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abstract: The existence of infinitely many nontrivial solutions for a nonlocal
elliptic system of (p1, . . . , pn)-Kirchhoff type with critical exponent is investigated.
The approach is based on variational methods and critical point theory.
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1. Introduction

The aim of this paper is to ensure the existence of infinitely many weak solutions
for the following perturbed system





−
[
Mi

(∫
Ω
|∇ui|pidx

)]pi−1
∆ui = ν

(∫
Ω
|ui|p

∗
i dx

)pi/p
∗
i −1 |ui|p

∗
i −2ui

+λFui(x, u1, . . . , un) + µGui(x, u1, . . . , un), inΩ,
ui|∂Ω = 0,

(1.1)
for i = 1, . . . , n, where, 1 < p1, . . . , pn < N , p∗i = Npi

N−pi
, λ > 0 and µ ≥ 0,

and Mi : R+ → R for i = 1, . . . , n, are continuous functions with the following
condition:

(M) There exists M0 ≥ 1 such that for all t ≥ 0 one has Mi(t) ≥ M0, for i =
1, . . . , n.

Furthermore, F : Ω×R
n → R is a function such that F (x, t1, . . . , tn) is measurable

in x for all (t1, . . . , tn) ∈ R
n and F (x, t1, . . . , tn) is C

1 in (t, . . . , tn) for a.e. x ∈ Ω
and Fui denote the partial derivatives of F with respect to ui such that there exist
i ∈ {1, . . . , n} such that Fui(x, 0, . . . , 0) 6= 0 in Ω.
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The system (1.1) is related to the stationary problem

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣
2

dx
)∂2u

∂x2
= 0, (1.2)

for 0 < x < L, t ≥ 0 where, u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, E the Young modulus, ρ the mass density, h the cross-
section area, L the length and ρ0 the initial axial tension, proposed by Kirchhoff
as an extension of the classical D’Alembert’s wave equation for free vibrations of
elastic strings (see [26]). Since the equations including the functions Mi depend
on integrals over Ω in the system (1.1), they are no longer pointwise identity, and
therefore it is often called nonlocal system. Later, the equation (1.2) was extended
to

∂2u

∂t2
−K

(∫ b

a

|∇u(x)|2dx
)
∆u = f(x, u) in Ω

where, Ω ⊂ R
N (N ≥ 1) is a nonempty bounded open set with a given ∂Ω and

K : [0,+∞[→ R is a continuous function.
The Kirchhoff’s model takes into account the length changes of the string pro-

duced by transverse vibrations. Some interesting results can be found, for example
in [2,15]. On the other hand, Kirchhoff-type boundary value problems model sev-
eral physical and biological systems where, u describes a process which depend
on the average of itself, as for example, the population density. It received great
attention only after Lions [27] proposed an abstract framework for the problem.
The solvability of the Kirchhoff type problems has been paid much attention to by
various authors. Some early classical investigations of Kirchhoff equations can be
seen in the papers [1,17,19,20,23,25,28,30] and the references therein. For example
in [28] the authors obtained nontrivial solutions of a class of nonlocal quasilinear
elliptic boundary value problems using the Yang index and critical groups. He and
Zou in [19] were concerned with the existence of infinitely many positive solutions

to a class of Kirchhoff-type problem (a + b
∫ b

a
|∇u|2dx)∆u = λf(x, u) in Ω and

u = 0 on ∂Ω where, Ω is a smooth bounded domain of RN , a, b > 0, λ > 0 and
f : Ω×R → R is a Carathéodory function satisfying some further conditions. They
obtained a sequence of a.e. positive weak solutions to the above problem tending
to zero in L∞([a, b]) with f being more general than that of [28].

The existence and multiplicity of solutions for stationary higher order problems
of Kirchhoff type (in n-dimensional domains, n > 1) were also treated in some
recent papers, via variational methods like the symmetric mountain pass theorem
in [16], via a three critical point theorem in [5] and in [3,4] some evolutionary
higher order Kirchhoff problems were treated, mainly focusing on the qualitative
properties of the solutions. Also for example Cheng et al. in [14] were concerned
with the nonlocal elliptic system of (p, q)-Kirchhoff type





−
[
M1

(∫
Ω |∇u|pdx

)]p−1
∆pu = λFu(x, u, v), in Ω,

−
[
M2

(∫
Ω
|∇v|pdx

)]p−1
∆pv = λFv(x, u, v), in Ω,

u = v = 0, on ∂Ω.
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They under bounded condition on Mi (i = 1, 2) and some novel and periodic
condition on F , by using of Bonanno’s multiple critical points theorems without
the Palais-Smale condition and Ricceri’s three critical points theorem, respectively,
obtained some new results of the existence of two solutions and three solutions of
the above mentioned nonlocal elliptic system. Hssini in [25] studied the existence
of nontrivial solution for the nonlocal elliptic system of (p, q)-Kirchhoff type





−
[
M1

(∫
Ω
|∇u|pdx

)]p−1
∆pu = µ

(∫
Ω
|u|p∗

dx
)p/p∗−1 |u|p∗−2u

+Fu(x, u, v), in Ω,

−
[
M2

(∫
Ω |∇v|qdx

)]q−1
∆qv = µ

(∫
Ω |v|q∗dx

)q/q∗−1 |v|q∗−2v
+Fv(x, u, v), in Ω,

u = v = 0, on ∂Ω

with critical exponent. They by using Bonanno and Molica Bisci’s general critical
points theorem, under some conditions on Mi (i = 1, 2) and F , established the
existence of nontrivial solution of the above system.

The novelty of this paper is that we deal with problem (1.1) in which there exists
three perturbations for the nonlinear term, which will lead to some difficulties in
the proof, and as far as we know, there are very few results even for such type
equations in the literature. Motivated by the above works, in the present paper,
by employing a smooth version of [9, Theorem 2.1], which is a more precise version
of Ricceri’s Variational Principle [29, Theorem 2.5] under some hypotheses on
the behavior of the nonlinear terms at infinity, under conditions on F and G we
prove the existence of a definite interval about λ and µ in which the problem (1.1)
admits a sequence of solutions which is unbounded in the space E which will be
introduced later (Theorem 3.1). Furthermore, some consequences of Theorem 3.1
is listed. Replacing the conditions at infinity of the nonlinear terms, by a similar
one at zero, the same results hold; see Theorem 3.8. At the end, two examples of
applications are pointed out (see Examples 3.3 and 3.10).

