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On Connection Between the Order of a Stationary One-Dimensional

Dispersive Equation and the Growth of its Convective Term

Nikolai A. Larkin∗ and Jackson Luchesi

abstract: A boundary value problem for a stationary nonlinear dispersive equa-
tion of order 2l + 1, l ∈ N with a convective term in the form ukux, k ∈ N was
considered on an interval (0, L). The existence, uniqueness and continuous depen-
dence of a regular solution as well as a relation between l and critical values of k
have been established.
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1. Introduction

This work concerns the existence, uniqueness and continuous dependence of
regular solutions to a boundary value problem for one class of nonlinear stationary
dispersive equations posed on bounded intervals

au+

l∑

j=1

(−1)j+1D2j+1
x u+ ukux = f(x), l, k ∈ N, (1.1)

where a is a real positive number. This class of stationary equations appears
naturally while one wants to solve the corresponding evolution equation

ut +

l∑

j=1

(−1)j+1D2j+1
x u+ ukux = 0, l, k ∈ N (1.2)

making use of an implicit semi-discretization scheme:
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un − un−1

h
+

l∑

j=1

(−1)j+1D2j+1
x un + (un)kun

x = 0, l, k ∈ N, (1.3)

where h > 0, [37]. Comparing (1.3) with (1.1), it is clear that a = 1
h

> 0 and

f(x) = un−1

h
. The case k = 1 has been studied in [27].

For l = 1, we have the well-known generalized Korteweg-de Vries (KdV) equa-
tion which has been studied intensively for critical and supercritical values of k.
In [12,29,30,31] it was proved that a supercritical equation does not have global
solutions and a critical one has a global solution for ”small” initial data and the
right-hand side. For l = 2, k = 2 the generalized Kawahara equation has been
studied in [2]. Initial value problems for the Kawahara equation, l = 2, which had
been derived in [19] as a perturbation of the KdV equation, have been considered
in [3,8,12,14,16,18,20,21,34,35] and attracted attention due to various applications
of those results in mechanics and physics such as dynamics of long small-amplitude
waves in various media [13,15,17]. On the other hand, last years appeared pub-
lications on solvability of initial-boundary value problems for various dispersive
equations (which included the KdV and Kawahara equations) in bounded and un-
bounded domains [2,4,5,7,11,22,23,26,27,28]. In spite of the fact that there is not
some clear physical interpretation for the problems on bounded intervals, their
study is motivated by numerics [6]. The KdV and Kawahara equations have been
developed for unbounded regions of wave propagations, however, if one is interested
in implementing numerical schemes to calculate solutions in these regions, there
arises the issue of cutting off a spatial domain approximating unbounded domains
by bounded ones. In this case, some boundary conditions are needed to specify a
solution. Therefore, precise mathematical analysis of mixed problems in bounded
domains for dispersive equations is welcome and attracts attention of specialists in
this area [2,4,5,7,9,11,26].

As a rule, simple boundary conditions at x = 0 and x = 1 such as u = ux =
0|x=0, u = ux = uxx = 0|x=1 for the Kawahara equation were imposed. Differ-
ent kind of boundary conditions was considered in [7,25]. Obviously, boundary
conditions for (1.1) are the same as for (1.2). Because of that, study of boundary
value problems for (1.1) helps to understand solvability of initial- boundary value
problems for (1.2).

Last years, publications on dispersive equations of higher orders appeared [11,
14,20,21,36]. Here, we propose (1.1) as a stationary analog of (1.2) because the
last equation includes classical models such as the generalized KdV and Kawahara
equations.

The goal of our work is to formulate a correct boundary value problem for (1.1)
and to prove the existence, uniqueness and continuous dependence on perturbations
of f(x) for regular solutions as well as to study a relation between the order of the
equation and the critical values of k.

The paper has the following structure. Section 1 is Introduction. Section 2
contains formulation of the problem and main results of the article. In Section
3 we give some useful facts. In Section 4 the existence of a regular solutions for
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the problem is proved. Here, a connection between the order of the equation and
the growth of its convective term is established. Finally, in Section 5 uniqueness
is proved provided certain restriction on f as well as continuous dependence of
solutions.

2. Formulation of the Problem and Main Results

For real a > 0, consider the following one-dimensional stationary higher order
equation:

au+

l∑

j=1

(−1)j+1D2j+1u+ ukDu = f(x) in (0, L) (2.1)

subject to boundary conditions:

Diu(0) = Diu(L) = Dlu(L) = 0, i = 0, . . . , l − 1, (2.2)

where 0 < L < ∞, l, k ∈ N with k ≤ 4l, Di = di/dxi, D1 ≡ D are the derivatives
of order i ∈ N, and f is a given function.

