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On Generalized Weakly Symmetric Kenmotsu Manifolds

Kanak Kanti Baishya and Partha Roy Chowdhury

ABSTRACT: This paper aims to introduce the notions of a generalized weakly sym-
metric Kenmotsu manifolds and a generalized weakly Ricci-symmetric Kenmotsu
manifolds. The existence of a generalized weakly symmetric Kenmotsu manifold is
ensured by a non-trivial example.
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1. Introduction

The notion of weakly symmetric Riemannian manifold have been introduced by
Tamdssy and Binh [12]. Thereafter, a lot of research has been carried out in this
topic. For details, we refer to [21], [19], [5], [6], [15], [16], [1], [20], [7] and the
references there in. In the sprit of [12], a Kenmotsu manifold (M", g)(n > 2), is
said to be a weakly symmetric manifold, if its curvature tensor R of type (0,4) is
not identically zero and admits the identity

(VXR)(YaUaVa W) = Al(X)R(Y,U,V, W)
+B(Y)R(X,U,V, W)+ B{(U)R(Y, X, V, W)
+D1(V)R(Y,U, X, W)+ D;(W)R(Y,U,V, X)(1.1)

where Ay, By & D are non-zero 1-forms defined by A1 (X ) = g(X,01), B1(X) =
g(X,0,) and D{(X) = g(X,m), for all X and R(Y,U,V, W) = g(R(Y,U)V, W),
V being the operator of the covariant differentiation with respect to the metric
tensor g. An n-dimensional Kenmotsu manifold of this kind is denoted by (W.S),-
manifold.
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Keeping in tune with Dubey [17], we shall call a Kenmotsu manifold of
dimension n, a generalized weakly symmetric (which is abbreviated hereafter as
(GW S),-manifold) if it admits the equation

(VxR)(Y,U,V, W) = A|(X)R(Y,U,V, W)+ B(Y)R(X,U,V, W)
+B1(U)R(Y, X,V, W)+ D(V)R(Y,U, X, W)
+D1(W)R(Y,U,V, X)+ Ax(X)G(Y,U,V, W)
+B2(Y)G(X,U,V, W) + Bo(U) G(Y, X, V, W)
Do(V) G(Y,U, X, W)+ Dy(W) G(Y,U,V, X )(1.2)

R
G

+

where

G, UV, W) = [g(U,V)g(Y, W) - g(Y¥, V)g(U, W)] (1.3)

and A;, B; & D; are non-zero 1-forms defined by A;(X ) = g(X,0;), Bi(X) =
9(X,0;), and D;(X) = g(X, m;), for i = 1, 2. The beauty of such (GWS),,-manifold
is that it has the flavour of

(i) locally symmetric space [4] (for A; = B; = D; = 0),

(ii) recurrent space [2](for Ay # 0, Ay = B; = D; =0),

(ili) generalized recurrent space [17] (A; # 0. B; = D; =0),

(1v) pseudo symmetric space [13] (for 5 A — B =D =H #0, Ay = By =

v) generalized pseudo symmetric space [9] (for 4t = B; = D; = H; # 0),
vi) semi-pseudo symmetric space [14] (for A; = By = Dy =0, By = Dy #0),
vii) generalized semi-pseudo symmetric space [8] (for A; =0, B; = D; # 0),
viii) almost pseudo symmetric space[13] (for Ay = H1+K;,B1 =Dy =H; #0
and A2 D2 = 0),

(ix) almost generalized pseudo symmetric space[10] (or 4, = H; + K;, B; =
D;=H; #0 ),

(x) weakly symmetric space [12] ( for Ay, By, D; # 0, Ay = By = Dy =0).