2. Preliminaries

Our main tool to ensure the existence of infinitely many solutions for the
problem (1.1) is a smooth version of Theorem 2.1 of [8] which is a more precise
version of Ricceri’s Variational Principle [29] that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[)Ψ(v)−Ψ(u)

r − Φ(u)

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).
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Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional

Iλ = Φ− λΨ to Φ−1(]−∞, r[) admits a global minimum, which is a critical point
(local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds:

either
(b1) Iλ possesses a global minimum,
or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or

(c2) there is a sequence of pairwise distinct critical points (local minima) of
Iλ which weakly converges to a global minimum of Φ.

We refer to [6,7,9,10,11,12,13,18,21,22,24] in which Theorem 2.1 has been suc-
cessfully employed to the existence of infinitely many solutions for some boundary
value problems.

We let E be the Cartesian product of n Sobolev spaces W 1,p1

0 (Ω), W 1,p2

0 (Ω), . . .
and W 1,pn

0 (Ω), i.e.,
E := W 1,p1

0 (Ω)× · · · ×W 1,pn

0 (Ω),

equipped with the norm

‖u‖ =
n∑

i=1

‖∇ui‖pi ,

where, u = (u1, . . . , un) and

‖∇ui‖pi =

(∫

Ω

|∇ui|pidx

)1/pi

, i = 1, · · · , n.

Following we consider the well-know inequalities

(∫

Ω

|u|p∗
i dx

)1/p∗
i

≤ 1

Sp
1/pi

i

(∫

Ω

|∇u|pidx

)1/pi

, ∀u ∈ W 1,pi

0 (Ω), i = 1, . . . , n

(2.1)
where, Spi , i = 1, . . . , n is the best constant in the Sobolev inclusion W 1,pi

0 (Ω) →֒
Lp∗

i (Ω), i = 1, . . . , n. Fixing ν ∈ [0, S) with S =: min{Sp1 , . . . , Spn}, and set

m(ν, p1, . . . , pn) := min

{
1− ν

Sp1

, . . . , 1− ν

Spn

}
.
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Theorem 2.2 ( [25, Theorem 2.1]). If µ ∈ [0, Spi [, then the functional

Sµ(u) =
1

pi

∫

Ω

|∇u|pidx− ν

pi

(∫

Ω

|u|p⋆
i dx

)pi/p
⋆
i

is sequentially weakly lower semi-continuous in W 1,pi

0 (Ω).

Let us recall that u = (u1, . . . , un) ∈ E is called a weak solution of system (1.1)
if

n∑

i=1

[
Mi

(∫

Ω

|∇ui(x)|pidx

)]pi−1 ∫

Ω

|∇ui(x)|pi−2∇ui(x)∇vi(x)dx

−
n∑

i=1

ν

p∗i

(∫

Ω

|ui(x)|p
∗

dx

)pi/p∗−1 ∫

Ω

|ui(x)|p
∗
i −2ui(x)vi(x)dx

− λ

n∑

i=1

∫

Ω

Fui(x, u1, . . . , un)vi(x)dx − µ

n∑

i=1

∫

Ω

Gui(x, u1, . . . , un)vidx = 0

for every v = (v1, . . . , vn) ∈ E.
Here and in the sequel “meas(Ω)” denotes the Lebesgue measure of the set Ω.

A special case of our main result is the following theorem.

Theorem 2.3. Let Ω ⊆ R
2, meas(Ω) ≥ 1, F ∈ C(R2,R) and

lim inf
ξ→+∞

sup|t1|+|t2|<ξ F (t1, t2)

ξmin{p1,p2}
= 0 and lim sup

(ξ1,ξ2)→(+∞,+∞)

F (ξ1, ξ2)

ξp1

1 + ξp2

2

= +∞.

Then, for every nonnegative arbitrary function G ∈ C(R2,R) satisfying the condi-
tion

G⋆ := lim
ξ→+∞

sup|t1|+|t2|<ξ G(t1, t2)

ξmin{p1,p2}
< +∞,

for every µ ∈ [0, µ⋆,λ[ where,

µ⋆,λ :=
1

G⋆

(∑2
i=1

(
pi

(meas(Ω))max{p1,p2}−1m(ν,p1,p2)

2min{p1,p2}

) 1
pi

)min{p1,p2}

− meas(Ω)

G⋆
lim inf
ξ→+∞

sup|t1|p1+|t2|p2≤ξ F (t1, t2)

ξmin{p1,p2}

and for every ν ∈ [0,min(Sp1 , Sp2)[, the problem




−∆p1u1 = ν
(∫

Ω |u1|p
∗
1dx

)p1/p
∗
1−1 |u1|p

∗
1−2u1

+Fu1(u1, u2) + µGu1(u1, u2), in Ω,

−∆p2u2 = ν
(∫

Ω |u2|p
∗
2dx

)p2/p
∗
2−1 |u2|p

∗
2−2u2

+Fu2(u1, u2) + µGu2(u1, u2), in Ω,
u1 = u2 = 0, on ∂Ω.

has an unbounded sequence of pairwise distinct weak solutions.
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3. Main results

In this section we formulate our main results. For this let

D := sup
x∈Ω

dist(x, ∂Ω)

and denote, as usual, with Γ the Gamma function defined by

Γ(t) :=

∫ +∞

0

zt−1e−zdz, for all t > 0.

We present our main result as follows.
For all ξ > 0 we denote by K(ξ) the set

{
(t1, . . . , tn) ∈ R

n :

n∑

i=1

|ti|pi ≤ ξ

}
.

Let p = min{pi ; i = 1 . . . , n} and p = max{pi ; i = 1 . . . , n}. Put

A := lim inf
ξ→+∞

∫
Ω sup(t1,...,tn)∈K(ξ) F (x, t1, . . . , tn) dx

ξp

and

B := lim sup
(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2)

F (x, ξ1, . . . , ξn)dx∑n
i=1 Hi(ξi)

where Hi(ξi) =
1
pi
M̂i

(
2ξi
D

)pi

with

M̂i(t) =

∫ t

0

[Mi(s)]
pi−1ds (3.1)

for i = 1, . . . , n, and

S :=

(
n∑

i=1

(
Sm(ν, p1, . . . , pn) pi

) 1
pi

)p

.