Throughout this paper we adopt the usual notation (·, ·) for the inner product
in L2(0, L) and ‖·‖, ‖·‖∞ and ‖·‖Hi , i ∈ N for the norm in L2(0, L), L∞(0, L) and
Hi(0, L), respectively [1]. Symbols C∗, C0, Ci, Ki, i ∈ N, mean positive constants
appearing during the text.

Definition 2.1. For a fixed l ∈ N, equation (2.1) is a regular one for k < 4l and
is critical when k = 4l.

The main results of this article is the following theorem:

Theorem 2.1. Let f ∈ L2(0, L), then in the regular case, 1 ≤ k < 4l, problem
(2.1)-(2.2) admits at least one regular solution u ∈ H2l+1(0, L) such that

‖u‖H2l+1 ≤ C((1 + x), f2)
1
2 (2.3)

with the constant C depending only on L, l, k, a and ((1 + x), f2).
In the critical case, k = 4l, let f be such that

‖f‖ <
[(2l + 1)(4l+ 2)]

1
4l a

2
1
4lC∗

(2.4)

with C∗ an absolute constant. Then problem (2.1)-(2.2) admits at least one regular
solution u ∈ H2l+1(0, L) such that

‖u‖H2l+1 ≤ C
′((1 + x), f2)

1
2 (2.5)

with the constant C′ depending only on L, l, a and ((1 + x), f2).

Theorem 2.2. Let l, k ∈ N 1 ≤ k ≤ 4l and let ((1 + x), f2) be sufficiently
small. Then the solution from Theorem 2.1 is unique and continuously depends on
perturbations of f .



160 N. A. Larkin and J. Luchesi

3. Preliminary Results

Lemma 3.1. For all u ∈ H1(0, L) such that u(x0) = 0 for some x0 ∈ [0, L]

sup
x∈(0,L)

|u(x)| ≤
√
2‖u‖ 1

2 ‖Du‖ 1
2 . (3.1)

Proof: Let x0 ∈ [0, L] be such that u(x0) = 0. Then for any x ∈ (0, L)

u2(x) =

∫ x

x0

D[u2(ξ)]dξ ≤ 2

∫ x

x0

|u(ξ)||D(ξ)|dξ ≤ 2

∫ L

0

|u(x)||Du(x)|dx

≤ 2‖u‖‖Du‖.

From this, (3.1) follows immediately. ✷

We will use the following versions of the Gagliardo-Nirenberg’s inequality, [24,
32,33].

Theorem 3.1. Let u belong to H l
0(0, L), then the following inequality holds:

‖u‖∞ ≤ C∗‖Dlu‖ 1
2l ‖u‖1− 1

2l (3.2)

with C∗ an absolute constant.

Theorem 3.2. Suppose u and D2l+1u belong to L2(0, L). Then for the derivatives
Diu, 0 ≤ i < 2l+ 1 the following inequalities hold:

‖Diu‖Lp ≤ K1‖D2l+1u‖θ‖u‖1−θ +K2‖u‖, (3.3)

where
1

p
= i− θ(2l + 1) +

1

2
,

for all θ ∈ [ i
2l+1 , 1]. (The constants K1, K2 depend only on L, l, i).

We will use the following fixed point theorem, [10].

Theorem 3.3. (Schaefer’s Fixed Point Theorem) Let X a real Banach Space.
Suppose B : X → X is a compact and continuous mapping. Assume further that
the set

{u ∈ X | u = λBu for some 0 ≤ λ ≤ 1}

is bounded. Then B has a fixed point.
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4. Existence

Proof: (of Theorem 2.1).
We start with the linearized version of (2.1)

Au ≡ au+

l∑

j=1

(−1)j+1D2j+1u = f in (0, L) (4.1)

subject to boundary conditions (2.2).

Theorem 4.1. (See [27], Theorem 5). Let F ∈ L2(0, L). Then the problem
(4.1),(2.2) admits a unique regular solution u ∈ H2l+1(0, L) such that

‖u‖H2l+1 ≤ C0‖F‖ (4.2)

with the constant C0 depending only on L, l and a.

Given u ∈ H l
0(0, L), set F := f − ukDu. By (3.2), we get

‖F‖ ≤ ‖f‖+ ‖ukDu‖ ≤ ‖f‖+ ‖u‖k∞‖Du‖
≤ ‖f‖+ Ck

∗ ‖u‖(1−
1
2l )k‖Dlu‖ k

2l ‖Du‖

≤ ‖f‖+ Ck
∗ ‖u‖

(1− 1
2l )k

Hl
0

‖u‖
k
2l

Hl
0

‖u‖Hl
0

≤ ‖f‖+ Ck
∗ ‖u‖k+1

Hl
0

. (4.3)

By Theorem 4.1, let w ∈ H2l+1(0, L) be a unique solution of the linear equation

aw +

l∑

j=1

(−1)j+1D2j+1w = F in (0, L) (4.4)

subject to boundary conditions (2.2). By (4.2)-(4.3),

‖w‖H2l+1 ≤ C0‖F‖ ≤ C0(‖f‖+ Ck
∗ ‖u‖k+1

Hl
0
). (4.5)

We will write henceforth Bu = w whenever w is derived from u via (4.4),(2.2), that
is, Bu ≡ A−1(F (u)), where A is defined by (4.1).

