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Existence Results For Some Nonlinear Degenerate Problems In The

Anisotropic Spaces

M. Boukhrij, B. Aharrouch, J. Bennouna and A. Aberqi

abstract: Our goal in this study is to prove the existence of solutions for the
following nonlinear anisotropic degenerate elliptic problem:

−∂xiai(x, u,∇u) +
N∑

i=1

Hi(x, u,∇u) = f − ∂xigi in Ω,

where for i = 1, ...,N , ai(x, u,∇u) is allowed to degenerate with respect to the
unknown u, and Hi(x, u,∇u) is a nonlinear term without a sign condition. Under
suitable conditions on ai and Hi, we prove the existence of weak solutions.

Key Words:Degenerate Elliptic problems, Anisotropic Sobolev spaces, Weak
Solutions.
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1. Introduction

For the vectorial exponent ~p = (p1, ..., pN ) we assume that for i = 1, ..., N, 1 <

pi < ∞.

Our aim is to prove the existence of weak solutions to the anisotropic degenerate
elliptic equations





−∂xi
ai(x, u,∇u) +

N∑

i=1

Hi(x, u,∇u) = f − ∂xi
gi in Ω,

u = 0 on ∂Ω,

(1.1)
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where Ω is an open bounded subset of RN , (N ≥ 2), for i = 1, ..., N , ai(x, u,∇u) is
a Carathéodory function and there exists a continuous and bounded function
ν: [0,+∞) → [0,+∞) such that ν(0) = 0 and

∑N
i=1 ai(x, s, ξ)ξi ≥

∑N
i=1 ν(|s|)|ξ|

pi

for every s ∈ R, ξ ∈ R
N and a.e x in Ω, and H(x, u,∇u) is a nonlinear term

has a growth condition, and without a sign condition, the source data f and
g = (g1, ..., gN ) belonging a suitable Lebesgue spaces (see assumptions A6)).
In problem (1.1), when the norm ‖b‖Lr(Ω) in the growth of Hi(x, u,∇u), is not
small enough, the operator becomes non-coercive, moreover, the problem (1.1) is
degenerate since its modulus of ellipticity vanishes when either the solution u or
its gradient ∇u vanishes [22,25].
Anisotropic operators involve today in various domains of applied Sciences, they
provide models for the study of physical and mechanical processus in anisotropic
continuous medium ( [11,24]).
Existence to problems like (1.1) is very well understood, in the isotropic case,
ν(s) = const > 0 in particular, there is vast literature for analysis of the case
involving the p-Laplacian operator and problems stated in the Lebesgue space set-
ting, in the elliptic setting the foundation of the branch where laid by Boccardo et
al. [10], Dall’Aglio [14] and Murat [20], we motions the work of Porretta [21] for
the lower term H without sign condition.
For the anisotropic elliptic equations with ν(s) = const > 0, we started by the
work of Bendahmane generalizing the work H. Brésis and F. Browder [13], to
the anisotropic space W 1,−→p (Ω) using the Hedberg-type approximations. For more
works in the anisotropic spaces we refer the reader to ( [4,7,11,16,17,18] and [24]).
Our main contribution is to prove the existence of weak solutions of the nonlin-
ear anisotropic equation with degenerate ellipticity A1), here ν(.) is non negative
function on s with ν(0) = 0.
There exist two main difficulties in dealing with this problem, which are related
to the fact the equation is degenerate in the anisotropic case, namely in the set
B = {x ∈ Ω : u(x) = 0} the degenerate function ν(|u|) = 0 , to overcame this
obstacle we use instead ai and Hi the positively homogenous function of degree
(pi − 1) with respect to the gradient (see A1) and A5) ).
The second main difficulty in lack of coerciveness for the lower order which does
not allow to use the classical methods to prove the existence of a weak solution
to Problem (1.1), to get the a priori estimate we need the smallness of the norm
‖b‖Lr(Ω), to avoid this assumption we adapt the method introduced in [12], which
consists in splitting the domain Ω in q finite number of small domain Ωi (see propo-
sition 4.2 ).
This article is organized as follows: In section 2, we give some preliminaries and
useful lemmas. In section 3, we give the basic assumptions. In section 4, we
establish the existence result of the weak solution (see Theorem (4.4)).
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2. Prelimineries and Useful Lemmas

2.1. Anisotropic Sobolev spaces

Let Ω be an open bounded domain in R
N , N ≥ 2) with boundary ∂Ω.