Our main result is the following theorem.

Theorem 3.1. Assume that

(A1) F (x, t1, . . . , tn) ≥ 0 for all x ∈ B(x0,
D
2 ) and (t1, . . . , tn) ∈ R

n;

(A2)

A <
2NΓ(1 +N/2)

DNπN/2(2N − 1)
SB.
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Then, for each λ ∈]λ1, λ2[ where,

λ1 :=
DNπN/2(2N − 1)

2NΓ(1 +N/2)

1

B
and λ2 :=

S

A
,

and for every nonnegative arbitrary function G : Ω× R
n → R which is measurable

in Ω and of class C1(Rn) satisfying the condition

G∞ := lim
ξ→+∞

∫
Ω
sup(t1,...,tn)∈K(ξ) G(x, t1, . . . , tn)dx

ξp
< +∞, (3.2)

for every µ ∈ [0, µG,λ[ where,

µG,λ :=
1− λSA

SG∞

and for every ν ∈ [0,min(Sp1 , . . . , Spn)[, the problem (1.1) has an unbounded se-
quence of weak solutions in E.

Proof: Our goal is to apply Theorem 2.1. For this, fix λ, µ and G satisfying our
assumptions. Now, set Q(x, t1, . . . , tn) = F (x, t1, . . . , tn) +

µ
λG(x, t1, . . . , tn) for all

(x, t1, . . . , tn) ∈ Ω× R
n. Take X = E and define in X two functionals J and I by

setting, for each u = (u1, . . . , un) ∈ X , as follows

J(u) =

n∑

i=1

1

pi
M̂i

(∫

Ω

|∇ui|pidx

)
−

n∑

i=1

ν

pi

(∫

Ω

|ui|p
∗
i dx

)pi/p
∗
i

,

and

I(u) =

∫

Ω

F (x, u1(x), . . . , un(x))dx +
µ

λ

∫

Ω

G(x, u1(x), . . . , un(x))dx.

It is well known that I is a Gâteaux differentiable functional and sequentially weakly
upper semi-continuous whose Gâteaux derivative at the point u = (u1, . . . , un) ∈ X
is the functional I ′(u) ∈ X∗, given by

I ′(u)v =
n∑

i=1

∫

Ω

Fui(x, u1, . . . , un)vidx+
µ

λ

n∑

i=1

∫

Ω

Gui(x, u1, . . . , un)vidx

for every v = (v1, . . . , vn) ∈ X , and I ′ : X → X∗ is a compact operator. Moreover,
J is a Gâteaux differentiable functional which Gâteaux derivative at the point
u = (u1, . . . , un) ∈ X is the functional J ′(u) ∈ X∗, given by

J ′(u)(v) =

n∑

i=1

[
Mi

(∫

Ω

|∇ui|pidx

)]pi−1 ∫

Ω

|∇ui|pi−2∇ui∇vidx

−
m∑

i=1

ν

p∗i

(∫

Ω

|ui|p
∗

dx

)pi/p∗−1 ∫

Ω

|ui|p
∗−2uividx
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for every v = (v1, . . . , vn) ∈ X . Furthermore, the fact that M̂i is continuous and
monotone for i = 1, . . . , n, by (M) and Theorem 2.2 we get that J is sequentially
weakly lower semi-continuous for ν ∈ [0,min(Sp1 , . . . , Spn)[ and it is also a coercive
functional. Now from the definition of J and (2.1), for every u = (u1, . . . , un) ∈ X
we have

J(u) ≥ m(ν, p1, . . . , pn)
n∑

i=1

‖∇ui‖pi
pi

pi
. (3.3)

Put Υλ = J−λI. By the assumption (M), it is standard to see that Υλ ∈ C1(X,R),
and a critical point of Υλ corresponds to a weak solution of problem (1.1). So, our
end is to apply Theorem 2.1 to J and I. Now, we wish to prove that γ < +∞
where, γ is defined in Theorem 2.1. Let {ξk} be a real sequence such that ξk > 0
for all k ∈ N and ξk → +∞ as k → ∞ and

lim
k→+∞

∫
Ω
sup(t1,...,tn)∈K(ξk)

Q(x, t1, . . . , tn)dx

ξ
p

k

= lim inf
ξ→+∞

∫
Ω
sup(t1,...,tn)∈K(ξ) F (x, t1, . . . , tn)dx

ξp

for all k ∈ N. Put rk =
ξ
p

k

S for all k ∈ N. By taking (2.1) into account, we have

max
x∈Ω

n∑

i=1

|ui(x)|pi

pi
≤

n∑

i=1

(∫
Ω |ui|p

∗
i dx

)pi/p
∗
i

pi
≤

n∑

i=1

∫
Ω |∇ui|pidx

piSpi

≤ 1

min{Sp1, . . . , Spn}

n∑

i=1

‖∇ui‖pi
pi

pi
(3.4)

for each u = (u1, . . . , un) ∈ X . Since ξk is a positive sequence, rk > 0 for all k ∈ N.
Thus by taking (3.3) and (3.4) in to account, we have

J−1(]−∞, rk[)

⊆
{
u ∈ X ; max

x∈Ω

n∑

i=1

|ui(x)|pi

pi
≤ S m(µ, p1, . . . , pn) rk, for each x ∈ Ω

}
. (3.5)

Hence, taking into account that I(0, . . . , 0) = J(0, . . . , 0) = 0, for every k large
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enough, one has

ϕ(rk) = inf
u∈J−1(]−∞,rk[)

(supv∈J−1(]−∞,rk[)
I(v))− I(u)

rk − J(u)
≤

supv∈J−1(]−∞,rk[)
I(v)

rk

≤
S
∫
Ω sup(t1,...,tn)∈K(ξk)

Q(x, t1, . . . , tn)dx

ξ
p

k

=
S
∫
Ω
sup(t1,...,tn)∈K(ξk)

(
F (x, t1, . . . , tn) +

µ
λG(x, t1, . . . , tn)

)
dx

ξ
p

k

≤
S
∫
Ω sup(t1,...,tn)∈K(ξk)

F (x, t1 . . . , tn)dx

ξ
p

k

+
µ

λ

S
∫
Ω sup(t1,...,tn)∈K(ξk)

G(x, t1, . . . , tn)dx

ξ
p

k

.

