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abstract: In this paper, we study a new class of nonspreading-type mappings
more general than the class of strictly pseudononspreading and the class of general-
ized nonspreading mappings. We state and prove some strong convergence theorems
of the Mann-type and Ishikawa-type algorithms for approximating fixed points of
our class of mappings in Hadamard spaces.
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1. Introduction

In 2008, Kohsaka and Takahashi [11] introduced the class of nonspreading map-
pings which they defined as follows: Let C be a nonempty closed and convex sub-
set of a real smooth, strictly convex and reflexive Banach space E. A mapping
T : C → C is called nonspreading if

φ(Tx, T y) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x) (1.1)

for all x, y ∈ C, where φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2 for all x, y ∈ E, and J is
the duality mapping on C. It is obvious that, if E is a real Hilbert space, then J

is the identity mapping on C and φ(x, y) = ||x − y||2 for all x, y ∈ E. Thus, for a
nonempty, closed and convex subset C of a real Hilbert space, T : C → C is called
nonspreading if

2||Tx− Ty||2 ≤ ||Tx− y||2 + ||Ty − x||2, ∀x, y ∈ C. (1.2)

Using this class of mappings, Kohsaka and Takahashi [11] studied the resolvents
of maximal monotone operators in Banach spaces.

Later in 2011, Osilike and Isiogugu [18] introduced a new class of nonlinear
mappings more general than the class of nonspreading mappings in Hilbert spaces,
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namely the class of k-strictly pseudononspreading mappings. LetH be a real Hilbert
space, a mapping T : D(T ) ⊆ H → H is called k-strictly pseudononspreading if
there exists k ∈ [0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||x− Tx− (y − Ty)||2
+2〈x− Tx, y − Ty〉 ∀x, y ∈ D(T ). (1.3)

It is easy to show that (1.3) is equivalent to

(2− k)||Tx− Ty||2 ≤ k||x− y||2 + (1− k)||y − Tx||2 + (1− k)||x− Ty||2
+k||x− Tx||2 + k||y − Ty||2,

for all x, y ∈ D(T ). Clearly, every nonspreading mapping is 0-strictly pseudonon-
spreading. However, an example given in [18] shows that the converse of this
statement is not always true. Furthermore, Osilike and Isiogugu [18] obtained
some weak and strong convergence results for this class of mappings in Hilbert
spaces.

Recently, Naraghirad [15] introduced the class of asymptotically nonspreading
mappings in real Banach spaces, which he defined as follows: Let C be a nonempty
closed and convex subset of a real Banach space E. A mapping T : C → C is called
asymptotically nonspreading if

||T nx− T ny||2 ≤ ||x− y||2 + 2〈x− T nx, J(y − T ny)〉 ∀x, y ∈ C and n ∈ N, (1.4)

where J is the duality mapping on C. If E is a real Hilbert space, then (1.4) is
equivalent to

2||T nx− T ny||2 ≤ ||T nx− y||2 + ||T ny − x||2 ∀x, y ∈ C and n ∈ N. (1.5)

Clearly, if n = 1, then T is nonspreading. Naraghirad [15] proved some weak
and strong convergence theorems for approximating fixed points of asymptotically
nonspreading mappings in real Banach spaces.

Motivated by the works of Naraghirad [15], Kohsaka and Takahashi [11], Phuen-
grattana [19] introduced a new class of nonlinear mappings in convex metric spaces
as follows: Let C be a nonempty subset of a convex metric space X . A mapping
T : C → C is called generalized asymptotically nonspreading if there exist two
functions f, g : C → [0, γ], γ < 1 such that

d2(T nx, T ny) ≤ f(x)d2(T nx, y) + g(x)d2(T ny, x) ∀x, y ∈ C, n ∈ N,

and

0 < f(x) + g(x) ≤ 1 ∀x ∈ C.

If n = 1, then T is simply called generalized nonspreading. Observe that if
f(x) = g(x) = 1

2 for all x ∈ C, then T is an asymptotically nonspreading map-
ping. However, Phuengrattana [19] gave an example of a generalized asymptotically
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nonspreading mapping which is not an asymptotically nonspreading mapping. Fur-
thermore, Phuengrattana [19] proved some existence theorems, demiclosed princi-
ple and a ∆-convergence theorem of the Mann iteration for the class of generalized
asymptotically nonspreading mappings in CAT(0) spaces.

Motivated by the works of Phuengrattana [19], Osilike and Isiogugu [18], we
introduce a new class of nonspreading-type mappings, called the class of (f, g)-
generalized k-strictly pseudononspreading mappings which contains the class of k-
strictly pseudononspreading mappings and the class of generalized nonspreading
mappings in metric spaces. Examples of our new class of mappings are given and
some fixed points properties for these mappings are studied in Hadamard spaces.
Furthermore, we prove some strong convergence theorems of the Mann-type and
Ishikawa-type algorithms for our class of mappings in Hadamard spaces.

2. Preliminaries

In this section, we recall some definitions and some useful results that will be
needed in proving our main results. We begin with the following definitions.

Let (X, d) be a metric space and x, y ∈ X . A geodesic path joining x to y is a
mapping c : [0, t] ⊂ R → X such that c(0) = x, c(t) = y and d(c(k), c(k′)) = |k−k′|
for all k, k′ ∈ [0, t]. In this case, c is called an isometry and d(x, y) = t. The image
of c is called a geodesic segment joining x to y. When this image is unique, it is
denoted by [x, y].

The metric space (X, d) is said to be a geodesic space if every two points of
X are joined by a geodesic and it is said to be a uniquely geodesic space if every
two points of X are joined by exactly one geodesic segment. A subset C of a
geodesic space X is said to be convex, if for all x, y ∈ C, the segment [x, y] is
in C. A geodesic triangle ∆(x1, x2, x3) in a geodesic space (X, d) consist of three
points x1, x2, x3 in X (known as the vertices of ∆) and a geodesic segment between
each pair of vertices (known as the edges of ∆). A comparison triangle for the
geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3)
in the Euclidean plane R2 such that d(xi, xj) = dR2(x̄i, x̄j) for all i, j ∈ {1, 2, 3}. A
metric space (X, d) is called a CAT(0) space if it is geodesically connected and if
every geodesic triangle in X is at least as ”thin” as its comparison triangle in the
Euclidean plane R2. Furthermore, a geodesic space is a CAT(0) space if and only if
it satisfies the following inequality, called the (CN) inequality of Bruhat and Titis
[3] (see [2]): If x, y, z are points in X and y0 is the midpoint of the segment [y, z],
then

d2(x, y0) ≤
1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d2(y, z). (2.1)