Let p1, p2 . . . , pN be N exponents, with 1 < pi < ∞ for i = 1, 2, . . . , N. We denote
~p = (p1, . . . , pN ).
We set

p = min
{
p1, p2, . . . , pN

}
then p > 1. (2.1)

The anisotropic Sobolev space W 1,~p(Ω) is defined as follows

W 1,~p(Ω) = {u ∈ W 1,1(Ω) : ∂xi
u ∈ Lpi(Ω) for i = 1, 2, . . . , N}

endowed with the norm

‖u‖1,~p = ‖u‖L1(Ω) +

N∑

i=1

‖∂xi
u‖Lpi(Ω). (2.2)

The space
(
W 1,~p(Ω), ‖u‖1,~p

)
is a separable and reflexive Banach space (cf [23],

[18]).

We define also W
1,~p
0 (Ω) as the closure of C∞

0 (Ω) in W 1,~p(Ω) with respect to
the norm (2.2).

We denote by p̄ the harmonic mean, i.e.
1

p̄
=

N∑

i=1

1

pi
.

Proposition 2.1. We denote the dual of the anisotropic Sobolev space W
1,~p
0 (Ω)

by W−1,~p′

(Ω), where ~p′ = (p′1, . . . , p
′
N) and 1

p′

i
+ 1

pi
= 1.

For each F ∈ W−1,~p′

(Ω) there exists Fi ∈ Lp′

i(Ω) for i = 0, 1, . . . , N, such that

F =

N∑

i=1

∂xi
Fi. Moreover, for all u ∈ W

1,~p
0 (Ω) we have

〈F, u〉 =
N∑

i=1

∫

Ω

Fi ∂xi
u dx.

We define a norm on the dual space by

‖F‖
−1,~p′

= inf
N∑

i=1

‖Fi‖p′

i
.

2.2. Useful lemmas

Lemma 2.2. (see [23], [18]) Suppose that u ∈ W
1,~p
0 (Ω), then we have the following

inequalities

1. ‖u‖Lpi(Ω) ≤ cp‖∂xi
u‖Lpi(Ω) for i = 1, . . . , N.
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2. ‖u‖Lq(Ω) ≤ cs

N∏

i=1

(‖∂xi
u‖Lpi(Ω))

1
N

where

q =

{
p̄∗ = Np̄

N−p̄
if p̄ < N

q ∈ [1,∞[ if p̄ ≥ N.

Lemma 2.3. Let Ω be a bounded open set in R
N , then the following embedding

are compact

1. If p < N then W
1,~p
0 (Ω) →֒→֒ Lq(Ω) ∀q ∈ [1, p∗[, where 1

p∗ = 1
p
− 1

N
,

2. If p ≥ N then W
1,~p
0 (Ω) →֒→֒ Lp+

(Ω) where p+ = max{p1, ..., pN}

If we denote by p∞ = max{p∗, p+}, we have the continuous embedding

∀q ∈ [1, p∞] W
1,~p
0 (Ω) ⊂ Lq(Ω).

Let a1, ..., aN be positive numbers, we have

N∏

i=1

a
1
N

i ≤
1

N

∑

i=1

Nai. (2.3)

3. Basic Assumptions

We assume that ai : Ω×R×R
N → R andHi : Ω×R×R

N → R are Carathéodory
functions such that

A1)
N∑

i=1

ai(x, s, ξ)ξi ≥
N∑

i=1

ν(|s|)|ξ|pi ∀s ∈ R, ξ ∈ R
Nand a.e in Ω,

with ν is a bounded continuous function such that ν(0) = 0

ai(x, s, ξ) = ν(|s|)āi(x, s, ξ).

A2) ∫ +∞

0

ν(t)
1

pi−1 dt = +∞, for i = 1, ..., N

A3)

|āi(x, s, ξ)| ≤ γ[|s|
p∞
p′
i + |ξi|

pi−1],

A4)
[āi(x, s, ξ)− āi(x, s, ξ

′)][ξi − ξ′i] > 0 for ξi 6= ξ′i,

A5)

|Ĥi(x, ξ)| ≤ bi(x)|ξi|
pi−1,

Hi(x, s, ξ) = ν(|s|)Ĥi(x, ξ).
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A6)

f ∈ Lp′

∞(Ω) and gi ∈ Lp′

i(Ω) for i = 1, ..., N

A7) The function āi and Ĥi are positively homogeneous of degree (pi − 1) with
respect to the variable ξ, i.e

āi(x, s, tξ) = tpi−1āi(x, s, ξ), Ĥi(x, tξ) = tpi−1Ĥi(x, ξ), ∀t ≥ 0.

where bi belong to the space Lri(Ω) with 1
ri

= 1
pi

− 1
p∞

for i = 1, ..., N, and γ

positive constant.