Moreover, it follows from Assumption (A2) that

lim inf
ξ→+∞

∫
Ω sup(t1,...,tn)∈K(ξ) F (x, t1, . . . , tn)dx

ξp
< +∞,

which concludes

lim
k→+∞

∫
Ω
sup(t1,...,tn)∈K(ξk)

F (x, t1, . . . , tn)dx

ξ
p

k

< +∞. (3.6)

Then, in view of (3.2) and (3.6), we have

lim
k→∞

∫
Ω
sup(t1,...,tn)∈K(ξk)

F (x, t1 . . . , tn)dx

ξ
p

k

+
µ

λ
lim
k→∞

∫
Ω
sup(t1...,tn)∈K(ξk)

G(x, t1, . . . , tn)dx

ξ
p

k

< +∞,

which implies

lim
k→+∞

∫
Ω sup(t1,...,tn)∈K(ξk)

(
F (x, t1, . . . , tn) +

µ
λG(x, t1, . . . , tn)

)
dx

ξ
p

k

< +∞.

Therefore,

γ ≤ lim inf
k→+∞

ϕ(rk)

≤ S lim
k→+∞

∫
Ω
sup(t1,...,tn)∈K(ξk)

(
F (x, t1, . . . , tn) +

µ
λG(x, t1, . . . , tn)

)
dx

ξ
p

k

< +∞.

(3.7)
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Since
∫
Ω sup(t1,...,tn)∈K(ξk)

Q(x, t1, . . . , tn)dx

ξ
p

k

≤
∫
Ω sup(t1,...,tn)∈K(ξk)

F (x, t1, . . . , tn)dx

ξ
p

k

+
µ

λ

∫
Ω sup(t1,...,tn)∈K(ξk)

G(x, t1, . . . , tn)dx

ξ
p

k

,

taking (3.2) into account, one has

lim inf
ξ→+∞

∫
Ω
sup(t1,...,tn)∈K(ξ) Q(x, t1, . . . , tn)dx

ξp
≤ A+

µ

λ
G∞. (3.8)

Thus
γ ≤ lim inf

k→+∞
ϕ(rk) ≤ SA+ S

µ

λ
G∞ < +∞.

Now, we consider a sequence {(γk1
, . . . , γkn

)}∞ki=1 ⊆ R
n, i = 1, . . . , n, such that

γki > 0 for all ki ∈ N and for all i = 1, . . . , n, and

lim
(k1,...,kn)→(+∞,...,+∞)

n∑

i=1

(γki)
1
2 = +∞.

Now, we consider a sequence {(wk1 , . . . , wkn)}∞ki=1 ⊆ X for all i = 1, . . . , n defined
by

wki =





0 if x ∈ Ω\B(x0, D),
2γki

D (D − |x− x0|) if x ∈ B(x0, D)\B(x0, D/2),

γki
if x ∈ B(x0,

D
2 ).

(3.9)

One has

J(wk1 , . . . , wkn) =
n∑

i=1

1

pi
M̂i

(∫

Ω

|∇wk|pidx

)
−

n∑

i=1

µ

pi

(∫

Ω

|wk|p
∗

dx

)p/p∗

≤
n∑

i=1

1

pi
M̂i

(∫

B(x0,D)\B(x0,D/2)

(2γki)
pi

Dpi
dx

)

= (meas(B(x0, D))−meas(B(x0, D/2)))

n∑

i=1

1

pi
M̂i

(
2γki

D

)pi

=
πN/2

Γ(1 +N/2)

(
DN − (D/2)N

) n∑

i=1

1

pi
M̂i

(
2γki

D

)pi

=
πN/2

Γ(1 +N/2)

(
DN − (D/2)N

) n∑

i=1

Hi(γki). (3.10)
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On the other hand, since G is nonnegative, we observe

I(wk1 , . . . , wkn) =

∫

Ω

F (x,wk1 (x), . . . , wkn(x))dx ≥
∫

B(x0,
D
2 )

F (x, γk1
, . . . , γkn

)dx.

(3.11)
So, from (3.13), (3.10) and (3.11) we conclude

J(wk1 , . . . , wkn)− λI(wk1 , . . . , wkn) ≤
πN/2

(
DN − (D/2)N

)

Γ(1 +N/2)

n∑

i=1

Hi(γki)

− λ

∫

B(x0,D/2)

F (x, γk1
, . . . , γkn

)dx.

Now, we consider the cases B < +∞ and let

τ ∈
]
0,

πN/2
(
DN − (D/2)N

)

Γ(1 +N/2)
B − 1

λ

[
.

From this, there exists (v1τ , . . . , vnτ ) ⊆ R
n such that

∫

B(x0,
D
2 )

F (x, γk1
, . . . , γkn

)dx >

(
πN/2

(
DN − (D/2)N

)

Γ(1 +N/2)
B − τ

)
n∑

i=1

Hi(γki)

for all ki > viτ , i = 1, . . . , n, and so

Υλ(wk1 , . . . , wkn) <

n∑

i=1

Hi(γki)− λ

(
πN/2

(
DN − (D/2)N

)

Γ(1 +N/2)
B − τ

)
n∑

i=1

Hi(γki)

=

[
1− λ

(
πN/2

(
DN − (D/2)N

)

Γ(1 +N/2)
B − τ

)]
n∑

i=1

Hi(γki).

Since

1− λ

(
πN/2

(
DN − (D/2)N

)

Γ(1 +N/2)
B − τ

)
< 0

and taking (3.3) and (3.10) into account one has

lim
k→+∞

Iλ(wk1 , . . . , wkn) = −∞.

If B = +∞, fix M > 1
λ , from this there exists vM such that

∫

B(x0,
D
2 )

F (x, γk1
, . . . , γkn

)dx > M
n∑

i=1

Hi(γki)
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for all ki > viM , i = 1, . . . , n, and moreover

Υλ(wk1 , . . . , wkn) <
πN/2

(
DN − (D/2)N

)

Γ(1 +N/2)

n∑

i=1

Hi(γki)

− λ

∫

B(x0,D/2)

F (x, γk1
, . . . , γkn

)dx

< (1− λM)

n∑

i=1

Hi(γki).