Lemma 4.1. The mapping B : H l
0(0, L) → H l

0(0, L) is compact and continuous.

Proof: Indeed, if {un} is a bounded sequence in H l
0(0, L), then in view of estimate

(4.5), the sequence {wn}, where wn = Bun, n ∈ N is bounded in H2l+1(0, L).
Since H2l+1(0, L) is compactly embedded in H l

0(0, L), there exists a convergent in
H l

0(0, L) subsequence {Bunm
}∞m=1, therefore B is compact.

To prove continuity of the mapping B, let {un} be a sequence such that un → u
in H l

0(0, L). Then the difference vn = wn−w, where wn = Bun, n ∈ N and w = Bu
satisfies

avn +

l∑

j=1

(−1)j+1D2j+1vn = ukD(u − un) + (uk − uk
n)Dun (4.6)
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and the boundary conditions (2.2).
Multiplying (4.6) by vn and integrating by parts over (0, L), we obtain

a‖vn‖2 +
1

2
(Dlvn(0))

2 = (ukD(u − un) + (uk − uk
n)Dun, vn),

whence
a‖vn‖ ≤ ‖ukD(u− un)‖+ ‖(uk − uk

n)Dun‖. (4.7)

According to (3.1),

‖ukD(u − un)‖ ≤
(

sup
x∈(0,L)

|u(x)|2k
) 1

2

‖D(un − u)‖

≤ 2
k
2 ‖u‖ k

2 ‖Du‖ k
2 ‖un − u‖Hl

0

≤ 2
k
2 ‖u‖k

Hl
0
‖un − u‖Hl

0
→ 0

because un → u in H l
0(0, L). On the other hand, let g ∈ C1(R) be such that

g(y) = yk. By the Mean Value Theorem, for arbitrary y, z ∈ R there is ξ ∈ (y, z)
such that

|yk − zk| = kξk−1|y − z|.
Since ξ ∈ (y, z) we can write ξ = (1 − τ )y + τz, with τ ∈ (0, 1). Taking y = un(x)
and z = u(x) for each x ∈ (0, L), we obtain

|uk
n(x)− uk(x)|2 = k2|(1− τ )un(x) + τu(x)|2(k−1)|un(x) − u(x)|2

≤ k2[|1− τ ||un(x)| + |τ ||u(x)|]2(k−1)|un(x) − u(x)|2

≤ k2[|un(x)|+ |u(x)|]2(k−1)|un(x) − u(x)|2

≤ k222(k−1)|un(x)|2(k−1)|un(x)− u(x)|2

+ k222(k−1)|u(x)|2(k−1)|un(x) − u(x)|2. (4.8)

By (3.1),

sup
x∈(0,L)

|un(x)|2(k−1) ≤ 2k−1‖un‖k−1‖Dun‖k−1 ≤ 2k−1‖un‖2(k−1)

Hl
0

,

sup
x∈(0,L)

|u(x)|2(k−1) ≤ 2k−1‖u‖k−1‖Du‖k−1 ≤ 2k−1‖u‖2(k−1)

Hl
0

and
sup

x∈(0,L)

|un(x)− u(x)|2 ≤ 2‖un − u‖‖D(un − u)‖ ≤ 2‖un − u‖2
Hl

0
.

Thus

‖(uk − uk
n)Dun‖ ≤

(

sup
x∈(0,L)

|uk
n(x)− uk(x)|2

) 1
2

‖Dun‖

≤ k2
3k−2

2 (‖un‖k−1
Hl

0

+ ‖u‖k−1
Hl

0

)
1
2 ‖un − u‖Hl

0
→ 0
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because the sequence {un} is bounded in H l
0(0, L) and un → u in H l

0(0, L). From
(4.7), we conclude that ‖vn‖ → 0.

Multiplying (4.6) by (1 + x)vn and integrating over (0, L), we obtain

a(vn, (1 + x)vn) +

l∑

j=1

(−1)j+1(D2j+1vn, (1 + x)vn)

= (ukD(u − un) + (uk − uk
n)Dun, (1 + x)vn).

Integrating by parts and using (2.2) it follow that

a‖vn‖2 +
l∑

j=1

(
2j + 1

2

)

‖Djvn‖2 +
1

2
(Dlvn(0))

2

≤ (‖ukD(u− un)‖+ ‖(uk − uk
n)Dun‖)‖(1 + x)vn‖.

