86.0%

(I) EN 2200 0.0% -
73.4%

(O) PN 14276045 81.9% 0.0% (O) PN 26284759 0.0% 0.0%
(O) AM 186159 43.1% 0.0% (O) AM 300831 33.8% 0.0%

DMU:
FRA

DMU:
GVA

(I) RN 3 0.0%

2
.
6

×
1
0
6

0.0%

1
.
0

×
1
0
4

(I) RN 1 -4.3%

3
.
5

×
1
0
6

-4.4%

3
.
0

×
1
0
2

(I) TS 800000 -
69.5%

0.0% (I) TS 53000 0.0% 0.0%

(I) GN 147 -
17.6%

-
29.5%

(I) GN 30 -8.2% 0.0%

(I) EN 13006 -
82.0%

-
79.6%

(I) EN 540 -
43.0%

-
55.6%

(O) PN 48359320 5.3% 0.0% (O) PN 8048698 44.1% 0.0%
(O) AM 458865 10.0% 0.0% (O) AM 133312 2.7% 0.0%

DMU:
HAM

DMU:
HEL

(I) RN 2 -
43.9%

4
.
0

×
1
0
4

-
54.3%

5
.
5

×
1
0
2

(I) RN 3 -
45.7%

4
.
0

×
1
0
6

0.0%

3
.
1

×
1
0
2

(I) TS 68300 0.0% 0.0% (I) TS 110000 -
59.3%

0.0%

(I) GN 50 0.0% 0.0% (I) GN 38 -
26.8%

0.0%

(I) EN 777 0.0% -
70.7%

(I) EN 594 0.0% -
51.7%

Continued on next page
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Table 1: The projections produced by the DFM method and proposed model and
their distances from the DMU under evaluation.

I/O Data DFM
method

F1 proposed
model

F2 I/O Data DFM
method

F1 proposed
model

F2

(O) PN 9529924 0.0% 0.0% (O) PN 9710920 41.8% 0.0%
(O) AM 126878 31.6% 0.0% (O) AM 159520 17.6% 0.0%

DMU:
lST

DMU:
LIS

(I) RN 2 -5.5%

3
.
5

×
1
0
5

-7.4%

1
.
1

×
1
0
0

(I) RN 2 -
43.0%

1
.
1

×
1
0
6

0.0 %

1
.
7

×
1
0
2

(I) TS 236250 -
84.0%

0.0% (I) TS 140775 -
55.3%

0.0%

(I) GN 27 -2.0% -4.0% (I) GN 25 -
13.4%

0.0%

(I) EN 975 -
22.5%

0.0% (I) EN 389 0.0% -
44.9%

(O) PN 14030000 2.0% 0.0% (O) PN 9636400 11.6% 0.0%
(O) AM 161827 25.7% 0.0% (O) AM 112500 18.1% 0.0%

DMU:
MAN

DMU:
MUC

(I) RN 2 -
30.6%

8
.
5

×
1
0
6

-
12.6%

2
.
4

×
1
0
3

(I) RN 2 -
15.5%

2
.
6

×
1
0
7

-
26.8%

2
.
0

×
1
0
3

(I) TS 136400 -5.8% 0.0% (I) TS 458000 -
44.6%

0.0

(I) GN 103 -
38.0%

0.0% (I) GN 210 -
42.8%

0.0%

(I) EN 2852 -
50.7%

-
84.6%

(I) EN 4891 -
30.9%

-
40.1%

(O) PN 19699256 43.5% 0.0% (O) PN 24193304 110.1% 0.0%
(O) AM 207118 20.1% 0.0% (O) AM 343027 15.5% 0.0%

DMU:
MXP

DMU:
ORY

(I) RN 2 -
12.8%

9
.
9

×
1
0
6

0.0%

4
.
1

×
1
0
3

(I) RN 3 0.0%
5
.
9

×
1
0
6

-
33.7%

3
.
2

×
1
0
3

(I) TS 329000 -
60.0%

0.0% (I) TS 371500 -
76.2%

0.0%

(I) GN 114 -
42.3%

0.0% (I) GN 78 -
29.8%

0.0%

(I) EN 4500 -
73.8%

-
91.3%

(I) EN 3710 -
57.9%

-
86.6%

(O) PN 17630000 56.6% 0.0% (O) PN 22390000 26.3% 0.0%
(O) AM 216910 30.6% 0.0% (O) AM 206767 69.7% 0.0%

DMU:
OSL

DMU:
PRG

(I) RN 2 -
26.3%

5
.
2

×
1
0
6

-
36.9%

2
.
7

×
1
0
2

(I) RN 3 0.0%

3
.
7

×
1
0
4

-0.4%

1
.
5

×
1
0
3

(I) TS 144000 -
38.9%

0.0% (I) TS 78048 0.0% 0.0%

(I) GN 86 -
47.5%

0.0% (I) GN 27 -
28.9%

0.0%

(I) EN 583 0.0% -
45.8%

(I) EN 1702 0.0% -
87.8%

(O) PN 13646890 38.5% 0.0% (O) PN 7463120 0.0% 0.0%
(O) AM 175878 23.4% 0.0% (O) AM 115765 32.5% 0.0%

DMU:
VIE

DMU:
ZRH

(I) RN 2 -
10.5%

3
.
1

×
1
0
6

-
19.4%

2
.
4

×
1
0
3

(I) RN 3 -
28.2%

4
.
7

×
1
0
4

0.0%

9
.
4

×
1
0
2

(I) TS 55700 0.0% 0.0% (I) TS 138614 0.0% 0.0%
(I) GN 57 -

41.7%
-0.1% (I) GN 67 -3.2% 0.0%

(I) EN 2918 -
78.7%

-
81.7%

(I) EN 1425 0.0% -
66.0%

(O) PN 12784504 24.3% 0.0% (O) PN 17024937 0.0% 0.0%
(O) AM 197089 8.0% 0.0% (O) AM 269392 17.6% 0.0%
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