Let X be a CAT(0) space. Denote the pair (a, b) ∈ X × X by
−→
ab and call it a

vector. Then, a mapping 〈., .〉 : (X ×X)× (X ×X) → R defined by

〈−→ab,−→cd〉 = 1

2

(

d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)
)

∀a, b, c, d ∈ X
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is called a quasilinearization mapping (see [1]). We can easily verify that 〈−→ab,−→ab〉 =
d2(a, b), 〈−→ba,−→cd〉 = −〈−→ab,−→cd〉, 〈−→ab,−→cd〉 = 〈−→ae,−→cd〉 + 〈−→eb,−→cd〉 and 〈−→ab,−→cd〉 = 〈−→cd,−→ab〉
for all a, b, c, d, e ∈ X . A geodesic space X is said to satisfy the Cauchy-Swartz

inequality if 〈−→ab,−→cd〉 ≤ d(a, b)d(c, d) ∀a, b, c, d ∈ X. It has been established in [1]
that a geodesically connected metric space is a CAT(0) space if and only if it
satisfies the Cauchy-Schwartz inequality. It is generally known that CAT(0) spaces
are uniquely geodesic spaces (see for example [7]) and complete CAT(0) spaces
are called Hadamard spaces. Examples of CAT(0) spaces includes: Euclidean
spaces Rn, Hilbert spaces, simply connected Riemannian manifolds of nonpositive
sectional curvature, R-trees, Hilbert ball [8], Hyperbolic spaces [20]. For more
equivalent definitions and properties of CAT(0) spaces, see [2] and the references
therein.

Let {xn} be a bounded sequence in X and r(., {xn}) : X → [0,∞) be a contin-
uous functional defined by r(x, {xn}) = lim sup

n→∞
d(x, xn). The asymptotic radius of

{xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X} while the asymptotic center of
{xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. It is generally known
that in a Hadamard space, A({xn}) consists of exactly one point. A sequence {xn}
in X is said to be ∆-convergent to a point x ∈ X if A({xnk

}) = {x} for every
subsequence {xnk

} of {xn}. In this case, we write ∆- lim
n→∞

xn = x (see [5]). The

concept of ∆-convergence in metric spaces was first introduced and studied by Lim
[12]. Kirk and Panyanak [10] later introduced and studied this concept in CAT(0)
spaces, and proved that it is very similar to the weak convergence in Banach space
setting (for more information on weak convergence in Banach space setting, see
[16,17] and the references therein).

Definition 2.1. Let C be a nonempty subset of a metric space X. A mapping
T : C → C is said to be L-Lipschitzian if there exists L > 0 such that

d(Tx, T y) ≤ Ld(x, y) ∀x, y ∈ C.

If L = 1, then T is called nonexpansive.
A point x ∈ C is called a fixed point of a nonlinear mapping T : C → C, if

Tx = x. We denote the set of fixed points of T by F (T ).

Lemma 2.2. [7] Let X be a CAT(0) space. Then, for all x, y, z ∈ X and t, s ∈
[0, 1], the following hold:

(i) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),

(ii) d2(tx⊕ (1 − t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y).

Lemma 2.3. [4] Let X be a CAT(0) space and a, b, c ∈ X. Then for each t ∈ [0, 1],

d2(ta⊕ (1− t)b, c) ≤ t2d2(a, c) + (1 − t)2d2(b, c) + 2t(1− t)〈−→ac,−→bc〉.
Lemma 2.4. [7] Let X be a CAT(0) space, then for each x, y ∈ X and t ∈ [0, 1],
there exists a unique point z ∈ [x, y] such that

d(z, x) = (1− t)d(x, y) and d(z, y) = td(x, y). (2.2)
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In this case, we write z = tx⊕ (1 − t)y.

Lemma 2.5. [7] Every bounded sequence in a Hadamard space has a ∆-convergence
subsequence.

Lemma 2.6. [6] If {xn} is a bounded sequence in a closed and convex subset C
of a Hadamard space, then the asymptotic center of {xn} is in C.

Let {xn} be a bounded sequence in a closed and convex subset C of a Hadamard
space. We use the notation

xn ⇀ w ⇐⇒ Φ(w) = inf
x∈C

Φ(x),

where Φ(x) = lim sup
n→∞

d(xn, x). We note that xn ⇀ w if and only if A({xn}) = {w}
(see [14]).

Lemma 2.7. [14] If {xn} is a bounded sequence in a closed and convex subset C
of a Hadamard space, then ∆- lim

n→∞
xn = w implies that xn ⇀ w.

Lemma 2.8. [9] Let X be a Hadamard space, {xn} be a sequence in X and x ∈ X.
Then {xn} ∆-converges to x if and only if lim sup

n→∞
〈−−→xnx,

−→yx〉 ≤ 0 ∀y ∈ X.

Lemma 2.9. [21]. Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], Σ∞

n=0αn = ∞,
(ii) lim supn→∞ δn ≤ 0,
(iii) γn ≥ 0(n ≥ 0), Σ∞

n=0γn < ∞.

Then limn→∞ an = 0.

Lemma 2.10. [13]. Let {an} be a sequence of real numbers such that there exists
a subsequence {nj} of {n} with anj

< anj+1 ∀j ∈ N. Then there exists a nonde-
creasing sequence {mk} ⊂ N such that mk → ∞ and the following properties are
satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3. Main Results

We first introduce a new class of nonspreading-type mappings, called the class
of (f, g)-generalized k-strictly pseudononspreading mappings.
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Definition 3.1. Let X be a metric space. We say that a mapping T : D(T ) ⊆
X → X is (f, g)-generalized (or simply generalized) k-strictly pseudononspreading
if there exist two functions f, g : D(T ) ⊆ X → [0, γ], γ < 1 and k ∈ [0, 1) such that

(1 − k)d2(Tx, T y) ≤ kd2(x, y) + [f(x)− k] d2(Tx, y) + [g(x)− k] d2(x, T y)

+kd2(x, Tx) + kd2(y, T y) ∀x, y ∈ D(T ),

and

0 < f(x) + g(x) ≤ 1 ∀x ∈ D(T ).

Remark 3.2.

(i) Clearly, every generalized nonspreading mapping is a generalized 0-strictly pseu-
dononspreading mapping.