Our work is structured as follows. Section 2 is concerned with Kenmotsu man-
ifolds and some known results. In section 3, we have investigated a generalized
weakly symmetric Kenmotsu manifold and it is observed that such a space is an
n-Einstein manifold provided D;(§)#-1. We also tabled different type of curva-
ture restrictions for which Kenmotsu manifolds are sometimes Einstein and some
other time remain n-Einstein. Section 4, is concerned with a generalized weakly
Ricci-symmetric Kenmotsu manifold which is also found to be n-Einstein space. Fi-
nally, we have constructed an example of ageneralized weakly symmetric Kenmotsu
manifold.

(
(
(vi
(

2. Kenmotsu manifolds and some known results

Let M be a n-dimensional connected differentiable manifold of class C'°°-covered
by a system of coordinate neighborhoods (U, ") in which there are given a tensor
field ¢ of type (1, 1), a cotravariant vector field £ and a 1—form n such that
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P’X = —X+n(X), (2.1)
for any vector field X on M. Then the structure (¢, &, n) is called contact structure

and the manifold M™ equipped with such structure is said to be an almost contact
manifold, if there is given a Riemannian compatible metric g such that

g(@X)Y) = —g(X,0Y), g(X,§) =n(X), (2.3)
9(dX,0Y) = g(X,Y)—n(X)nY), (2.4)

for all vector fields X and Y , then we say M is an almost contact metric manifold.
An almost contact metric manifold M is called a Kenmotsu manifold if it satisfies
[11],

(Vx@)Y = —g(X,0Y )¢ — n(Y)o(X), (2.5)

for all vector fields X and Y, where V is a Levi-Civita connection of the Riemannian
metric. From the above it follows that

Vxé = X -—n(X), (2.6)
(Vx )Y = g(X,Y)—n(X)n(), (2.7)

In a Kenmotsu manifold the following relations hold ([18], [3]):

RX,Y)§ =n(X) Y —n(Y)X, (2.8)

S(X,f): _(n_ 1)77(X)a (29)
R(X, Y = g(X,Y)E —n(Y)X, (2.10)
R(§, X)Y =n(Y)X — g(X,Y)¢ (2.11)

for any vector fields X,Y,Z where R is the Riemannian curvature tensor of the
manifold.

3. Generalized weakly symmetric Kenmotsu manifold
In this section, we consider a generalized weakly symmetric Kenmotsu manifold
(M™, g)(n > 2). Now, contracting Y over W in both sides of (1.2), we get
(VxS)(U, V) = A1(X)S(U, V)—l—Bl(U)S(X V) + Bi(R(X,U)V)
+D1(R(X,V)U) + D1(V)S(U, X)
+(n = 1)[A2(X)g(U, V) + B2 (U)g(X, V) + D2(V)g(U, X)]
+B2(G(X,U)V) + Do(G(X, V)U).
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As a consequence of (2.8), (2.9) and (2.10) the above equatiom yields
(VxS &) = —(n—-1AX)nU) - (n=2)B(U)n(X)
+D1(§)S(U, X)=n(U) B1(X)=n(U) D1 (X) + (X, U)D1(§)
+(n - 1)[A2( )n(U) + Ba(U)n(X) + Da(§)g(U, X))
+0(U) B2 (X) = n(X) B2 (U) +n(U)D2(X) — g(U, X) D (&)
for V= ¢. Again, replacing V' by &, in the following identity
(VxS)(U,V)=VxSUV)-S(VxUV)-SU,VxV) (3.1)
and then making use of (2.1), (2.6), (2.9), we find

(VxS)(U, &) = =(n - Dg(X,U)=S(U, X). (3:2)
Now, using (3.2) in (3.1), we have
—(n—-1)9(X,U)-S(U, X) (3.3)
= —(h-DAX ) (U) = (n = 2)B1(U)n(X)
+D1(§)S(U, X)=n(U) B1(X) + g(X, U) D1(§)—n(U) D1(X)
+(n— 1)[A2( ) (U) + B2 (U)n(X) + D2(£)g(U, X)]
+0(U)B2(X) = n(X)B2(U) + n(U)D2(X) = g(U, X)Ds(£)

which leaves

[A1(€) + B1(§) + D1(§)] = [A2(§) + Ba(&) + D2(¢)] (3.4)
for X = U = . In particular, if A2(€) = B2(§) = Ba(§) = D2(€) = 0, (3.4) turns

into
A1(§) + Bi(§) + D1(§) = 0. (3.5)
This leads to the following

Theorem 3.1. In a generalized weakly symmetric Kenmotsu manifold (M™, g)(n >
2), the relation (5.4) hold good.