Since ‖ukD(u − un)‖, ‖(uk − uk
n)Dun‖, ‖vn‖ → 0, we get ‖vn‖Hl

0
→ 0, that is,

wn → w in H l
0(0, L). Hence, un → u in H l

0(0, L) implies Bun → Bu in H l
0(0, L).

This proves that B is continuous. ✷

Lemma 4.2. The set

{u ∈ H l
0(0, L) | u = λBu for some 0 ≤ λ ≤ 1}

is bounded in H l
0(0, L) ∩H2l+1(0, L).

Proof: Assume u ∈ H l
0(0, L) such that

u = λBu for some 0 < λ ≤ 1,

then

a
(u

λ

)

+

l∑

j=1

(−1)j+1D2j+1
(u

λ

)

= f − ukDu in (0, L)

and

Di
(u

λ

)

(0) = Di
(u

λ

)

(L) = Dl
(u

λ

)

(L) = 0, i = 0, . . . , l− 1,

that is

au+
l∑

j=1

(−1)j+1D2j+1u+ λukDu = λf in (0, L) (4.9)

and u satisfies the boundary conditions (2.2).

To prove this Lemma, we need some a priori estimates:
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Estimate I:

Multiplying (4.9) by u and integrating over (0, L), we obtain

a‖u‖2 +
l∑

j=1

(−1)j+1(D2j+1u, u) + λ(ukDu, u) = (λf, u). (4.10)

Integrating by parts and using (2.2), we get

λ(ukDu, u) = 0

and
l∑

j=1

(−1)j+1(D2j+1u, u) =
1

2
(Dlu(0))2.

Thus (4.10) becomes

a‖u‖2 + 1

2
(Dlu(0))2 = (λf, u)

and

‖u‖ ≤ 1

a
‖f‖. (4.11)

Estimate II:

Multiplying (4.9) by (1 + x)u and integrating over (0, L), we obtain

a(u, (1 + x)u) +

l∑

j=1

(−1)j+1(D2j+1u, (1 + x)u)

+λ(ukDu, (1 + x)u) = (λf, (1 + x)u). (4.12)

Since

l∑

j=1

(−1)j+1(D2j+1u, (1 + x)u) =

l∑

j=1

(
2j + 1

2

)

‖Dju‖2 + 1

2
(Dlu(0))2,

integrating by parts and using (2.2),(3.2), we get

λ(ukDu, (1 + x)u) = λ(ukDu, xu) =
λ

k + 2

∫ L

0

xD[uk+2]dx

= − λ

k + 2

∫ L

0

uk+2dx ≤ 1

k + 2
‖u‖k∞‖u‖2

≤ Ck
∗

k + 2
‖u‖2+(2l−1

2l )k‖Dlu‖ k
2l

︸ ︷︷ ︸

I

. (4.13)
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Regular case 1 ≤ k < 4l.

By the Young inequality, with p = 4l
k
, q = 4l

4l−k
and arbitrary ǫ1 > 0,

I ≤ ǫ1
k

4l
‖Dlu‖2 + 1

ǫ
k

4l−k

1

(
4l− k

4l

)(
Ck

∗

k + 2

) 4l
4l−k

‖u‖
8l+(4l−2)k

4l−k .

Again by the Young inequality with arbitrary ǫ2 > 0,

(f, (1 + x)u) ≤ ǫ2
2
((1 + x), u2) +

1

2ǫ2
((1 + x), f2).

Therefore, (4.12) reduces to the inequality

(
a− ǫ2

2

)
((1 + x), u2) +

∑l−1
j=1

(
2j+1
2

)
‖Dju‖2 +

(
2l+1
2 − ǫ1

k
4l

)
‖Dlu‖2

≤ 1

ǫ
k

4l−k
1

(
4l−k
4l

) ( Ck
∗

k+2

) 4l
4l−k ‖u‖

8l+(4l−2)k
4l−k + 1

2ǫ2
((1 + x), f2).

Taking ǫ1 = 4l(2l−1)
2k > 0 and ǫ2 = a > 0, we get

a

2
((1 + x), u2) +

l−1∑

j=1

(
2j + 1

2

)

‖Dju‖2 + ‖Dlu‖2

≤ C1‖u‖
8l+(4l−2)k

4l−k +
1

2a
((1 + x), f2), (4.14)

where

C1 =

(
2k

4l(2l− 1)

) k
4l−k

(
4l− k

4l

)(
Ck

∗

k + 2

) 4l
4l−k

.