(ii) Every k-strictly pseudononspreading mapping is a generalized k-strictly pseudo-
nonspreading mapping. Indeed, if T is a k-strictly pseudononspreading mapping,
then for all x, y ∈ D(T ), there exists k ∈ [0, 1) such that

(2 − k)d2(Tx, T y) ≤ kd2(x, y) + (1− k)d2(Tx, y) + (1− k)d2(x, T y)

+kd2(x, Tx) + kd2(y, T y),

which implies

(

1− k

2

)

d2(Tx, T y) ≤ k

2
d2(x, y) +

(

1

2
− k

2

)

d2(y, Tx) +

(

1

2
− k

2

)

d2(x, T y)

+
k

2
d2(x, Tx) +

k

2
d2(y, T y).

That is

(1− k′) d2(Tx, T y) ≤ k′d2(x, y) + (f(x)− k′) d2(Tx, y) + (g(x)− k′) d2(x, T y)

+k′d2(x, Tx) + k′d(y, T y),

where f(x) = g(x) = 1
2 , ∀x ∈ D(T ) and k′ = k

2 ∈ [0, 1). Hence, T is a generalized
k-strictly pseudononspreading mapping.

The following examples show that the class of k-strictly pseudononspreading
mappings and the class of generalized nonspreading mappings are properly con-
tained in the class of generalized k-strictly pseudononspreading mappings.

First, we give an example of a generalized k-strictly pseudononspreading map-
ping which is not k-strictly pseudononspreading.

Example 3.3. Let T : [0,∞) → [0,∞) be defined by

Tx =

{

1
x+ 1

10

, if x ≥ 1,

0, if x ∈ [0, 1).
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Then, T is not k-strictly pseudononspreading. In fact, if we take x = 1 and y = 0.5,
then
|Tx − Ty|2 = 0.82644, |x − y|2 = 0.25, k|x − Tx − (y − Ty)|2 = 0.16736k,
2〈x− Tx, y − Ty〉 = 0.09091.
Hence,
|Tx− Ty|2 = 0.82644 > 0.34091 + 0.16736k = |x − y|2 + k|x − Tx− (y − Ty)|2 +
2〈x− Tx, y − Ty〉, for all k ∈ [0, 1).

However, T is a generalized k-strictly pseudononspreading mapping with k = 0.
To see this, let f, g : [0,∞) → [0, 0.9] be defined by

f(x) =

{

0, if x ≥ 1,

0.9, if x ∈ [0, 1)

and

g(x) =

{

1
(x+ 1

10 )
2 , if x ≥ 1,

0, if x ∈ [0, 1).

Case 1: If x ≥ 1 and y ∈ [0, 1), then Tx = 1
x+ 1

10

, T y = 0, f(x) = 0 and

g(x) = 1
(x+ 1

10 )
2 . Thus, we obtain

|Tx− Ty|2 = 1

(x+ 1
10 )

2
≤ 0 + g(x)x2 = f(x)|y − Tx|2 + g(x)|x− Ty|2.

Case 2: If x ∈ [0, 1) and y ≥ 1, then Tx = 0, T y = 1
y+ 1

10

, f(x) = 0.9 and

g(x) = 0. Thus, we obtain

|Tx− Ty|2 = 1

(y + 1
10 )

2
< f(x)y2 + 0 = f(x)|y − Tx|2 + g(x)|x − Ty|2.

Case 3: If x ≥ 1 and y ≥ 1, then Tx = 1
x+ 1

10

, T y = 1
y+ 1

10

, f(x) = 0 and

g(x) = 1
(x+ 1

10 )
2 . Thus, we obtain

|Tx− Ty|2 =
∣

∣

1

x+ 1
10

− 1

y + 1
10

∣

∣

2
=

(x− y)2

(x+ 1
10 )

2(y + 1
10 )

2

and

f(x)|y − Tx|2 + g(x)|x− Ty|2 = 1

(x+ 1
10 )

2

∣

∣x− 1

y + 1
10

∣

∣

2
=

(1 − xy − x
10 )

2

(x+ 1
10 )

2(y + 1
10 )

2
.

Since (x− y)2− (1−xy− x
10 )

2 < 0, we conclude that |Tx−Ty|2 < f(x)|y−Tx|2+
g(x)|x − Ty|2, for all x ≥ 1 and y ≥ 1.

For the case where x, y ∈ [0, 1), we have that |Tx−Ty|2 = 0 < f(x)|y−Tx|2 +
g(x)|x − Ty|2. Thus,

|Tx− Ty|2 ≤ f(x)|y − Tx|2 + g(x)|x − Ty|2 ∀x, y ∈ [0,∞).

Hence, T is a generalized nonspreading mapping. It then follows that T is a gen-
eralized k-strictly pseudononspreading mapping with k = 0.
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We now give an example of a generalized k-strictly pseudononspreading map-
ping which is neither k-strictly pseudononspreading nor generalized nonspreading.

Example 3.4. Let T : [0,∞) → R defined by

Tx =

{

−3x, if x ∈ [0, 1],
1
x
, if x ∈ (1,∞).

We first show that T is not k-strictly pseudononspreading. Indeed, if x = 11
10 and

y = 1
3 , then

|Tx−Ty|2 = 3.64463, |x−y|2 = 0.58778, k|x−Tx− (y−Ty)|2 = 1.30513k, 2〈x−
Tx, y − Ty〉 = 0.50909.
Hence,
|Tx− Ty|2 = 3.64463 > 1.09687 + 1.30513k = |x − y|2 + k|x − Tx− (y − Ty)|2 +
2〈x− Tx, y − Ty〉 ∀k ∈ [0, 1).
Therefore, T is not k-strictly pseudononspreading.

Next, we show that T is not generalized nonspreading. Suppose for contradic-
tion that T is a generalized nonspreading mapping, then we can always find two
functions f, g : [0,∞) → [0, γ], γ < 1 such that

|Tx− Ty|2 ≤ f(x)|Tx− y|2 + g(x)|Ty − x|2 ∀x, y ∈ [0,∞)

and
0 < f(x) + g(x) ≤ 1 ∀x ∈ [0,∞).

In particular, for x = 0 and y = 1, we have that

9 = |Tx− Ty|2 ≤ f(x)|Tx− y|2 + g(x)|Ty − x|2 = f(x) + 9g(x).