In a similar manner, we can have

—(n—=1)g(X,V)-S(V,X) (3.6)
= —(r=1DAX)n(V) = (n = 2)D1(V)n(X)]
+B1(§)S(X, V)+g(X, V) B1(§) — n(V)B1(X)—n(V) D1 (X)
+(n = DH{A(X)In(V) + B2(§)g(X, V) + Da(V)n(X)]
+n(V)B2(X) — g(X, V) Ba(&) + (V) D2(X) = n(X)Da(V).
Now, putting V = ¢ in (3.6) and using (2.1), (2.9), we obtain

(n — 1A (X)+B1(X)+D1(X) + (n = 2)[B1(§)+D1(&)]n(X) (3.7)
= [(n—1D)A2(X) + (n = 2){B2(§) + D2(&) }In(X)] + B2(X) + D2(X).
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Putting X = ¢ in (3.6) and using (2.1), (2.2), (2.9), we obtain

(n = D[A1(§) + B (V) + (n = 2)D1(V)+n(V) D1(€) (3.8)
= (n=1[{A2(E) + B2()in(V) + D2(V)] 4+ n(V)D2(§) — Da(V).
Replacing V' by X in the above equation and using (3.4), we get
D1(X) = D1(§)n(X) = D2(X) — Da(&)n(X) (3.9)
Moreover, in view of (3.4), (3.7) and (3.9), we get
B1(X)=B1(§)n(X) = Ba2(X)—B2({)n(X). (3.10)
Subtracting (3.9), (3.10) from (3.7), we get
AL (X)+([B1(§)+D1(§)]n(X) = A2(X) + {Ba(&) + D2(&) }n(X))]. (3.11)
Again, adding (3.9), (3.10) and (3.11), we get
A1(X) + Bi(X) + D1(X) = [A2(X) + B2(X) + D2(X))]. (3.12)

Next, for the choice of Ay = By = Cy = Dy = 0, the relation (3.12) yields
A1(X)+ B1(X) + D1 (X) =0. (3.13)
This motivates us to state the followings

Theorem 3.2. In a generalized weakly symmetric Kenmotsu manifold (M™, g)(n >
2), the sum of the associated 1-forms is given by (3.12 ).

Theorem 3.3. There does not exist a Kenmotsu manifold which is

(i) recurrent,

(ii) generalized recurrent provided the 1-forms associated to the vector fields are
collinear,

(i11) pseudo symmetric,

(iv) generalized semi-pseudo symmetric provided the 1-forms associated to the
vector fields are collinear.

Again from (3.3), putting X = &, we have
(n = D[—{A1(&) — A2(&)} —{D1(&) — D2(§)}n(U) (3.14)
= {B1(§) — B2()nU) + (n = 2){B:1(U) — B2(U)}

Using (3.4), above equation becomes

{B1(§) — B2(§)In(U) = B1(U) — B2(U) (3.15)

Setting U = £, we have

—(n = D{A1(X) — A2(X)}—{B1(X) — B2(X)}—{D1(X) — D2(X]3.16)
= —(n—=2){A:1(&§) — A2(¢)}
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Using (3.4) in (3.16), we obtain
{AL(8) — A2(§) In(X) = A1 (X) — Ax(X) (3.17)

Again from (3.3), we have

n — D{A1(X) — A2 (X)}H{B1(X) — Bo(X) }H{D1(X) — Da(X)}]
[14+D1(&)]
[(n = D{1 + D2(§)} + D1(§) — Da(§)]
- [+ D1(E) o)
~ (n=2)[B1(U)-B2(U)]
o Y (318)

s, x)=N n(U)

In view of (3.15), (3.17) and (3.18), we have

+ = 2AS) [fﬁgﬁsn{&(@ = n(U)n(X)

This leads to the followings

Theorem 3.4. A generalized weakly symmetric Kenmotsu manifold is an n-Fins-
tein space provided D1 (§)# — 1.