Since
((1 + x), f2) = ‖f‖2 + (x, f2) ≥ ‖f‖2,

it follows from (4.11) that

‖u‖
8l+(4l−2)k

4l−k ≤
(
1

a

) 8l+(4l−2)k
4l−k

((1 + x), f2)
4l+(2l−1)k

4l−k

and (4.14) implies

‖u‖Hl
0
≤ C2((1 + x), f2)

1
2 , (4.15)

where

C2 =
1√
β

[

C3((1 + x), f2)
2lk

4l−k +
1

2a

] 1
2

with β = min{a
2 , 1} and C3 = C1a

−
8l+(4l−2)k

4l−k .
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Rewriting (4.9) in the form

(−1)l+1D2l+1u = λf − au−
l−1∑

j=1

(−1)j+1D2j+1u− λukDu,

we estimate

‖D2l+1u‖ ≤ ‖f‖+ a‖u‖+
l−1∑

j=1

‖D2j+1u‖+ ‖ukDu‖. (4.16)

For l = 1 we have
∑l−1

j=1(−1)j+1D2j+1u = 0 and for l ≥ 2 denote J = {1, . . . , l− 1}
and

I1 = {j ∈ J | 2j + 1 ≤ l}, I2 = {j ∈ J | l < 2j + 1 < 2l + 1}.
Hence we can write

‖D2l+1u‖ ≤ ‖f‖+ a‖u‖+
∑

j∈I1

‖D2j+1u‖+
∑

j∈I2

‖D2j+1u‖+ ‖ukDu‖. (4.17)

By (4.15),

a‖u‖+
∑

j∈I1

‖D2j+1u‖ ≤ (a+ l)C2((1 + x), f2)
1
2 (4.18)

and by (3.2),(4.15),

‖ukDu‖ ≤ ‖u‖k∞‖Du‖ ≤ Ck
∗ ‖u‖k+1

Hl
0

≤ Ck
∗C

k+1
2 ((1 + x), f2)

k+1
2 . (4.19)

On the other hand, l < 2j + 1 < 2l + 1 for all j ∈ I2. Hence, by (3.3), there are
Kj

1 , K
j
2 , depending only on L and l, such that

‖D2j+1u‖ ≤ Kj
1‖D2l+1u‖θj‖u‖1−θj +Kj

2‖u‖ with θj =
2j + 1

2l + 1
.

Making use of Young’s inequality with pj = 1
θj
, qj = 1

1−θj
and arbitrary ǫ > 0, we

get
‖D2j+1u‖ ≤ ǫ‖D2l+1u‖+ Cj

4(ǫ)‖u‖+Kj
2‖u‖,

where Cj
4(ǫ) =

[

qj
(

pjǫ

(Kj
1)

pj

) qj

pj

]−1

. Summing over j ∈ I2 and making use of (4.11),

we find

∑

j∈I2

‖D2j+1u‖ ≤ lǫ‖D2l+1u‖+




1

a

∑

j∈I2

(Cj
4(ǫ) +Kj

2)



 ‖f‖. (4.20)

Substituing (4.18),(4.19) and (4.20) into (4.17), we obtain

‖D2l+1u‖ ≤ lǫ‖D2l+1u‖+




1

a

∑

j∈I2

(Cj
4(ǫ) +Kj

2)



 ((1 + x), f2)
1
2

+
(

1 + (a+ l)C2 + Ck
∗C

k+1
2 ((1 + x), f2)

k
2

)

((1 + x), f2)
1
2 .
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Taking ǫ = 1
2l , we conclude

‖D2l+1u‖ ≤ C5((1 + x), f2)
1
2 , (4.21)

where C5 depends only on L, l, k, a and ((1 + x), f2).
Again by (3.3), for all i = l + 1, . . . , 2l, there are Ki

1, K
i
2 depending only on L

and l such that

‖Diu‖ ≤ Ki
1‖D2l+1u‖θi‖u‖1−θi +Ki

2‖u‖ with θi =
i

2l + 1
.

Making use of (4.11) and (4.21), we get

‖Diu‖ ≤
(

Ki
1C

θi

5

a1−θi +
Ki

2

a

)

((1 + x), f2)
1
2 , i = l + 1, . . . , 2l. (4.22)

Taking into account (4.15), (4.21) and (4.22), we obtain (2.3), that is

‖u‖H2l+1 ≤ C((1 + x), f2)
1
2

with C depending only on L, l, k, a and ((1 + x), f2).

Critical case k = 4l.

Returning to (4.13), we find

I =
C4l

∗

4l + 2
‖u‖4l‖Dlu‖2 ≤ C4l

∗

(4l + 2)a4l
‖f‖4l‖Dlu‖2.

Since

(f, (1 + x)u) ≤ a

2
((1 + x), u2) +

1

2a
((1 + x), f2),

we transform (4.12) as follows

a

2
‖u‖2 +

l−1∑

j=1

(
2j + 1

2

)

‖Dju‖2 +
(
2l + 1

2
− C4l

∗

(4l+ 2)a4l
‖f‖4l

)

‖Dlu‖2

+
1

2
(Dlu(0))2 ≤ 1

2a
((1 + x), f2).