Since 1− λM < 0, and arguing as before, we have

lim
(k1,...,kn)→(+∞,...,+∞)

Iλ(wk1 , . . . , wkn) = −∞.

Taking into account that

]
DNπN/2(2N − 1)

2NΓ(1 +N/2)B
,
S

A

[
⊆
]
0,

1

γ

[

and that Υλ does not possess a global minimum, from part (b) of Theorem 2.1, there
exists an unbounded sequence {uk} = {(u1k , . . . , unk

)} of critical points which are
the weak solutions of (1.1). So, our conclusion is achieved. Hence, the functional Iλ
is unbounded from below, and it follows that Iλ has no global minimum. Therefore,
Theorem 2.1 assures that there is a sequence {um} = {(u1m , . . . , unm)} ⊂ X of
critical points of Iλ such that limm→∞ Φ(um) = +∞, which from (3.3) it follows
that limm→∞ ‖um‖ = +∞. Hence, we have the conclusion. Moreover, since G is
nonnegative, we have

lim sup
(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2) Q(x, ξ1, . . . , ξn)dx∑n

i=1 Hi(ξi)
≥ B. (3.12)

Therefore, from (3.8) and (3.12), and from Assumption (A3) and (3.7) one has

λ ∈]ν1, ν2[⊆
]
DNπN/2(2N − 1)

2NΓ(1 +N/2)B
,
S

A

[
⊆
]
0,

1

γ

[
.

For the fixed λ, the inequality (3.7) assures that the condition (b) of Theorem 2.1
can be used and either Iλ has a global minimum or there exists a sequence {um} =
{(u1m , . . . , unm)} of solutions of the problem (1.1) such that limm→∞ ‖um‖ = +∞.
The other step is to verify that the functional J−λI has no global minimum. Since

1

λ
<

2NΓ(1 +N/2)

DNπN/2(2N − 1)
B

=
2NΓ(1 +N/2)

DNπN/2(2N − 1)
lim sup

(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2)

F (x, ξ1, . . . , ξn)dx∑n
i=1 Hi(ξi)

,
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and
1

λ
< τ <

2NΓ(1 +N/2)

DNπN/2(2N − 1)

∫
B(x0,D/2)

F (x, γk1
, . . . , γk1

)dx
∑n

i=1 Hi(γki)
(3.13)

for each k ∈ N large enough. ✷

Remark 3.2. Under the conditions

lim inf
ξ→+∞

∫
Ω max(t1,...,tn)∈K(ξ) F (x, t1, . . . , tn) dx

ξp
= 0,

and

lim sup
(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2) F (x, ξ1, . . . , ξn)dx∑n

i=1 Hi(ξi)
= +∞.

Theorem 3.1 assures that for every λ > 0 and for each µ ∈ [0, 1
G∞

[ the problem
(1.1) admits infinitely many weak solutions. Moreover, if G∞ = 0, the result holds
for every λ > 0 and µ ≥ 0.

Now, we give an application of Theorem 3.1.

Example 3.3. Let n = N = 2, Ω = {(x1, x2) ∈ R
2; x2

1 + x2
2 ≤ 1} ⊂ R

2, 1 <
p1, p2 < 2 and F : Ω× R

2 → R be the function defined by

F (x1, x2, t1, t2)

=





f∗(x1, x2)(t
2
1 + t22)e

√
t21+t22

×
(
1− sin(ln(

√
t21 + t22))

)
if (x1, x2, t1, t2) ∈ Ω× (R2 \ {(0, 0)}),

0 if (x1, x2, t1, t2) ∈ Ω× {(0, 0)}

where, f∗ : Ω → R is a nonnegative continuous function. Since

lim inf
ξ→+∞

sup
|t1|p1+|t2|p2≤ξ

F (x1, x2, t1, t2) = 0

and
lim inf

(ξ1,ξ2)→(+∞,+∞)
F (x1, x2, ξ1, ξ2) = (ξ21 + ξ22)e

√
ξ21+ξ22

we have

lim inf
ξ→+∞

∫∫
Ω sup|t1|p1+|t2|p2≤ξ F (x1, x2, t1, t2)dx1dx2

ξmin{p1,p2}
= 0

and

lim sup
(ξ1,ξ2)→(+∞,+∞)

∫∫
x2
1+x2

2≤
1
2
F (x1, x2, ξ1, ξ2)dx1dx2

ξp1

1 + ξp2

2

= +∞.

Hence, by using Theorem 3.1, the problem (1.1) with

G(x1, x2, t1, t2) = e(x
2
1+x2

2)−(t21+t22)
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for all (x1, x2, t1, t2) ∈ Ω× R
2, for every

(λ, µ, ν) ∈]0,+∞[×[0,+∞[×[0,min(Sp1 , Sp2)[

has an unbounded sequence of weak solutions.

Remark 3.4. Assumption (A2) in Theorem 3.1 could be replaced by the following
more general condition

(A′2) there exist two sequence {θk}∞k=1 = {(θk1, . . . , θkn)} ⊂ R
n and {ηk} ⊂

R with ηk > 0 for every k ∈ N and
∑n

i=1 Hi(θki) <
η
p

k

S for all k ∈ N and
limk→+∞ ηk = +∞ such that

lim
k→+∞

∫ b

a sup(t1,...,tn)∈K(ηk)
F (x, t1, . . . , tn)dx −

∫
B(x0,D/2) F (x, θk1, . . . , θkn)dx

η
p

k

S −
∑n

i=1 Hi(θki)

< lim sup
(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2)

F (x, ξ1, . . . , ξn)dx∑n
i=1 Hi(ξi)

.

Indeed, clearly, by choosing θk = 0 for all k ∈ N from (A′2) we obtain (A2).