4. Pincipal Results

We denote by ṽ the function

ṽ(s) =

∫ s

0

ν(|t|)
1

pi−1 dt

and
V = {u is measurable function in Ω : ṽ(u) ∈ W

1,~p
0 (Ω)}

4.1. Definition of the weak solution

Definition 4.1. A function u in V is a weak solution to problem (P) if ai(., u,∇u),
Hi(., u,∇u) ∈ Lp′

i(Ω) and

N∑

i=1

∫

Ω

[ai(x, u,∇u)∂xi
ϕ+Hi(x, u,∇u)ϕ] =

∫

Ω

[fϕ+

N∑

i=1

gi∂xi
ϕ], ∀ϕ ∈ W

1,~p
0 (Ω).

To avoid the smallness of the norm of bi, splitting the domain Ω in a finite
number of small domains Ωs, by adopting the technique introduced in [12] for the
linear case, and [15] for the nonlinear case.

Proposition 4.2. Let A ∈ R
+and u ∈ V, (i.e. ṽ(u) ∈ W

1,~p
0 (Ω)). Then there

exists t measurable subsets Ω1, ...,Ωt of Ω and t functions ṽ(u)1, ..., ṽ(u)t such that
Ωi ∩ Ωj = ∅
for i 6= j, |Ωt| ≤ A and |Ωs| = A for s ∈ {1, ..., t− 1},

{x ∈ Ω : |∂xi
ṽ(u)s| 6= 0 for i = 1, ..., N} ⊂ Ωs, ∂xi

ṽ(u) = ∂xi
ṽ(u)s a.e. in Ωs,

(4.1)
∂xi

([ṽ(u)]1 + ...+ [ṽ(u)]s)[ṽ(u)]s = (∂xi
ṽ(u))[ṽ(u)]s, [ṽ(u)]1 + ...+ [ṽ(u)]s = ṽ(u)

(4.2)
and sign(ṽ(u)) = sign([ṽ(u)]s) if [ṽ(u)]s 6= 0 for s ∈ {1, ..., t} and i ∈ {1, ..., N}.

Proof:

Let 0 ≤ k < h ≤ +∞, define Sh,k(s) = Tk(s)− Th(s), where

Tk(s) = sign(s)(min(|s|, k))
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the truncation of hight k. We put Ωh,k = {x ∈ Ω : |∂xi
Sh,k(ṽ(u))| 6= 0, for i =

1, ..;N}, we have ∂xi
Sh,k(ṽ(u)) = ∂xi

ṽ(u) a.e. in Ω(h, k) for i = 1, ..., N .
Construction of the subset Ωs and the function (ṽ(u))s: the idea of our approach

is inspired from the paper of Del Vecchio et al.( see appendix, [15]). Let {kj}j∈N ⊂
R

+ a decreasing sequence constructed in the following way: If |Ω| ≤ A then k1 = 0,
else k1 is chosen such that |{x ∈ Ω : |ṽ(u(x))| ≥ k1| = A. For j > 2, if |{x ∈ Ω :
0 ≤ |ṽ(u(x))| ≥ kj−1| ≤ A then kj = 0 else kj is chosen such that 0 < kj < kj−1

and |{x ∈ Ω : kj ≤ |ṽ(u(x))| ≥ kj−1| = A. Let t be the first index such that kt = 0,
then we put Ω1 = Ω(k1,+∞); Ωs = Ω(ks, ks−1) for s = 2, .., t and u1 = Sk1,∞(u),
us = Sks,ks−1

(u) for s = 2, ..., t. ✷

4.2. Some a priori estimates

We consider a sequence of regularized problems:

(Pn)





−∂xi
ai(x, un,∇un) +

N∑

i=1

Hi
n(x, un,∇un) = f − ∂xi

gi in Ω

un = 0 on ∂Ω,

where Hi
n(x, u,∇u) = Tn(Hi(x, u,∇u)).

It is well known, for the functions bi with norms small enough, the problems (Pn)

has at least a weak solution un ∈ W
1,~p
0 (Ω), we refer to ( [19]).