That is,

9 ≤ f(x) + 9g(x). (3.1)

If f(x) = 0, then we have that 9 ≤ 9g(x) < 9 and this is a contradiction. Now,
suppose f(x) 6= 0, then we obtain from (3.1) that f(x) ≥ 9(1−g(x)) ≥ 9f(x) (since
f(x) + g(x) ≤ 1). This implies that 1 ≥ 9 and this is a contraction. Therefore, T
is not generalized nonspreading.

Finally, we show that T is a generalized k-strictly pseudononspreading mapping
with k = 9

10 . To see this, let f, g : [0,∞) → [0, 0.9] be defined by

f(x) =

{

9
10 , if x ∈ [0, 1],
1
10 , if x ∈ (1,∞)

and

g(x) =

{

1
10 , if x ∈ [0, 1],
9
10 , if x ∈ (1,∞).
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Case 1: If x, y ∈ [0, 1], then Tx = −3x, T y = −3y, f(x) = 9
10 and g(x) = 1

10 . So
that,
(1− 9

10 )|Tx− Ty|2 = 9
10 |x− y|2, [f(x)− 9

10 ]|Tx− y|2 = 0, [g(x)− 9
10 ]|x− Ty|2 =

−8x2−48xy−72y2

10 , 9
10 |x− Tx|2 = 144x2

10 , 9
10 |y − Ty|2 = 144y2

10 .

Hence,

9

10
|x− y|2 + [f(x)− 9

10
]|Tx− y|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2

=
9

10
|x− y|2 + 136x2 + 72y2 − 48xy

10

≥ 9

10
|x− y|2 =

(

1− 9

10

)

|Tx− Ty|2.

Case 2: If x, y ∈ (1,∞), then Tx = 1
x
, T y = 1

y
, f(x) = 1

10 and g(x) = 9
10 . So

that,

(1− 9
10 )|Tx−Ty|2 = x2+y2−2xy

10x2y2 , 9
10 |x−y|2 = 9x2+9y2−18xy

10 , [f(x)− 9
10 ]|Tx−y|2 =

−8x2y2−8+16xy
10x2 , [g(x)− 9

10 ]|x−Ty|2 = 0, 9
10 |x−Tx|2 = 9x4−18x2+9

10x2 , 9
10 |y−Ty|2 =

9y4−18y2+9
10y2 .

Hence,

9

10
|x− y|2 + [f(x) − 9

10
]|Tx− y|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2

=
18x4y2 + 10x2y4 + 16xy3 + y2 + 9x2 − 18x3y3 − 36x2y2

10x2y2
.

Observe that

18x4y2 + 10x2y4 + 16xy3 + y2 + 9x2 − 18x3y3 − 36x2y2

10x2y2
− x2 + y2 − 2xy

10x2y2

=
18x4y2 + 10x2y4 + 16xy3 + 8x2 + 2xy − 18x3y3 − 36x2y2

10x2y2
≥ 0,

for all x, y ∈ (1,∞).
Hence, we conclude that

(1− 9

10
)|Tx− Ty|2 ≤ 9

10
|x− y|2 + [f(x)− 9

10
]|Tx− y|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2, ∀x, y ∈ (1,∞)
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Case 3: If x ∈ (1,∞) and y ∈ [0, 1], then Tx = 1
x
, T y = −3y, f(x) = 1

10 and
g(x) = 9

10 . So that,

(1− 9
10 )|Tx−Ty|2 = 1+6xy+9x2y2

10x2 , 9
10 |x−y|2 = 9x2+9y2−18xy

10 , [f(x)− 9
10 ]|Tx−y|2 =

−8x2y2−8+16xy
10x2 , [g(x)− 9

10 ]|x−Ty|2 = 0, 9
10 |x−Tx|2 = 9x4−18x2+9

10x2 , 9
10 |y−Ty|2 =

144y2

10 . Hence,

9

10
|x− y|2 + [f(x)− 9

10
]|Tx− y|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2

=
18x4 + 145x2y2 + 16xy + 1− 18x3y − 18x2

10x2
.

Observe that
18x4+145x2y2+16xy+1−18x3y−18x2

10x2 − 1+6xy+9x2y2

10x2 = 18x4+136x2y2+10xy−18x3y−18x2

10x2 ≥ 0
for all x ∈ (1,∞) and y ∈ [0, 1]. Hence, we conclude that

(1− 9

10
)|Tx− Ty|2 ≤ 9

10
|x− y|2 + [f(x)− 9

10
]|Tx− y|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2 ∀x ∈ (1,∞), y ∈ [0, 1].

Case 4: If x ∈ [0, 1] and y ∈ (1,∞), then Tx = −3x, T y = 1
y
, f(x) = 9

10 and

g(x) = 1
10 . So that,

(1− 9
10 )|Tx−Ty|2 = 1+6xy+9x2y2

10y2 , 9
10 |x−y|2 = 9x2+9y2−18xy

10 , [f(x)− 9
10 ]|Tx−y|2 =

0, [g(x) − 9
10 ]|x − Ty|2 = −8x2y2−8+16xy

10y2 , 9
10 |x − Tx|2 = 144x2

10 , 9
10 |y − Ty|2 =

9y4−18y2+9
10y2 . Hence,

9

10
|x− y|2 + [f(x)− 9

10
]|y − Tx|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2

=
18y4 + 145x2y2 + 16xy + 1− 18xy3 − 18y2

10y2
.

By similar argument as in Case 3, we obtain that

(1− 9

10
)|Tx− Ty|2 ≤ 9

10
|x− y|2 + [f(x)− 9

10
]|Tx− y|2 + [g(x)− 9

10
]|x− Ty|2

+
9

10
|x− Tx|2 + 9

10
|y − Ty|2∀x ∈ [0, 1], y ∈ (1,∞).

Therefore, T is a generalized k-strictly pseudononspreading mapping with k = 9
10 .
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Proposition 3.5. The class of k-strictly pseudononspreading mappings and the
class of generalized nonspreading mappings are independent. That is, the class
of generalized nonspreading mappings is not a subclass of the class of k-strictly
pseudononspreading mappings, and the class of k-strictly pseudononspreading map-
pings is not a subclass of the class of generalized nonspreading mappings.