For fixed l, a and f ∈ L2(0, L) such that

‖f‖ <
[(2l+ 1)(4l + 2)]

1
4l a

2
1
4lC∗

,

we obtain
2l+ 1

2
− C4l

∗

(4l + 2)a4l
‖f‖4l > 0.
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Therefore

‖u‖Hl
0
≤ 1√

2aγl

((1 + x), f2)
1
2 (4.23)

with γl = min{a
2 ,

3
2 ,

2l+1
2 − C4l

∗

(4l+2)a4l ‖f‖4l}. Retunrning to (4.9) and acting as in

the regular case with (4.23), we conclude (2.5), that is

‖u‖H2l+1 ≤ C
′((1 + x), f2)

1
2

with C
′ depending only on L, l, a and ((1 + x), f2). ✷

Applying Theorem 3.3, we complete the proof of the Theorem 2.1. ✷

5. Uniqueness and Continuous Dependence

Proof: (of Theorem 2.2).
We separated two cases: l ≥ 2 and l = 1.

For l ≥ 2, let u1 and u2 be two distinct solutions of (2.1)-(2.2). Then the difference
w = u1 − u2 satisfies the equation

aw +
l∑

j=1

(−1)j+1D2j+1w + uk
1Dw + (uk

1 − uk
2)Du2 = 0 (5.1)

and the boundary conditions (2.2).
Multiplying (5.1) by w and integrating over (0, L), we obtain

a‖w‖2 + 1

2
(Dlw(0))2 + (uk

1Dw,w)
︸ ︷︷ ︸

I1

+((uk
1 − uk

2)Du2, w)
︸ ︷︷ ︸

I2

= 0. (5.2)

Integrating by parts and using (2.2),(3.1), we get

I1 = −1

2

∫ L

0

w2(x)Duk
1(x)dx ≤ k

2

∫ L

0

|u1(x)|k−1|Du1(x)||w(x)|2dx

≤ k

2
sup

x∈(0,L)

|u1(x)|k−1 sup
x∈(0,L)

|Du1(x)|‖w‖2

≤ k2
k−2
2 ‖u1‖kHl

0
‖w‖2.

By (3.1),(4.8), we have

|I2| ≤
∫ L

0

|uk
1(x)− uk

2(x)||Du2(x)||w(x)|dx

≤ k2k−1 sup
x∈(0,L)

|Du2(x)|
∫ L

0

(|u1(x)|k−1 + |u2(x)|k−1)|w(x)|2dx

≤ k2
2k−1

2 ‖u2‖Hl
0

sup
x∈(0,L)

{|u1(x)|k−1 + |u2(x)|k−1}‖w‖2

≤ k2
3k−2

2 ‖u2‖Hl
0
(‖u1‖k−1

Hl
0

+ ‖u2‖k−1
Hl

0

)‖w‖2.
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Substituting I1, I2 into (5.2), we reduce it to the inequality

(

a− k2
k−2
2 ‖u1‖kHl

0
− k2

3k−2
2 ‖u2‖Hl

0
(‖u1‖k−1

Hl
0

+ ‖u2‖k−1
Hl

0

)
)

‖w‖2 ≤ 0. (5.3)

Regular case 1 ≤ k < 4l.

Making use of (4.15), we can estimate (5.3) as

(

a− (2
k−2
2 + 2

3k
2 )kCk

2 ((1 + x), f2)
k
2

)

‖w‖2 ≤ 0, (5.4)

where

C2 =
1√
β

[

C3((1 + x), f2)
2lk

4l−k +
1

2a

] 1
2

with β = min{a
2 , 1} and C3 depending only on l, k and a. For fixed l, k and a,

assume that

((1 + x), f2)
1
2 < min

{(
1

2aC3

) 4l−k
4lk

,
a

1
k

[(2
k−2
2 + 2

3k
2 )k]

1
k (aβ)−

1
2

}

. (5.5)

Then C2 <
(

1
aβ

) 1
2

and consequently

(

a− (2
k−2
2 + 2

3k
2 )kCk

2 ((1 + x), f2)
k
2

)

> 0.

Hence (5.4) implies ‖w‖ = 0 and uniqueness is proved for l ≥ 2 and 1 ≤ k < 4l.

Critical case k = 4l.

Rewrite (5.3) in the form:

(

a− l22l+1‖u1‖4lHl
0
− l26l+1‖u2‖Hl

0
(‖u1‖4l−1

Hl
0

+ ‖u2‖4l−1
Hl

0
)
)

‖w‖2 ≤ 0.

Making use of (4.23), we obtain

(

a− l(22l+1 + 26l+2)

(
1

2aγl

)2l

((1 + x), f2)2l

)

‖w‖2 ≤ 0,

where

γl = min

{
a

2
,
3

2
,
2l+ 1

2
− C4l

∗

(4l + 2)a4l
‖f‖4l

}

.