Theorem 3.5. In a Kenmotsu manifold the following table hold good

Nature of the space

Type of curvature restriction corresponding to
curvature restriction
locally symmetric space Einstein space
locally recurrent space n-Einstein space
generalized recurrent space n-FEinstein space
pseudo symmetric space n-Einstein space

generalized pseudo
symmetric space
semi-pseudo symmetric space n-Einstein space
generalized semi-pseudo
symmetric space
almost pseudo
symmeltric space
almost generalized pseudo
symmetric space
weakly symmetric space n-Einstein space

n-Einstein space

n-Finstein space

n-Einstein space

n-Finstein space
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4. Generalized weakly Ricci-symmetric Kenmotsu manifold

A Kenmotsu manifold (M", g)(n > 2), is said to be a generalized weakly Ricci-
symmetric if there exist 1-forms A;, B; and D; which satisfy the condition

(VxS)(U, V) = A(X)S(U,V)+ B(U)S(X,V)+ D1(V)S(U,X) (4.1)
+A2(X)g(U, V) + B2(U)g(X, V) + Do(V)g(U, X).
Putting V = ¢ in (4.1), we obtain
(VxS)(U,&) = (n—=2)[A (X)) + Bi(U)n(X)] + D1(6)S(U, X) (4.2)
+A2(X)n(U) + Bo(U)n(X) + D2(€)g(U, X).
In view of (3.2), the relation (4.2) becomes
(0 — 1)g(X, U)=S(U, X) (43)

= —(n=D{A(X) + Bi(X)}n(U) + Bi(U)n(X)] + D1 (§)S(U, X)
+A2(X)n(U) + B2(U)n(X) + D2(€)g(U, X).

Setting X = U = ¢ in (4.3) and using (2.1), (2.2) and (2.9), we get
(n = D[A1(€) + Bi(€) + B1(€) + D1 (€)] (4.4)
= [A2(&) + Ba(€) + B2(€) + Da(€)).
Again, putting X = ¢ in (4.3), we get
(n = D[{A1(&) + Bi(€&) + D1()}n(U) + B1(U)] (4.5)
[A2(€) + B2(&) + D2(&)]n(U) + B2(U).
Setting U = ¢ in (4.3) and then using (2.1), (2.2) and (2.9), we obtain
(n = D[{A1(X) + B1(X)} +{B1(€) + D1 (&) }n(X)] (4.6)
= A(X) + B2(En(X) + Da(&)n(X).
Replacing U by X in (4.5) and then adding the resultant with (4.6), we have
(n = D[A1(X) + B1(X)] — [A2(X) + Ba(X)] (4.7)

= —(n=D[A(§) + Bi(§) + Di(In(X) + [A2(€) + Ba(¢)
Da()In(X) — (n — 1) D1(&)n(X) + Da(§)n(X).

By virtue of (4.4), the above equation becomes

(n = D[A1(X) + Bi(X)] + (n = 1) D1 (§)n(X) (4.8)
[A2(X) + Ba(X)] + Do(&)n(X).

Next, putting X = U = £ in (4.1), we get

(n = D[A1(&) + Bi(OIn(V) + (n = 1) D1 (V) (4.9)
= [A2(8) + B2(9In(V) + Da(V).
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Replacing V' by X in (4.9) and adding with (4.8), we obtain

(n — D[A1(X) + B1(X) + D1(X)] (4.10)
(n = D[A1(&) + Bi(&) + D1(&)In(V)
= [A(X) + Bo(X) + D1(X)] + [A2(€) + Ba(€) + D2()n(V).
By virtue of (4.4), the above equatin becomes
(n = 1)[A1(X) + B1(X) + D1(X)] = [A2(X) + Ba2(X) 4+ D1 (X)]. (4.11)

This leads to the followings

Theorem 4.1. In a generalized weakly Ricci symmetric Kenmotsu manifold
(M™, g) (n>2), the sum of the associated 1-forms are related by (4.11).