Moreover, if we assume (A′2) instead of (A2) and choose rk =
η
p

k

S for all n ∈ N,
by the same arguing as inside in Theorem 3.1, we obtain

ϕ(rk) ≤
supv∈Φ−1(]−∞,rk])

Ψ(v)−
∫
Ω
F (x,wk1(x), . . . , wkn(x))dx

rk −∑n
i=1

1
pi
M̂i

(∫
Ω
|∇wki|pidx

)
+
∑n

i=1
µ
pi

(∫
Ω
|wki|p

∗
i dx

)pi/p∗
i

≤
∫
Ω
sup(t1,...,tn)∈K(ηk)

F (x, t1, . . . , tn) dx−
∫
B(x0,D/2)

F (x, θk1, . . . , θkn)dx

η
p

k

S −∑n
i=1 Hi(θki)

where, wk(t) is the same as (3.9) but γk replaced by θk. We have the same conclu-
sion as in Theorem 3.1 with the interval ]λ1, λ2[ replaced by the interval

Λ′ =

]
1

limk→+∞

∫
B(x0,D/2)

F (x,θk1,...,θkn)dx∑
n
i=1 Hi(θki)

,
1

S limk→+∞

∫
Ω
sup(t1 ,...,tn)∈K(ηk) F (x,t1,...,tn) dx−

∫
B(x0,D/2)

F (x,θk1,...,θkn)dx

η
p

k−S
∑

n
i=1 Hi(θki)

[
.

Here, we point out a simple consequence of Theorem 3.1.

Corollary 3.5. Assume that Assumption (A1) holds. Furthermore, suppose that

(B1) lim infξ→+∞

∫
Ω
sup(t1 ,...,tn)∈K(ξ) F (x,t1,...,tn) dx

ξp < 1
S

(B2) lim sup(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2)

F (x,ξ1,...,ξn)dx∑
n
i=1 Hi(ξi)

> 1.
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Then, for every nonnegative arbitrary function G : Ω×R
n → R which is measurable

in Ω and of class C1(Rn) satisfying the condition (3.2) and for every µ ∈ [0, µG,1[
where

µG,1 :=
1− SA

SG∞
,

and for every ν ∈ [0,min(Sp1 , . . . , Spn)[, the system





−
[
Mi

(∫
Ω |∇ui|pidx

)]pi−1
∆piui = ν

(∫
Ω |ui|p

∗
i dx

)pi/p
∗
i −1 |ui|p

∗
i −2ui

+Fui(x, u1, . . . , un) + µGui(x, u1, . . . , un), in Ω,
ui = 0, on ∂Ω

for i = 1, . . . , n has an unbounded sequence of weak solutions in E.

Remark 3.6. Theorem 2.3 is an immediately consequence of Corollary 3.5 when
µ = 0.

We here give the following consequence of the main result.

Corollary 3.7. Let F1 : Ω × R
n → R be a function such that F1(x, t1, . . . , tn) is

measurable in x for all (t1, . . . , tn) ∈ R
N and F1(x, t1, . . . , tn) is C1 in (t, . . . , tn)

for a.e. x ∈ Ω. Assume that

(D1) lim infξ→+∞

∫
Ω
sup(t1 ,...,tn)∈K(ξ) F1(x,t1,...,tn) dx

ξp < +∞;

(D2) lim sup(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2)

F1(x,ξ1,...,ξn)dx∑n
i=1 Hi(ξi)

= +∞.

Then, for every function Fj : Ω×R
n → R such that Fj(x, t1, . . . , tn) is measurable

in x for all (t1, . . . , tn) ∈ R
N and Fj(x, t1, . . . , tn) is C

1 in (t, . . . , tn) for a.e. x ∈ Ω,
satisfying

min
{

inf
(x,ξ)∈(Ω\B(x0,D/2))×RN

Fj(x, ξ); 2 ≤ j ≤ k
}
≥ 0

and

min
{
lim inf
ξ→+∞

Fj(x, t1, . . . , tn)

ξp
; (t1, . . . , tn) ∈ K(ξ), 2 ≤ j ≤ k

}
< +∞,

for each

λ ∈


0, 1

S lim infξ→+∞

∫
Ω
sup(t1 ,...,tn)∈K(ξ) F1(x,t1,...,tn) dx

ξp


 ,

for every nonnegative arbitrary function G : Ω×R
n → R which is measurable in Ω

and of class C1(Rn) satisfying the condition (3.2), for every µ ∈ [0, µG,λ[ where,

µG,λ :=
1− λSA1

SG∞
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with,

A1 = lim inf
ξ→+∞

∫
Ω
sup(t1,...,tn)∈K(ξ) F1(x, t1, . . . , tn) dx

ξp
,

and for every ν ∈ [0,min(Sp1 , . . . , Spn)[, the system





−
[
Mi

(∫
Ω
|∇ui|pidx

)]pi−1
∆piui = ν

(∫
Ω
|ui|p

∗
i dx

)pi/p
∗
i −1 |ui|p

∗
i −2ui

+λ
∑k

j=1(Fj)ui(x, u1, . . . , un) + µGui(x, u1, . . . , un), in Ω,

ui = 0, on ∂Ω

for i = 1, . . . , n has an unbounded sequence of weak solutions in E.

Proof: Set F (t, ξ1, . . . , ξn) =
∑k

j=1 Fj(t, ξ1, . . . , ξn) for all (ξ1, . . . , ξn) ∈ R
n.

From the assumption (D2) and the condition

min
{

inf
(x,ξ1,...,ξn)∈(Ω\B(x0,D/2))×Rn

Fj(x, ξ1, . . . , ξn); 2 ≤ j ≤ n
}
≥ 0

we conclude

lim sup
(ξ1,...,ξn)→(+∞,...,+∞)

∫
B(x0,D/2) F (x, ξ1, . . . , ξn)dx∑n

i=1 Hi(ξi)

= lim sup
(ξ1,...,ξn)→(+∞,...,+∞)

∑k
j=1

∫
B(x0,D/2) Fj(x, ξ1, . . . , ξn)dx∑n

i=1 Hi(ξi)
= +∞.

Moreover, from the assumption (D1) and the condition

min
{
lim inf
ξ→+∞

Fj(x, t1, . . . , tn)

ξp
; (t1, . . . , tn) ∈ K(ξ), 2 ≤ j ≤ n

}
< +∞,

we obtain

lim inf
ξ→+∞

∫
Ω
sup(t1,...,tn)∈K(ξ) F (x, t1, . . . , tn) dx

ξp

≤ lim inf
ξ→+∞

∫
Ω
sup(t1,...,tn)∈K(ξ) F1(x, t1, . . . , tn) dx

ξp
< +∞.