Proof:

First, we recall that the mapping defined in Example 3.3 is a generalized non-
spreading mapping but not a k-strictly pseudononspreading mapping. However, if
we consider the mapping T : [0, 1] → R defined by Tx = −3x. Then, T is k-strictly
pseudononspreading but not generalized nonspreading. To see that T is k-strictly
pseudononspreading, observe that
|Tx−Ty|2 = 9|x−y|2, |x−Tx−(y−Ty)|2 = 16|x−y|2 and 2〈x−Tx, y−Ty〉 = 32xy.
Thus,

|Tx− Ty|2 = |x− y|2 + 8|x− y|2

= |x− y|2 + 8

16
|x− Tx− (y − Ty)|2

≤ |x− y|2 + 1

2
|x− Tx− (y − Ty)|2 + 2〈x− Tx, y − Ty〉,

since 32xy ≥ 0 ∀x, y ∈ [0, 1].
But, if we take x = 0 and y = 1, by the same argument as in Example 3.4,

we obtain that T is not a generalized nonspreading mapping. Hence, our proof is
complete.

Remark 3.6. Observe that if T is (f, g)-generalized k-strictly pseudononspreading
with F (T ) 6= ∅ and f(p) 6= 0 ∀p ∈ F (T ), then for each p ∈ F (T ) and y ∈ D(T ), we
have

d2(p, T y) ≤ f(p)d2(p, y) + g(p)d2(p, T y) + kd2(y, T y),

which implies

(1 − g(p))d2(p, T y) ≤ f(p)d2(p, y) + kd2(y, T y).

Since f(p) + g(p) ≤ 1, we obtain

d2(p, T y) ≤ d2(p, y) +
k

f(p)
d2(y, T y). (3.2)

Proposition 3.7. Let C be a nonempty closed and convex subset of a Hadamard
space X and T : C → C be (f, g)-generalized k-strictly pseudononspreading map-
ping with k ∈ [0, 1), where f, g : C → [0, γ], γ < 1 and 0 < f(x) + g(x) ≤ 1 for all
x ∈ C. Suppose that F (T ) 6= ∅ and f(p) 6= 0, with k

f(p) ≤ β < 1 for each p ∈ F (T ),

then F (T ) is closed and convex.

Proof:

We first show that F (T ) is closed. Let {xn} be a sequence in F (T ) such that {xn}
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converges to x∗ ∈ C. Since T is (f, g)-generalized k-strictly pseudononspreading
mapping, then from (3.2), we obtain

d2(xn, T x
∗) ≤ d2(xn, x

∗) +
k

f(xn)
d2(x∗, T x∗)

≤
[

d(xn, x
∗) +

√

k

f(xn)
d(x∗, T x∗)

]2

.

Thus,

d(x∗, T x∗) ≤ d(x∗, xn) + d(xn, T x
∗)

≤ 2d(x∗, xn) +

√

k

f(xn)
d(x∗, T x∗)

≤ 2d(x∗, xn) +
√

βd(x∗, T x∗), (3.3)

which implies

1−
√

βd(x∗, T x∗) ≤ 2d(x∗, xn) → 0, as n → ∞.

Since
√
β < 1, it follows that d(x∗, T x∗) = 0. Therefore, x∗ ∈ F (T ).

Next, we show that F (T ) is convex. Let z = tx⊕ (1− t)y for each x, y ∈ F (T ) and
t ∈ [0, 1], then from
Lemma 2.2, Lemma 2.4 and (3.2), we obtain

d2(z, T z) = d2(tx ⊕ (1− t)y, T z)

≤ td2(x, T z) + (1− t)d2(y, T z)− t(1− t)d2(x, y)

≤ t

[

d2(x, z) +
k

f(x)
d2(z, T z)

]

+(1− t)

[

d2(y, z) +
k

f(y)
d2(z, T z)

]

− t(1− t)d2(x, y)

= t

[

(1− t)2d2(x, y) +
k

f(x)
d2(z, T z)

]

+(1− t)

[

t2d2(x, y) +
k

f(y)
d2(z, T z)

]

− t(1− t)d2(x, y)

=

(

t
k

f(x)
+ (1− t)

k

f(y)

)

d2(z, T z)

≤ Md2(z, T z),

where M := max
{

k
f(x) ,

k
f(y)

}

. Thus,

(1−M)d2(z, T z) ≤ 0.

Since M < 1, it follows that z ∈ F (T ), which completes our proof.
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Lemma 3.8. (Demiclosed Principle). Let C be a nonempty closed and convex
subset of a Hadamard space X and T : C → C be (f, g)-generalized k-strictly
pseudononspreading mapping with k ∈ [0, 1), where f, g : C → [0, γ], γ < 1 and

0 < f(x) + g(x) ≤ 1 for all x ∈ C. Suppose k <
1−f(x)

2 for all x ∈ C, and {xn} is
a bounded sequence in C such that ∆- lim

n→∞
xn = z and lim

n→∞
d(xn, T xn) = 0. Then

z ∈ F (T ).

Proof:

Since ∆- lim
n→∞

xn = z, we have from Lemma 2.7 that xn ⇀ z. Thus, by Lemma

2.6, we obtain that A({xn}) = {z}. Hence, since lim
n→∞

d(xn, T xn) = 0, we have

that Φ(z) := lim sup
n→∞

d2(xn, z) = lim sup
n→∞

d2(Txn, z), which implies that Φ(Tz) =

lim sup
n→∞

d2(xn, T z) = lim sup
n→∞

d2(Txn, T z). Now, since T is (f, g)-generalized k-

strictly pseudononspreading, we obtain

(1− k)d2(xn, T z) ≤ (1 − k) (d(xn, T xn) + d(Tz, Txn))
2

= (1 − k)d2(xn, T xn) + 2(1− k)d(xn, T xn)d(Tz, Txn)

+(1− k)d2(Tz, Txn)

≤ (1 − k)d2(xn, T xn) + 2(1− k)d(xn, T xn)d(Tz, Txn)

+kd2(z, xn) + [f(z)− k]d2(Tz, xn) + [g(z)− k]d2(z, Txn)

+kd2(z, T z) + kd2(xn, T xn)

≤ (1 − k)d2(xn, T xn) + 2(1− k)d(xn, T xn)d(Tz, Txn)

+kd2(z, xn) + [f(z)− k]d2(Tz, xn) + kd2(z, T z)

+kd2(xn, T xn) + [g(z)− k] (d(z, xn) + d(xn, T xn))
2

= (1 − k)d2(xn, T xn) + 2(1− k)d(xn, T xn)d(Tz, Txn)

+kd2(z, xn) + [f(z)− k]d2(Tz, xn)

+[g(z)− k]d2(z, xn) + 2[g(z)− k]d(z, xn)d(xn, T xn)