Again from(4.3), we have

SW.X) = g PO + (0= Dlg(x.0) (1.12)
B~ D) + B} - A (X))
i prE [~ DB) =~ Bal) ()
From (4.6), we have
(0 = DILAL(X) + Bu(X)} — A(X)] (1.13)

= [=(n = D{B1(&) + D1(&)} + B2(&) + D2(&)]n(X).
Using (4.4) in (4.5), we have

(n—1)B,(U) — Ba(U) = —(n — 1)B1(§) + Ba(€) (4.14)

In view of (4.12), (4.13) and (4.14), we have

S (4.15)
[D2(€) + (n —1)]

N e
2= DB (©) - B[Ql(i)}D :(g? — D) = DN 17y, x),

This leads to the followings

Theorem 4.2. A generalized weakly Ricci symmetric Kenmotsu manifold is an
n-Einstein space provided Dy (§)# — 1.

Theorem 4.3. In a Kenmotsu manifold the following table hold good
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Nature of the space

Type of curvature restriction corresponding to
curvature restriction
locally Ricci symmetric space FEinstein space
locally Ricci recurrent space n-FEinstein space
generalized Ricci recurrent space n-Finstein space
pseudo Ricci symmetric space n-Einstein space

generalized pseudo
Ricci symmetric space
Ricci semi-pseudo symmetric space n-Einstein space
generalized semi-pseudo
Ricci symmetric space
almost pseudo
Ricci symmetric space

almost generalized pseudo
Ricci symmetric space
weakly Ricci symmetric space n-Einstein space

n-Einstein space

n-Finstein space

n-Einstein space

n-Einstein space

5. Example of an (GWS); Kenmotsu manifold

(see [18], page 21-22) Let M3(¢,&,n, g) be a Kenmotsu manifold (M3, g) with
a ¢-basis

PR
ox’ P oy’ T 0z

e1=¢e *

Then from Koszul’s formula for Riemannian metric g, we can obtain the Levi-Civita
connection as follows

Ve, e3 = eq, Ve, e2 =0, Ve, €1 = —e3,
Ve,e3 = e, Ve, €2 = —e3, Ve,e1 =0,
v63€3 = 0, Veseg - 0, v63€1 =0.

Using the above relations, one can easily calculate the non-vanishing components
of the curvature tensor R (up to symmetry and skew-symmetry)

R(617€3561763) :R(62763562763) =1= R(€1762761562)-
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Since {eq, €2, e3} forms a basis, any vector field X, Y, U, V € x(M) can be written

as

X

R(X,Y,U,V)

R(er,Y,U,V)
R(es, Y, U, V)
Res, Y, U, V)
(X,e1,U, V)
(X,e2,U, V)
(X,e3,U, V)
(X,Y,e1,V)
(X,Y,es,V)
(X,Y,e3,V)
(X,Y,U,eq)
(X,Y,U,es)
(X,Y,U, e3)
(X,Y,U,V)

oo [RE= v [IR=~B=sl=s]l

Q X I/ T

61,YUV

(
(62,Y U \%4

QA QA Qi

)
)
(e3, Y, U, V)
(X,e1,U, V)
(X,e2,U, V)
(X,es3,U, V)
(X,Y,e1,V)
(X,Y,e2,V)
(X,Y,e3,V)

)

)

)