Hence, the conclusion follows from Theorem 3.1. ✷

Arguing as in the proof of Theorem 3.1, but using conclusion (c) of Theorem
2.1 instead of (b), one establishes the following result. For this we set

A0 := lim inf
ξ→0+

∫
Ω
sup(t1,...,tn)∈K(ξ) F (x, t1, . . . , tn) dx

ξp
,

B0 := lim sup
(ξ1,...,ξn)→(0+,...,0+)

∫
B(x0,D/2)

F (x, ξ1, . . . , ξn)dx∑n
i=1 Hi(ξi)
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Theorem 3.8. Assume that Assumption (A1) holds. Furthermore, suppose that

(E1)

lim inf
ξ→0+

∫
Ω sup(t1,...,tn)∈K(ξ) F1(x, t1, . . . , tn) dx

ξp

<
2NΓ(1 +N/2)

DNπN/2(2N − 1)
S lim sup

(ξ1,...,ξn)→(0+,...,0+)

∫
B(x0,D/2) F1(x, ξ1, . . . , ξn)dx∑n

i=1 Hi(ξi)
.

Then, for each λ ∈]λ3, λ4[ where,

λ3 :=
DNπN/2(2N − 1)

2NΓ(1 +N/2)

1

B0
and λ4 :=

S

A0
,

and for every nonnegative arbitrary function G : Ω× R
n → R which is measurable

in Ω and of class C1(Rn) satisfying the condition

G0 := lim
ξ→0

∫
Ω sup(t1,...,tn)∈K(ξ) G(x, t1, . . . , tn)dx

ξp
< ∞, (3.14)

for every µ ∈ [0, µG,λ[ where,

µG,λ :=
1− λSA0

SG0

and for every ν ∈ [0,min(Sp1 , . . . , Spn)[, the problem (1.1) has an unbounded se-
quence of weak solutions in E.

Proof: Fix λ ∈]λ3, λ4[ and let G is the function satisfying the condition (3.14).
Since, λ < λ4, one has µg,λ > 0. Fix µ ∈]0, µG,λ[ and set ν3 := λ3 and ν4 :=

λ2

1+µ
λλ4SG0

. If G0 = 0, clearly, ν3 = λ3, ν4 = λ4 and λ ∈]ν3, ν4[. If G0 6= 0, since

µ < µG,λ, one has

λ

λ4
+ µG0 < 1,

and so
λ2

1 + µ
λλ4SG0

> λ,

namely, λ < ν4. Hence, recalling that λ > λ3 = ν3, one has λ ∈]ν3, ν4[. Put
Q(x, t1, . . . , tn) = F (x, t1, . . . , tn)+

µ

λ
G(x, t1, . . . , tn) for all (x, t1, . . . , tn) ∈ Ω×R

n.
Since
∫
Ω sup(t1,...,tn)∈K(ξk)

Q(x, t1, . . . , tn)dx

ξ
p

k

≤
∫
Ω sup(t1,...,tn)∈K(ξk)

F (x, t1, . . . , tn)dx

ξ
p

k

+
µ

λ

∫
Ω sup(t1,...,tn)∈K(ξk)

G(x, t1, . . . , tn)dx

ξ
p

k

,
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taking (3.14) into account, one has

lim inf
ξ→0+

∫
Ω
sup(t1,...,tn)∈K(ξ) Q(x, t1, . . . , tn)dx

ξp
≤ A0 +

µ

λ
G0. (3.15)

Moreover, since G is nonnegative, from Assumption (E1) we have

lim sup
(ξ1,...,ξn)→(0+,...,0+)

∫
B(x0,D/2)

Q(x, ξ1, . . . , ξn)dx∑n
i=1 Hi(ξi)

≥ B0. (3.16)

Therefore, from (3.15) and (3.16), we obtain

λ ∈]ν3, ν4[⊆
]

1

lim sup(ξ1,...,ξn)→(0+,...,0+)

∫
B(x0,D/2)

Q(x,ξ1,...,ξn)dx∑
n
i=1 Hi(ξi)

,
1

S lim infξ→0+

∫
Ω
sup(t1 ,...,tn)∈K(ξ) Q(x,t1,...,tn)dx

ξp

[
⊆ ]λ3, λ4[ .

We take X , J , I and Υλ as in the proof of Theorem 3.1. We prove that δ < +∞.
For this, let {ξk} be a real sequence such that ξk > 0 for all k ∈ N and ξk → 0+ as
k → ∞ and

lim inf
k→+∞

∫
Ω
sup(t1,...,tn)∈K(ξk)

F (x, t1, . . . , tn)dx

ξ
p

k

< +∞.

Put rk =
ξ
p

k

S for all n ∈ N. Let us show that the functional Υλ has not a local
minimum at zero. For this, let {γk1, . . . , γkn}∞ki=1 for i = 1 . . . , n, such that γki > 0
for all ki ∈ N and i = 1, . . . , n, and a constant τ such that

lim
(k1,...,kn)→(+∞,...,+∞)

n∑

i=1

(γki)
1
2 = 0+

and
1

λ
< τ <

2NΓ(1 +N/2)

DNπN/2(2N − 1)

∫
B(x0,D/2) F (x, γk, . . . , γk)dx∑n

i=1 Hi(γki)
(3.17)

for each n ∈ N large enough. Let {(wk1 , . . . , wkn)} be a sequence in X defined by
(3.9). So, owing to (3.10), (3.11) and (3.17) we obtain

Υλ(wk) ≤
n∑

i=1

Hi(γki)− λ

∫

B(x0,D/2)

F (x, γk, . . . , γk)dt < (1− λτ )
n∑

i=1

Hi(γki) < 0

for every k ∈ N large enough. Since Υλ(0) = 0, that means that 0 is not a local
minimum of the functional Υλ. Hence, the part (c) of Theorem 2.1 ensures that
there exists a sequence {uk} in X of critical points of Υλ such that ‖uk‖ → 0 as
k → ∞, and the proof is complete. ✷
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Remark 3.9. Applying Theorem 3.8, results similar to Remark 3.4, Corollaries
3.5 and 3.7 can be obtained.

In the sequel we give the following example as an application of Theorem 3.8.

Example 3.10. Let n = N = 2, Ω = {(x1, x2) ∈ R
2; |x1| + |x2| ≤ 1} ⊂ R

2,
p1 = 3

2 , p2 = 7
4 and F : Ω× R

2 −→ R be the function defined by

F (x1, x2, t1, t2)

=





ex1+x2

[
(t21 + t22) ln(ln(

1
(t21+t22)

))

× sin2(ln(ln(ln( 1
(t21+t22)

))))

+4(t21 + t22) ln
−1( 1

(t21+t22)
)
]
, if (x1, x2, t1, t2) ∈ Ω× (R2 \ {(0, 0)}),

0 if (x1, x2, t1, t2) ∈ Ω× {(0, 0)}.