Proposition 4.3. Let (un)n∈N be a sequence in V such that ṽ(un) ⇀ ṽ(u) in

W
1,~p
0 (Ω) and

N∑

i=1

∫

Ω

[āi(x, un,∇ṽ(un))− āi(x, un,∇ṽ(u))](∂xi
ṽ(un)− ∂xi

ṽ(un)) → 0,

then ∂xi
ṽ(un) → ∂xi

ṽ(u) a.e. in Ω and for i = 1, ..., N.

Proof:

Let Di
n = [āi(x, un,∇ṽ(un)) − āi(x, un,∇ṽ(u))](∂xi

ṽ(un) − ∂xi
ṽ(un)), Di

n ≥ 0
and Di

n → 0 in L1(Ω). Extracting a subsequence ṽ(un), by Lemma 2.3 we have
un → u a.e in Ω, Di

n → 0 a.e in Ω, which implies that un → u a.e. in Ω.
Let A ⊂ Ω, such that |A| = 0, we have un → u and Di

n → 0 pointwise in Ω\A.
For all x ∈ Ω\A, denoting ξ̃n = ∂xi

ṽ(un(x)), ξ̃ = ∂xi
ṽ(u(x)), ξn = ∂xi

un(x) and
ξ = ∂xi

u(x).
Then,

Di
n = āi(x, un,∇ṽ(un))∂xi

ṽ(un) + āi(x, un,∇ṽ(u))∂xi
ṽ(u)

−āi(x, un,∇ṽ(un))∂xi
ṽ(u)− āi(x, un,∇ṽ(u))∂xi

ṽ(un)

= ai(x, un,∇un)ν(|un|)
1

pi−1 ∂xi
un + ai(x, un,∇u)ν(|un|)

1
pi−1 ∂xi

u

−āi(x, un,∇ṽ(un))∂xi
ṽ(un)− āi(x, un,∇ṽ(u))∂xi

ṽ(un)

≥ ν(|un|)
pi

pi−1 |ξin|
pi + ν(|u|)

pi
pi−1 |ξi|pi − γ[|un|

p∞
p′
i + |ξ̃

i
|pi−1]|ξ̃

i

n|

−γ[|un|
p∞
p′
i + |ξ̃

i

n|
pi−1]|ξ̃

i
|

(4.3)
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by the fact that ν is real positive bounded function we conclude that

Di
n ≥ c1

(
|ξ̃

i

n|
pi − cx(1 + |ξ̃

i

n|
pi−1 + |ξ̃

i

n|)
)
. (4.4)

Since un is bounded in Ω\A. Then, |ξin| is bounded uniformly with respect to n,
indeed (4.4) becomes

Di
n ≥ c2|ξ̃

i

n|
pi
(
1−

cx

|ξ̃
i

n|
pi

−
cx

|ξ̃
i

n|
pi−1

−
cx

|ξ̃
i

n|
)
)
.

If ξ̃
i

n → ∞, (for a subsequence) implies that Di
n(x) → ∞, which gives a contradic-

tion.

Denoting by ξ̃
∗
the limit of subsequence of ξ̃

i

n, for i=1,...,N. Applying the continuity

of ā with respect to the two last variables we obtain

(āi(x, u, ξ̃
∗
)− āi(x, u, ξ̃))(ξ̃

∗

i − ξ̃i) = 0.

By using A4 we get ξ̃
i

n → ξ̃
i
, a.e. in Ω for i = 1, ..., N.

✷

Proposition 4.4. Let un ∈ V be a solution of the approximate problem (Pn).
Then we have

N∑

i=1

∫

Ω

|∂xi
ṽ(un)|

pi ≤ C, (4.5)

where C = C
(
N,Ω, γ, ‖β‖∞, ‖f‖p′

∞
, ‖gi‖p′

i

)
> 0, for i = 1, ..., N.

Proof: Let un ∈ V, then ṽ(un) ∈ W
1,~p
0 (Ω), and [ṽ(un)]s defined as in Lemma 4.2,

we have
∫

Ω

ai(x, un,∇un)∂xi
[ṽ(un)]s =

∫

Ωs

ai(x, un,∇un)∂xi
unν(|un|)

1
pi−1

≥

∫

Ωs

ν(|un|)
pi

pi−1 |∂xi
un|

pi

≥

∫

Ω

|∂xi
[ṽ(un)]s|

pi .