For fixed l and a, suppose that

((1 + x), f2)
1
2 < min

{

[(2l+ 1)(4l + 2)]
1
4l a

2
1
4lC∗

,

(
a

η

) 1
4l

}

, (5.6)
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where η = l(22l+1 + 26l+2)(2aγl)
−2l. Since ‖f‖ ≤ ((1 + x), f2)

1
2 , it follows that

(2.4) is satisfied and
(

a− l(22l+1 + 26l+2)

(
1

2aγl

)2l

((1 + x), f2)2l

)

> 0.

Thus ‖w‖ = 0 and uniqueness is proved for l ≥ 2 and k = 4l.
The case l = 1.

The problem (2.1)-(2.2) becomes:

au+D3u+ ukDu = f in (0, L), (5.7)

u(0) = u(L) = Du(L) = 0. (5.8)

Let u1 and u2 be two distinct solutions of (5.7)-(5.8). Then the difference w =
u1 − u2 satisfies the equation

aw +D3w + uk
1Dw + (uk

1 − uk
2)Du2 = 0 (5.9)

and the boundary conditions (5.8).
Multiplying (5.9) by w and integrating over (0, L), we obtain

a‖w‖2 + 1

2
(Dw(0))2 + (uk

1Dw,w)
︸ ︷︷ ︸

I1

+((uk
1 − uk

2)Du2, w)
︸ ︷︷ ︸

I2

= 0. (5.10)

Integrating by parts and using (3.1),(5.8), we get

I1 = −1

2

∫ L

0

Duk
1(x)w

2(x)dx ≤ k

2

∫ L

0

|u1(x)|k−1|Du1(x)||w(x)|2dx

≤ k

2
sup

x∈(0,L)

|u1(x)|k−1 sup
x∈(0,L)

|Du1(x)|‖w‖2

≤ k2
k−3
2 ‖u1‖k−1

H1
0

sup
x∈(0,L)

|Du1(x)|‖w‖2.

By (3.1),(4.8), it follows that

|I2| ≤
∫ L

0

|uk
1(x)− uk

2(x)||Du2(x)||w(x)|dx

≤ k2k−1 sup
x∈(0,L)

{|u1(x)|k−1 + |u2(x)|k−1} sup
x∈(0,L)

|Du2(x)|‖w‖2

≤ k2
3(k−1)

2 (‖u1‖k−1
H1

0
+ ‖u2‖k−1

H1
0
) sup
x∈(0,L)

|Du2(x)|‖w‖2.

Substituting I1, I2 into (5.10), we get

a‖w‖2 − k2
k−3
2 ‖u1‖k−1

H1
0

sup
x∈(0,L)

|Du1(x)|‖w‖2

−k2
3(k−1)

2 (‖u1‖k−1
H1

0
+ ‖u2‖k−1

H1
0
) sup
x∈(0,L)

|Du2(x)|‖w‖2 ≤ 0. (5.11)
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Regular case 1 ≤ k < 4.

By (4.11),(4.19),

‖D3ui‖ ≤ 2‖f‖+ Ck
∗C

k+1
2 ((1 + x), f2)

k+1
2 , i = 1, 2. (5.12)

Making use of (3.3),(4.11) and (5.12), we estimate

sup
x∈(0,L)

|Dui(x)| ≤ K1‖D3ui‖
1
2 ‖ui‖

1
2 +K2‖ui‖

≤ K1

2
‖D3ui‖+

(
K1

2
+K2

)

‖ui‖

≤ K1

2
Ck

∗C
k+1
2 ((1 + x), f2)

k+1
2 +

(

K1 +
K1

2a
+

K2

a

)

‖f‖

≤ K1

2
Ck

∗C
k+1
2 ((1 + x), f2)

k+1
2 +K3((1 + x), f2)

1
2 ,

where K3 =
(
K1 +

K1

2a + K2

a

)
. Returning to (5.11) and using (4.15), we find

a‖w‖2 − k(2
k−3
2 + 2

3(k−1)
2 )

K1

2
Ck

∗C
2k
2 ((1 + x), f2)k‖w‖2

−k(2
k−3
2 + 2

3(k−1)
2 )Ck−1

2 K3((1 + x), f2)
k
2 ‖w‖2 ≤ 0.

Assuming ((1 + x), f2)
1
2 ≤ 1, then ((1 + x), f2)k ≤ ((1 + x), f2)

k
2 . Therefore

(

a− k(2
k−3
2 + 2

3(k−1)
2 )

(
K1

2
Ck

∗C
2k
2 +K3C

k−1
2

)

((1 + x), f2)
k
2

)

‖w‖2 ≤ 0.