Thus

lim inf
ξ→0+

∫∫
Ω sup

|t1|
3
2 +|t2|

7
4 ≤ξ

F (x1, x2, t1, t2)dx1dx2

ξ
3
2

= 0

and

lim sup
(ξ1,ξ2)→(0+,0+)

∫∫
x2
1+x2

2≤
1
2
F (x1, x2, ξ1, ξ2)dx1dx2

ξ
3
2
1 + ξ

7
4
2

= +∞.

Hence, by using Theorem 3.8 the problem (1.1) in this case, with

G(x1, x2, t1, t2) = x2
1 + x2

2(|t1|+ |t2|)3

for all (x1, x2, t1, t2) ∈ Ω×R
2, for every (λ, µ, ν) ∈]0,+∞[×[0, 12π [×[0,min(S 3

2
, S 7

4
)[

has an unbounded sequence of weak solutions.

Let n = 1. As an application of the results, we consider the problem





−
[
M1

(∫
Ω |∇u|p1dx

)]p1−1
∆p1u = ν

(∫
Ω |u|p∗

1dx
)p1/p

∗
1−1 |u|p∗

1−2u
+λf(x, u) + µg(x, u), in Ω,
u = 0, on ∂Ω,

(3.18)
where, M1 : R+ → R is a continuous function satisfy in condition (M) and f, g :
Ω× R → R are two L1-Carathéodory functions.

Now we let M̂1 : W 1,p1

0 → R be as in (3.1). Put

F (x, t) =

∫ t

0

f(x, ξ)dξ, for all (x, t) ∈ Ω× R

and

G(x, t) =

∫ t

0

g(x, ξ)dξ, for all (x, t) ∈ Ω× R.

The following two corollaries are consequences of Theorems 3.1 and 3.8.
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Corollary 3.11. Assume that

(A1′) F (x, t) ≥ 0 for all x ∈ B(x0,
D
2 ) and t ∈ R;

(A2′)

lim sup
ξ−→+∞

∫
B(x0,D/2)

F (x, ξ)dx

M̂1

(
2ξ
D

)p <
2NΓ(1 +N/2)(meas(Ω))P1−1m(ν, p1)

2p1DNπN/2(2N − 1)

× lim inf
ξ→+∞

∫
Ω
sup|t|≤ξ F (x, t) dx

ξp
.

Then, for each

λ ∈
]
DNπN/2(2N − 1)

2NΓ(1 +N/2)

1

p1 lim supξ→+∞

∫
B(x0,D/2)

F (x,ξ1,...,ξn)dx

M̂1( 2ξ
D )p

,

p1(meas(Ω))p1−1m(ν, p1)

2p1 lim infξ→+∞

∫
Ω
sup|t|≤ξ F (x,t) dx

ξp1

[

for every L1-Carathéodory function g : Ω×R → R whose G(t, x) =
∫ ξ

0
g(t, ξ)dξ for

every (t, x) ∈ Ω× R, is a nonnegative function satisfying the condition

g∞ := lim
ξ→+∞

∫
Ω
sup|t|≤ξ G(x, t)dx

ξp1
< +∞,

for every µ ∈ [0, µg,λ[ where

µg,λ :=
2p1 − λp1(meas(Ω))p1−1m(ν, p1) lim infξ→+∞

∫
Ω
sup|t|≤ξ F (x,t dx

ξp1

p1(meas(Ω))p1−1m(ν, p1)g∞

and for every ν ∈ [0, Sp1 [, the problem (3.18) has an unbounded sequence of weak

solutions in W 1,p1

0 .

Corollary 3.12. Assume that the assumption (A1′) holds. Furthermore, suppose
that

lim inf
ξ−→0+

∫
Ω
sup|t|≤ξ F (x, t)dx

ξp1
<
2N−p1Γ(1 +N/2)p1(meas(Ω))p1−1m(ν, p1)

DNπN/2(2N − 1)

× lim sup
ξ→0+

∫
B(x0,D/2) F (x, ξ)dx

M̂1

((
2ξ
D

)p1
) .
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Then, for each

λ ∈
[
DNπN/2(2N − 1)

2NΓ(1 +N/2)

1

lim supξ→0+

∫
B(x0,D/2)

F (x,ξ)dx

M̂1(( 2ξ
D )

p1)

,

p1(meas(Ω))p1−1m(ν, p1)

2p1 lim infξ→0+

∫
Ω
sup|t|≤ξ F (x,t)dx

ξp1

[
,

for every L1-Carathéodory function g : Ω×R → R whose G(t, x) =
∫ ξ

0 g(t, ξ)dξ for

every (t, x) ∈ Ω× R, is a nonnegative function satisfying the condition

g0 := lim
ξ→0

∫
Ω sup|t|≤ξ G(x, t)dx

ξp1
< +∞,

for every µ ∈ [0, µg,λ[ where

µg,λ :=
2p1 − λp1(meas(Ω))p1−1m(ν, p1) lim infξ→0+

∫
Ω
sup|t|≤ξ F (x,t) dx

ξp1

p1(meas(Ω))p1−1m(ν, p1)g0

and for every ν ∈ [0, Sp1 [, the problem (3.18) has an unbounded sequence of weak
solutions.
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1. C.O. Alves, F.S.J.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation
of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85–93.

2. A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc.
348 (1996) 305–330.

3. G. Autuori, F. Colasuonno, P. Pucci, Blow up at infinity of solutions of polyharmonic Kirch-
hoff systems, Complex Var. Elliptic Eqs. 57 (2012) 379–395.

4. G. Autuori, F. Colasuonno, P. Pucci, Lifespan estimates for solutions of polyharmonic Kirch-
hoff systems, Math. Mod. Meth. Appl. Sci. 22 (2012) 1150009 [36 pages].

5. G. Autuori, F. Colasuonno, P. Pucci, On the existence of stationary solutions for higher-order
p-Kirchhoff problems, Commun. Contemp. Math. 16 (2014) 1450002 [43 pages].
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