(4.6)

We choose [ṽ(un)]s as test function in the approximate problems (Pn). By (4.6),
Young, Hölder inequalities, and embedding results in Lemma 2.3, we have

N∑

i=1

∫

Ω

|∂xi
[ṽ(un)]s|

pi ≤ c1

(
‖f‖p′

∞
d

1
N
s

+
N∑

i=1

∫

Ω

|Hn
i (x, un,∇un)||[ṽ(un)]s|+

N∑

i=1

‖gi‖
p′

i

p′

i

) (4.7)
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where ds =

N∏

j=1

(∫

Ω

|∂xj
ṽ(un)s|

pj

) 1
pj

.

Here and in what follows, the constants depend on the data but not on u. Using
conditions A5), (4.1), (4.2) Young, Hölder inequalities, the embedding W

1,~p
0 (Ω) ⊂

Lp∞(Ω), and Hi(x, un,∇un) = Ĥi(x, un,∇ṽ(un)) we get

N∑

i=1

∫

Ω

|Hi(x, un,∇un)||[ṽ(un)]s| ≤
N∑

i=1

∫

Ω

|bi(x)||∂xi
ṽ(un)|

pi−1|[ṽ(un)]s|

≤
N∑

i=1

s∑

σ=1

∫

Ωσ

|bi(x)||∂xi
[ṽ(un)]σ|

pi−1|[ṽ(un)]s|

≤
N∑

i=1

‖bi‖Lri (Ω′)

s∑

σ=1

[ ∫

Ωσ

|∂xi
[ṽ(un)]s|

(pi−1)r′i |[ṽ(un)]s|
r′i

] 1

r′
i

≤
N∑

i=1

‖bi‖Lri (Ω′)

s∑

σ=1

(∫

Ωσ

|∂xi
[ṽ(un)]s|

(pi−1)r′iti

) 1

r′
i
ti

(∫

Ωσ

|[ṽ(un)]s|
r′it

′

i

) 1

r′
i
t′
i

≤ c2

N∑

i=1

‖bi‖Lri (Ω′)

s∑

σ=1

∫

Ωσ

[
|∂xi

[ṽ(un)]s|
pi + d

pi
N
s

]

≤ c2

N∑

i=1

‖bi‖Lri (Ω′)

[∫

Ωs

|∂xi
[ṽ(un)]s|

pi +

s−1∑

σ=1

∫

Ωσ

|∂xi
[ṽ(un)]σ|

pi + d
pi
N
s

]
.

(4.8)
where Ω′ and ti is such that





‖bi‖Lri(Ω′) = max{‖bi‖Lri (Ωσ); σ = 1, .., s},
(pi − 1)r′iti = pi,

r′it
′
i = p∞.

Replacing the inequality (4.8) in (4.7) we obtain

N∑

i=1

∫

Ω

|∂xi
[ṽ(un)]s|

pi ≤ c1

{
‖f‖p′

∞
d

1
N
s +

N∑

i=1

‖gi‖
p′

i

p′

i

+

N∑

i=1

‖bi‖Lri (Ω′)

[ ∫

Ωs

|∂xi
[ṽ(un)]s|

pi +

s−1∑

σ=1

∫

Ωσ

|∂xi
[ṽ(un)]σ|

pi +

N∑

i=1

d
pi
N
s

]}
.

(4.9)
Choosing Ω′ such that

1− c1

N∑

i=1

‖bi‖Lri (Ω′) > 0, (4.10)
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(4.9 ) becomes

N∑

i=1

∫

Ω

|∂xi
[ṽ(un)]s|

pi ≤ c2{‖f‖p′

∞
d

1
N
s +

∑N
i=1 ‖gi‖

p′

i

p′

i

+(
N∑

i=1

A
1
pi

− 1
p∞ )(

s−1∑

σ=1

N∑

j=1

∫

Ωσ

|∂xj
[ṽ(un)]σ|

pj )

+
∑N

i=1 ‖bi‖Lri(Ω′)d
pi
N
s }.

for some constant c3 > 0. For s = 1 we get

∫

Ω

|∂xi
[ṽ(un)]1|

pi ≤
N∑

i=1

∫

Ω

|∂xi
[ṽ(un)]1|

pi

≤ c2

[
‖f‖p′

∞
d

1
N

1 +

N∑

i=1

‖gi‖
p′

i

p′

i
+

N∑

i=1

‖bi‖Lri(Ω′)d
pi
N

1

]
.