+[g(z)− k]d2(xn, T xn) + kd2(z, T z) + kd2(xn, T xn),

which implies

(1 − f(z))d2(xn, T z) ≤ d2(xn, T xn) + 2(1− k)d(xn, T xn)d(Tz, Txn)

+g(z)d2(z, xn) + 2[g(z)− k]d(z, xn)d(xn, T xn)

+[g(z)− k]d2(xn, T xn) + kd2(z, T z)

≤ g(z)d2(z, xn) + kd2(z, T z) + d2(xn, T xn)

+2M(1− k)d(xn, T xn) + 2M [g(z)− k]d(xn, T xn)

+[g(z)− k]d2(xn, T xn),

where M := supn≥1{d(xn, z), d(Txn, T z)}. Taking lim sup on both sides of the
inequality above, we obtain

lim sup
n→∞

(1− f(z))d2(xn, T z) ≤ lim sup
n→∞

[

g(z)d2(xn, z) + kd2(z, T z)
]

. (3.4)
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That is,

(1− f(z))Φ(Tz) ≤ g(z)Φ(z) + kd2(z, T z). (3.5)

Now, by letting t = 1
2 in Lemma 2.2 (ii), we obtain

d2
(

xn,
z ⊕ Tz

2

)

≤ 1

2
d2(xn, z) +

1

2
d2(xn, T z)−

1

4
d2(z, T z).

Taking lim sup on both sides of the inequality above and noting that A({xn}) =
{z}, we obtain

Φ(z) ≤ Φ

(

z ⊕ Tz

2

)

≤ 1

2
Φ(z) +

1

2
Φ(Tz)− 1

4
d2(z, T z).

That is,

d2(z, T z) ≤ 2Φ(Tz)− 2Φ(z). (3.6)

From (3.5) and (3.6), we obtain

d2(z, T z) ≤ 2g(z)

1− f(z)
Φ(z) +

2k

1− f(z)
d2(z, T z)− 2Φ(z),

which implies

1− f(z)− 2k

1− f(z)
d2(z, T z) ≤ 2(g(z) + f(z)− 1)

1− f(z)
Φ(z). (3.7)

Since g(z) + f(z) ≤ 1, we obtain from (3.7) that

(1− f(z)− 2k) d2(z, T z) ≤ 0.

Since k <
1−f(z)

2 , it follows that z ∈ F (T ). Hence, our proof is complete.

Theorem 3.9. Let C be a nonempty closed and convex subset of a Hadamard
space X and T be (f, g)-generalized k-strictly pseudononspreading mapping on C

with constant k ∈ [0, 1), where f, g : C → [0, γ], γ < 1 and 0 < f(x) + g(x) ≤ 1

for all x ∈ C. Suppose F (T ) 6= ∅ and k < min{f(x), 1−f(x)
2 } for each x ∈ C. Let

u, x1 ∈ C be arbitrary and the sequence {xn} be generated by

{

yn = (1 − tn)xn ⊕ tnu,

xn+1 = (1− αn)yn ⊕ αnTyn, n ≥ 1,
(3.8)

where {tn} and {αn} are sequences in [0, 1], satisfying the following conditions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,
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C3: 0 < a ≤ αn ≤ 1− k
f(p) for each p ∈ F (T ).

Then {xn} converges strongly to an element of F (T ).

Proof: Let p ∈ F (T ), then from (3.2), (3.8) and Lemma 2.2, we obtain

d2(p, xn+1) ≤ (1− αn)d
2(p, yn) + αnd

2(p, T yn)− αn(1− αn)d
2(yn, T yn)

≤ (1− αn)d
2(p, yn) + αn

[

d2(p, yn) +
k

f(p)
d2(yn, T yn)

]

−αn(1− αn)d
2(yn, T yn)

= d2(p, yn)− αn

[(

1− k

f(p)

)

− αn

]

d2(yn, T yn)

≤ d2(p, (1 − tn)xn ⊕ tnu) (3.9)

≤ (1− tn)d
2(p, xn) + tnd

2(p, u)

≤ max{d2(p, xn), d
2(p, u)}

...

≤ max{d2(p, x1), d
2(p, u)}.

Therefore, {d2(p, xn)} is bounded. Consequently, {xn} and {yn} are bounded.
Again, from (3.8), we obtain

lim
n→∞

d(xn, yn) ≤ lim
n→∞

tnd(xn, u) = 0. (3.10)

We divide our proof into two cases.
Case 1: Suppose that {d2(xn, p)} is monotonically non-increasing, then

lim
n→∞

{d2(p, xn)}

exists. Consequently,

lim
n→∞

[

d2(p, xn)− d2(p, xn+1)
]

= 0. (3.11)

Thus, from (3.9), we have

αn

[(

1− k

f(p)

)

− αn

]

d2(yn, T yn) ≤ d2(p, yn)− d2(p, xn+1)

≤ (1− tn)d
2(p, xn) + tnd

2(p, u)

−d2(p, xn+1)

= d2(p, xn)− d2(p, xn+1)

+tn
[

d2(p, u)− d2(p, xn)
]

→ 0,

as n → ∞. By condition C3, we obtain that

lim
n→∞

d2(yn, T yn) = 0. (3.12)
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Since {xn} is bounded and X is a Hadamard space, then from Lemma 2.5, there
exists a subsequence {xnk

} of {xn} such that ∆- lim
k→∞

xnk
= z. It follows from

(3.10) that there exists a subsequence {ynk
} of {yn} such that ∆- lim

k→∞
ynk

= z.

Thus, from (3.12) and Lemma 3.8, we obtain that z ∈ F (T ).
Furthermore, for arbitrary u ∈ X , we have from Lemma 2.8 that

lim sup
n→∞

〈−→zu,−−→zxn〉 ≤ 0, (3.13)

which implies from condition C1 that

lim sup
n→∞

(

tnd
2(z, u) + 2(1− tn)〈−→zu,−−→zxn〉

)

≤ 0. (3.14)

We now show that {xn} converges strongly to z. From (3.8) and Lemma 2.3, we
obtain

d2(z, xn+1) ≤ d2(z, (1− tn)xn ⊕ tnu)

≤ (1− tn)
2d2(z, xn) + t2nd

2(z, u) + 2tn(1 − tn)〈−−→zxn,
−→zu〉

≤ (1− tn)d
2(z, xn) + tn

(

tnd
2(z, u) + 2(1− tn)〈−−→zxn,

−→zu〉
)

.(3.15)