For fixed k and a assume that

((1 + x), f2)
1
2 < min

{(
1

2aC3

) 4−k
4k

,

(
a

K4

) 1
k

}

, (5.13)

where K4 = k(2
k−3
2 + 2

3(k−1)
2 )(K1

2 Ck
∗ (aβ)

−k +K3(aβ)
− k−1

2 ). Then

C2k
2 <

(
1

aβ

)k

, Ck−1
2 <

(
1

aβ

) k−1
2

and
(

a− k(2
k−3
2 + 2

3(k−1)
2 )

(
K1

2
Ck

∗C
2k
2 +K3C

k−1
2

)

((1 + x), f2)
k
2

)

> 0.

This implies ‖w‖ = 0 and uniqueness is proved for l = 1 and 1 ≤ k < 4.

Critical case k = 4.
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In this case, (5.11) becomes

a‖w‖2 − 2
5
2 ‖u1‖3H1

0
sup

x∈(0,L)

|Du1(x)|‖w‖2

−2
13
2 (‖u1‖3H1

0
+ ‖u2‖3H1

0
) sup
x∈(0,L)

|Du2(x)|‖w‖2 ≤ 0. (5.14)

By (4.11),(4.23),

‖D3ui‖ ≤ 2‖f‖+ C4
∗

(
1

2aγ1

) 5
2

((1 + x), f2)
5
2 , i = 1, 2, (5.15)

where γ1 = min{a
2 ,

3
2 − C4

∗

6a4 ‖f‖4}. Then (3.3),(4.11),(5.15) implies

sup
x∈(0,L)

|Dui(x)| ≤
K1

2
C4

∗

(
1

2aγ1

) 5
2

((1 + x), f2)
5
2 +K3((1 + x), f2)

1
2 .

Making use of (4.23), we rewrite (5.14) as

a‖w‖2 − (2
5
2 + 2

15
2 )

K1

2
C4

∗

(
1

2aγl

)4

((1 + x), f2)4‖w‖2

−(2
5
2 + 2

15
2 )K3

(
1

2aγl

) 3
2

((1 + x), f2)2‖w‖2 ≤ 0.

Assuming ((1 + x), f2)
1
2 ≤ 1, then ((1 + x), f2)4 ≤ ((1 + x), f2)2. This implies

a‖w‖2 − (2
5
2 + 2

15
2 )

K1

2
C4

∗

(
1

2aγl

)4

((1 + x), f2)2‖w‖2

−(2
5
2 + 2

15
2 )K3

(
1

2aγl

) 3
2

((1 + x), f2)2‖w‖2 ≤ 0.

For a fixed a, suppose that

((1 + x), f2)
1
2 < min

{√
3a

C∗

,

(
a

K5

) 1
4

}

, (5.16)

where K5 = (2
5
2 + 2

15
2 )(K1

2 C4
∗(2aγl)

−4 +K3(2aγl)
− 3

2 ). Then (2.4) holds and

(

a− (2
5
2 + 2

15
2 )

(

K1

2
C4

∗

(
1

2aγl

)4

+K3

(
1

2aγl

) 3
2

)

((1 + x), f2)2

)

> 0.

It follows that ‖w‖ = 0 and uniqueness is proved for l = 1 and k = 4.
This completes the proof of the uniqueness part of Theorem 2.2.
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To show continuous dependence of solutions, consider the case when l ≥ 2 and
1 ≤ k < 4l. Let f1, f2 ∈ L2(0, L) satisfy (5.5) and u1, u2 be solutions of (2.1)-(2.2)
with the right-hand sides f1 and f2 respectively. Then, similarly to (5.4), u1 − u2

satisfies the following inequality:

(

a− (2
k−2
2 + 2

3k
2 )kC̃2

k
M
)

‖u1 − u2‖ ≤ ‖f1 − f2‖,

where
M = max{((1 + x), f2

1 )
1
2 , ((1 + x), f2

2 )
1
2 }

and

C̃2 =
1√
β

[

C3M
4lk

4l−k +
1

2a

] 1
2

.

Making use of (5.5), we obtain

‖u1 − u2‖ ≤ C6‖f1 − f2‖

with C6 =
(

a− (2
k−2
2 + 2

3k
2 )kC̃2

k
M
)−1

> 0. This proves the continuous depen-

dence for l ≥ 2 and 1 ≤ k < 4l. The other cases can be proved in a similar way
taking ((1 + x), fi

2)
1
2 , i = 1, 2 satisfying (5.6), (5.13) and (5.16). Therefore the

proof of the Theorem 2.2 is complete. ✷
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di Pisa, Classe di Scienze 3a série, tome 13, no 2, 115-162, (1959).

34. Pilod, D., On the Cauchy problem for higher-order nonlinear dispersive equations, Journal
of Differential Equations 245, 2055-2077, (2008).
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