(4.11)

Thanks to Proposition 4.3 in [16], by choosing Ω′ such that (4.10) and

1− c2

N∑

i=1

‖bi‖Lri (Ω′) > 0.

We get

d1 ≤ c3

[(
‖f‖

N
p̄

p′

∞

+ ‖γ‖
N
p̄

p′

∞

)
d

1
p̄

1 +

N∑

i=1

‖gi‖
p′

i

p′

i

]
.

Then there exists a constant c4 > 0 such that d1 ≤ c4, and by (4.11) we obtain

N∑

i=1

∫

Ω

|∂xi
[ṽ(un)]1|

pi ≤ c5 (4.12)

for some constant c5 > 0. Moreover, using (4.12) in (4.11) and iterating on s, we
have

N∑

i=1

∫

Ω

|∂xi
[ṽ(un)]s|

pi ≤ c3

[
‖f‖p′

∞
d

1
N
s +

N∑

i=1

‖gi‖
p′

i

p′

i
+1+

N∑

i=1

‖bi‖Lri (Ωσ)d
pi
N

1

]
(4.13)

finally by (4.13), we get

‖ṽ(un)‖W 1,~p
0

=

N∑

i=1

(∫

Ω

|∂xi
ṽ(un)|

pi

) 1
pi

≤
N∑

i=1

(∫

Ω

( t∑

s=1

|∂xi
[ṽ(un)]s|

)pi
) 1

pi

≤ k

N∑

i=1

( t∑

s=1

∫

Ω

|∂xi
[ṽ(un)]s|

pi

) 1
pi

≤ C.

✷
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4.3. Existence Theorem

Theorem 4.5. We suppose that the conditions A1) − A7) holds true, then the
problem (P) has at least one weak solution.

Proof: By Proposition refp1, we conclude that ∂xi
ṽ(un) is bounded in Lpi(Ω),

which gives a weakly convergence of ∂xi
ṽ(un) to ∂xi

ṽ(u) in the space Lpi(Ω), for
i = 1, ..., N , and consequently by embedding theorem we get the strongly conver-
gence of ṽ(un) to ṽ(u) in Lp̄(Ω), for some u and some subsequence, still denote by
un.

1. Almost everywhere convergence of the gradient

According to the proposition 4.3, it is enough to show that

lim
n→∞

N∑

i=1

∫

Ω

[āi(x, un,∇ṽ(un))− āi(x, un,∇ṽ(u))][∂xi
ṽ(un)− ∂xi

ṽ(u)] = 0. (4.14)

Indeed, we can write the integral of 4.3 as follows

N∑

i=1

∫

Ω

[āi(x, un,∇ṽ(un))− āi(x, un,∇ṽ(u))][∂xi
ṽ(un)− ∂xi

ṽ(u)]

=

N∑

i=1

∫

Ω

[āi(x, un,∇ṽ(un))][∂xi
ṽ(un)− ∂xi

ṽ(u)]dx

−
N∑

i=1

∫

Ω

[āi(x, un,∇ṽ(u))][∂xi
ṽ(un)− ∂xi

ṽ(u)]dx

= An −Bn.

By assumption A1) and A7), we have āi(x, un,∇ṽ(un)) = ai(x, un,∇un). Thus,
we can rewrite An as

An =

N∑

i=1

∫

Ω

[ai(x, un,∇un)][∂xi
ṽ(un)− ∂xi

ṽ(u)]dx.

We claim that An goes to zero as n tend to infinity. Indeed, taking v = ṽ(un)− ṽ(u)
as test function in the approximate problem we get

N∑

i=1

∫

Ω

ai(x, un,∇un)[∂xi
ṽ(un)− ∂xi

ṽ(u)]dx

+
N∑

i=1

∫

Ω

Hi(x, un,∇un)(ṽ(un)− ṽ(u))dx

=

∫

Ω

f(ṽ(un)− ṽ(u))dx +
N∑

i=1

∫

Ω

gi(∂xi
ṽ(un)− ∂xi

ṽ(u))dx.