Hence, from (3.14) and Lemma 2.9, we conclude that {xn} converges strongly to
z.
Case 2: Suppose that {d2(xn, p)} is monotonically non-decreasing. Then, there
exists a subsequence {p, d2(xni

)} of {p, d2(xn)} such that d2(p, xni
) < d2(p, xni+1)

for all i ∈ N. Thus, by Lemma 2.10, there exists a nondecreasing sequence {mk} ⊂
N such that mk → ∞, and

d2(p, xmk
) ≤ d2(p, xmk+1) and d2(p, xk) ≤ d2(p, xmk+1) ∀k ∈ N. (3.16)

Thus, from (3.8) and (3.16), we obtain

0 ≤ lim
k→∞

(

d2(p, xmk+1)− d2(p, xmk
)
)

≤ lim sup
n→∞

(

d2(p, xn+1)− d2(p, xn)
)

≤ lim sup
n→∞

(

(1− tn)d
2(p, xn) + tnd

2(p, u)− d2(p, xn)
)

≤ lim sup
n→∞

[

tn
(

d2(p, u)− d2(p, xn)
)]

= 0,

which implies

lim
k→∞

(

d2(p, xmk+1)− d2(p, xmk
)
)

= 0. (3.17)

Following the same line of argument as in Case 1, we can show that

lim
k→∞

(

tmk
d2(z, u) + 2(1− tmk

)〈−→zu,−−−→zxmk
〉
)

≤ 0. (3.18)
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Also, from (3.15) we have

d2(z, xmk+1) ≤ (1− tmk
)d2(z, xmk

) + tmk

(

tmk
d2(z, u) + 2(1− tmk

)〈−→zu,−−−→zxmk
〉
)

.

Since d2(z, xmk
) ≤ d2(z, xmk+1), we obtain

d2(z, xmk
) ≤

(

tmk
d2(z, u) + 2(1− tmk

)〈−→zu,−−−→zxmk
〉
)

.

Thus, from (3.18) we get

lim
k→∞

d2(z, xmk
) = 0. (3.19)

It then follows from (3.16), (3.17) and (3.19) that lim
k→∞

d2(z, xk) = 0. Therefore,

we conclude from Case 1 and Case 2 that {xn} converges to z ∈ F (T ).
In view of Remark 3.2, we obtain the following corollaries.

Corollary 3.10. Let C be a nonempty closed and convex subset of a Hadamard
space X and T be a generalized nonspreading mapping on C with F (T ) 6= ∅. Let
u, x1 ∈ C be arbitrary and the sequence {xn} be generated by

{

yn = (1 − tn)xn ⊕ tnu,

xn+1 = (1− αn)yn ⊕ αnTyn, n ≥ 1,
(3.20)

where {tn} and {αn} are sequences in [0, 1], satisfying the following conditions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ αn ≤ b < 1.

Then {xn} converges strongly to an element of F (T ).

Corollary 3.11. Let C be a nonempty closed and convex subset of a Hadamard
space X and T be a k-strictly pseudononspreading mapping on C with F (T ) 6= ∅.
Let u, x1 ∈ C be arbitrary and the sequence {xn} be generated by

{

yn = (1 − tn)xn ⊕ tnu,

xn+1 = (1− αn)yn ⊕ αnTyn, n ≥ 1,
(3.21)

where {tn} and {αn} are sequences in [0, 1], satisfying the following conditions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ αn ≤ 1− k.
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Then {xn} converges strongly to an element of F (T ).

Theorem 3.12. Let C be a nonempty closed and convex subset of a Hadamard
space X. Let T be an L-Lipschitzian and (f, g)-generalized k-strictly pseudonon-
spreading mapping on C with constant k ∈ (0, 1), where f, g : C → [0, γ], γ < 1 and

0 < f(x) + g(x) ≤ 1 for all x ∈ C. Suppose F (T ) 6= ∅ and k < min{f(x), 1−f(x)
2 }

for each x ∈ C. Let u, x1 ∈ C be arbitrary and the sequence {xn} be generated by










un = (1− tn)xn ⊕ tnu,

yn = (1 − βn)un ⊕ βnTun,

xn+1 = (1− αn)un ⊕ αnTyn, n ≥ 1,

(3.22)

where {tn}, {βn} and {αn} are sequences in [0, 1], satisfying the following condi-
tions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ αn ≤ k
f(p)βn < βn ≤ b < 2

(1+ f(p)
k )+

√

(1+ f(p)
k )

2
+4L2

,

for each p ∈ F (T ).

Then {xn} converges strongly to an element of F (T ).

Proof: Let p ∈ F (T ), since T is L-Lipschitzian and generalized k-strictly pseudo-
nonspreading, we obtain from (3.2), (3.22) and Lemma 2.2 that

d2(p, T yn) ≤ d2(p, yn) +
k

f(p)
d2(yn, T yn)

= d2(p, (1− βn)un ⊕ βnTun) +
k

f(p)
d2((1 − βn)un ⊕ βnTun, T yn)

≤ (1 − βn)d
2(p, un) + βnd

2(p, Tun)− βn(1 − βn)d
2(un, T un)

+
k

f(p)
(1− βn)d

2(un, T yn) +
k

f(p)
L2β3

nd
2(un, T un)

− k

f(p)
βn(1 − βn)d

2(un, T un)

≤ (1 − βn)d
2(p, un) + βn

[

d2(p, un) +
k

f(p)
d2(un, T un)

]

−βn(1 − βn)d
2(un, T un) +

k

f(p)
(1 − βn)d

2(un, T yn)

+
k

f(p)
L2β3

nd
2(un, T un)−

k

f(p)
βn(1 − βn)d

2(un, T un)

= d2(p, un) +
k

f(p)
(1− βn)d

2(un, T yn)

−βn

[

(1− βn)(1 +
k

f(p)
)− k

f(p)

(

1 + L2β2
n

)

]

d2(un, T un). (3.23)
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Also, from (3.22), (3.23) and condition C3 , we obtain

d2(p, xn+1) ≤ (1− αn)d
2(p, un) + αnd

2(p, T yn)− αn(1 − αn)d
2(un, T yn)

≤ (1− αn)d
2(p, un) + αnd

2(p, un) +
k

f(p)
αn(1− βn)d

2(un, T yn)

−αnβn

[

(1 − βn)(1 +
k

f(p)
)− k

f(p)

(

1 + L2β2
n

)

]

d2(un, T un)

−αn(1− αn)d
2(un, T yn)

≤ d2(p, un)− αn

[

(1− k

f(p)
) + (

k

f(p)
βn − αn)

]

d2(un, T yn)

−αnβn

[

(1 − βn)(1 +
k

f(p)
)− k

f(p)

(

1 + L2β2
n

)

]

d2(un, T un)

≤ d2(p, un)

−αnβn

[

(1 − βn)(1 +
k

f(p)
)− k

f(p)

(

1 + L2β2
n

)

]

d2(un, T un)

≤ d2(p, (1 − tn)xn ⊕ tnu) (3.24)

≤ (1− tn)d
2(p, xn) + tnd

2(p, u)

≤ max{d2(p, xn), d
2(p, u)}

...