QAN

(X,Y,U, e
(X YU€2
(X YU€3

QA

3 3 3 3
Zaiei, Y = Zbiei, U = ZCZ‘GZ‘, V = Zdiei,
1 1 1 1

(albg — agbl)(cldg — 02d1> + (a1b3 — agbl)(cldg

—cgdy) + (agbs — asbe)(cods — c3ds)
Ty (say)
bs(crds — c3dy) + ba (c1da — cady) = A1 (say)
bs(cads — c3da) — by (c1da — cady) = Ao (say)
b1(csdi—cids ) 4 ba (cgda — cads) = A3 (say)
ag(crds — c3dy) +ag (c1da — cady) = Ay (say)
asg(cods — c3da) + ar (cadiy — c1da) = A5 (say)
ay(csdi—cids ) + as (csda — cads ) = X6 (say)
ds(a1bs — asby) + da (a1ba — azby )(= A7 (say)
ds(agbs — aszba) + di (azby — arbe ) = Ag (say)
dq( + da (asba — azbs) = A9 (say)

)
1(asby —aybs )
c3 )

)

(a1bs — agby) + 2 (a1b2 — agby ) = Ao (say)
( + ¢1 (a2by —arbs ) = A1 (say)
c1(agby — a1bs) + ca (asba — agbs ) = A12 (say)
(bic1 + baca — bses)(ardy + asds — asds)
—(arer + azes — agez)(bidy + bads — bads) =
(baca — bscs)dy — (bada — bsds)cr = w1 (say)
(bic1 — bszes)da — (bidy — bsds)ca = wo (say)
(bicr — baca)ds — (brdy — bada)cs = w3 (say)
(azdy — azdz)cy — (azca — asceg)dy = wy (say)
(ardy — asds)ca — (a1¢1 — asges)da = ws (say)
(ardy — aada)cs — (a1¢1 — azce)ds = wg (say)
asds — azdz)by — (bada — bsds)a; = wr (say)
ardy — asds)ba — (brdy — bzdsz)as = ws (say)
bidy — bads)as — (a1d; — agda)bs = wg (say)
baco — bscs)ar — (aaca — ases)br, = wio (say)
bicr — bzes)as — (a1c1 — asez)ba = wiy (say)

bicr — —baca)as — (a1c1 + azce)bs = wia (say)

C3 agbg — a3b2

T3 (say)

(
(
(
(
(
(

and the components which can be obtained from these by the symmetry properties.
Now, we calculate the covariant derivatives of the non-vanishing components of the
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curvature tensor as follows

(Velé)(X,KU, V) = —aiXs +asha —big +b3)s
—c1Ag + c3Ag — diA12 +d3Ai,
(V62R)(X, YU, V) = = —as\s+ asha —badg + bsAs
—CaAg + c3Agd3A11 — da 12+,
(Ves R) (X, y,U,vV) = 0.

Depending on the following choice of the the 1-forms

Ai(er) = azds — G1A3T+ bsAs — bl)\6,

As(er) = €3Ag — C1Ag -lj—jdg)\n — dl)\12,

Ai(e2) = a3A2 — a2)‘3; ?’3)‘5 - b2)\67

Ag(es) = C3Ag — CaAg J;ng)\ll — d2)\12,

B = o B o
Diles) = —— 1 Dyfeg) = ——

€39 + d3A12 c3bly + dsbra

one can easily verify the relations

(Ve R)(X,Y,U,V) = Ai(e;)R(X,Y,U,V)+ Bi(X)R(e;,Y,U,V)
+B1(Y)R(X ei,U, V) + Dy (U)R(X,Y, e;, V)
+D1(V)R(X,Y,U, &) + As(e;)G(X,Y,U, V)
+B5(X)G(e;, Y, U, V) + Bo(Y)G(X,e;, U, V)
(U)G( V)

+D5(U)G(X,Y, e;, V) + Do(V)G(X,Y,U, ;)

forl, 2, 3. From the above, we can state that

Theorem 5.1. There exizt a Kenmotsu manifold (M?3,g) which is a generalized
weakly symmetry Kenmotsu manifold.
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