(4.15)
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Since ∂xi
ṽ(un) − ∂xi

ṽ(u) is bounded uniformly in (Lpi(Ω))N , and ṽ(un) converge
strongly to ṽ(u) in Lpi(Ω), gi, f belong to Lp′

i(Ω), we conclude that

lim
n→∞

∫

Ω

gi(∂xi
ṽ(un)−∂xi

ṽ(u))dx = 0 and lim
n→∞

∫

Ω

f(ṽ(un)−ṽ(u))dx = 0. (4.16)

By assumption A3), we can show that Hi(x, un,∇un) ⇀ η in Lp′

∞(Ω) and since
ṽ(un) converge strongly to ṽ(u) in Ldi(Ω) for all di < p′∞, we get

lim
n→∞

∫

Ω

Hi(x, un,∇un)(ṽ(un)− ṽ(u))dx = 0. (4.17)

By 4.16 and 4.17, we conclude that lim
n→∞

An = 0. Let E be subset of Ω, we have

∫

E

|āi(x, un,∇ṽ(u))|qidx ≤ c1

∫

E

|un|
p∞qi

p′
i dx+ c2

∫

E

|∂xi
ṽ(u)|

pidx, ∀qi < p′i.

(4.18)

By the strongly convergence ṽ(un) to ṽ(u) in L
p∞qi

p′
i (Ω) and since ṽ is bijective

(i.e un tend to u strongly in L
qi

p∞
p′
i (Ω)) we have the terms in the right hand

side in 4.18 goes to zero as |E| tend to zero, and by almost everywhere conver-
gence of āi(x, un,∇ṽ(u)) to āi(x, u,∇ṽ(u)), we conclude by Vitali’s Theorem that,
lim
n→∞

Bn = 0, according to Lemma 4.3, we conclude that

∂xi
ṽ(un) −→ ∂xi

ṽ(u), a.e in Ω. (4.19)

2. Passage to the limit By using the growth condition A2), we get

|āi(x, un,∇ṽ(un))|
p′

idx ≤ c[|un|
p∞ + |∂xi

ṽ(un)|
pi ] (4.20)

by the continuous embedding in anisotropic space W
1,~p
0 (Ω) into Lp∞(Ω), Proposi-

tion refp1, (4.20) and (4.19) we conclude that

āi(x, un,∇ṽ(un)) ⇀ āi(x, u,∇ṽ(u)) weakly in Lp′

i(Ω),

and since āi(x, un,∇ṽ(un)) = ai(x, un,∇un), and āi(x, u,∇ṽ(u)) = ai(x, u,∇u) we
have

ai(x, un,∇un) ⇀ ai(x, u,∇u) weakly in Lp′

i(Ω). (4.21)

On the other hand, we have

|Ĥi(x,∇ṽ(un))|p
′

∞ ≤ |bi(x)|p
′

∞ |∂ṽ(un)|(pi−1)p′

∞

≤ c3|bi(x)|ri + c4|∂xi
ṽ(un)|

(pi−1)p′

∞
(

ri
p′
∞

)′

≤ c3|bi(x)|ri + c4|∂xi
ṽ(un)|pi ,

(4.22)

with c3 and c4 are the positive constant. (4.22), and (4.19) gives

Ĥi(x,∇ṽ(un)) ⇀ Ĥi(x,∇ṽ(u)) weakly in Lp′

∞(Ω). (4.23)
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And since
Ĥi(x,∇ṽ(un)) = Hi(x, un,∇un) and Ĥi(x,∇ṽ(u)) = Hi(x, u,∇u) we get

Hi(x, un,∇un) ⇀ Hi(x, u,∇u) weakly in Lp′

∞(Ω). (4.24)

Passing to the limit in the approximate problems (4.2), and using (4.21) and (4.24)
we conclude that the problem (P ) has at least a weak solution in the sense of
definition (4.1).

✷

Remark 4.6. The main difficulty in this kinds of problem that is studied in The-
orem (4.5, is due to the fact that the operator ai is not coercive, because of the
condition ν(0) = 0. To overcame this difficulty, we have assumed the boundary of
ν.
Today, we have proved only the existence result of weak solution for the problem
(P ). The existence of the same result without assuming the boundary of ν, is very
important.

4.4. Perspective

The result of the uniqueness of the weak solution of the problem is very impor-
tant (this is the object of our future paper), the problem comes from the strong
monotony condition of the operator, namely:

[ai(x, s, ξ)− ai(x, s, ξ
′)][ξi − ξ′i] ≥ ν(|s|)(ǫ + |ξi|+ |ξ′i|)

pi−2|ξi − |ξi|
2,

we have ν(|s|) = 0 when s is small enough.
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