≤ max{d2(p, x1), d
2(p, u)}.

Therefore, {d2(p, xn)} is bounded. Consequently, {xn}, {un} and {yn} are all
bounded.
From (3.22) and condition C1, we have that

lim
n→∞

d(un, xn) ≤ lim
n→∞

tnd(u, xn) = 0. (3.25)

We now consider two cases for our proof.
Case 1: Suppose that {d2(p, xn)} is monotonically non-increasing, then

lim
n→∞

{d2(p, xn)}

exists. Hence,

lim
n→∞

[

d2(p, xn+1)− d2(p, xn)
]

= 0. (3.26)

Let Pn = αnβn

[

(1− βn)(1 +
k

f(p) )− k
f(p)

(

1 + L2β2
n

)

]

, then we obtain from (3.24)

that

Pnd
2(un, T un) ≤ d2(p, un)− d2(p, xn+1)

≤ (1− tn)d
2(p, xn) + tnd

2(p, u)− d2(p, xn+1)

= d2(p, xn)− d2(p, xn+1)

+ tn
[

d2(p, u)− d2(p, xn)
]

→ 0, as n → ∞. (3.27)
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From condition C3, we obtain that 2−b
(

1 + f(p)
k

)

> b

√

(

1 + f(p)
k

)2

+ 4L2. Which

implies that

2
k

f(p)
− b

(

1 +
k

f(p)

)

> b
k

f(p)

√

(

1 +
f(p)

k

)2

+ 4L2.

That is,

[

2
k

f(p)
− b

(

1 +
k

f(p)

)]2

> 4

(

k

f(p)

)2

b2L2 + b2
(

1 +
k

f(p)

)2

,

which after simplification yields

k

f(p)
− b

k

f(p)
− k

f(p)
b2L2 − b > 0.

Thus,

Pn = αnβn

[

(1− βn)(1 +
k

f(p)
)− k

f(p)

(

1 + L2β2
n

)

]

> a2
[

(1 +
k

f(p)
)− k

f(p)
− βn(1 +

k

f(p)
)− k

f(p)
L2β2

n

]

> a2
[

(1 +
k

f(p)
)− 1− b(1 +

k

f(p)
)− k

f(p)
L2b2

]

> 0.

Hence, we obtain from (3.27) that

lim
n→∞

d(un, T un) = 0. (3.28)

Since {xn} is bounded and X is a Hadamard space, then from Lemma 2.5, there
exists a subsequence {xnk

} of {xn} such that ∆- lim
k→∞

xnk
= z. It then follows from

(3.25), (3.28) and Lemma 3.8, that z ∈ F (T ).
Furthermore, for arbitrary u ∈ X , we have from Lemma 2.8 that

lim sup
n→∞

〈−→zu,−−→zxn〉 ≤ 0, (3.29)

which implies from condition C1 that

lim sup
n→∞

(

tnd
2(z, u) + 2(1− tn)〈−→zu,−−→zxn〉

)

≤ 0. (3.30)

Next, we show that {xn} converges strongly to z. From (3.24) and Lemma 2.3, we
obtain

d2(z, xn+1) ≤ d2(z, (1− tn)xn ⊕ tnu)

≤ (1− tn)
2d2(z, xn) + t2nd

2(z, u) + 2tn(1 − tn)〈−−→zxn,
−→zu〉

≤ (1− tn)d
2(z, xn) + tn

(

tnd
2(z, u) + 2(1− tn)〈−−→zxn,

−→zu〉
)

.(3.31)
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Hence, from (3.30) and Lemma 2.9, we obtain that {xn} converges strongly to z.
Case 2: Suppose that {d2(xn, p)} is monotonically non-decreasing. Then, there
exists a subsequence {p, d2(xni

)} of {p, d2(xn)} such that d2(p, xni
) < d2(p, xni+1)

for all i ∈ N. Thus, by Lemma 2.10, there exists a nondecreasing sequence {mk} ⊂
N such that mk → ∞, and

d2(p, xmk
) ≤ d2(p, xmk+1) and d2(p, xk) ≤ d2(p, xmk+1) ∀k ∈ N. (3.32)

Thus, from (3.24) and (3.32), we obtain

0 ≤ lim
k→∞

(

d2(p, xmk+1)− d2(p, xmk
)
)

≤ lim sup
n→∞

(

d2(p, xn+1)− d2(p, xn)
)

≤ lim sup
n→∞

(

(1− tn)d
2(p, xn) + tnd

2(p, u)− d2(p, xn)
)

≤ lim sup
n→∞

[

tn
(

d2(p, u)− d2(p, xn)
)]

= 0,

which implies

lim
k→∞

(

d2(p, xmk+1)− d2(p, xmk
)
)

= 0. (3.33)

Following the same line of argument as in Case 1, we can show that

lim
k→∞

(

tmk
d2(z, u) + 2(1− tmk

)〈−→zu,−−−→zxmk
〉
)

≤ 0. (3.34)

Also, from (3.31) we have

d2(z, xmk+1) ≤ (1− tmk
)d2(z, xmk

) + tmk

(

tmk
d2(z, u) + 2(1− tmk

)〈−→zu,−−−→zxmk
〉
)

.

Since d2(z, xmk
) ≤ d2(z, xmk+1), we obtain

d2(z, xmk
) ≤

(

tmk
d2(z, u) + 2(1− tmk

)〈−→zu,−−−→zxmk
〉
)

.

Thus, from (3.34) we get

lim
k→∞

d2(z, xmk
) = 0. (3.35)

It then follows from (3.32), (3.33) and (3.35) that lim
k→∞

d2(z, xk) = 0. Therefore,

we conclude from Case 1 and Case 2 that {xn} converges to z ∈ F (T ).
Also, by Remark 3.2, we obtain the following corollaries.

Corollary 3.13. Let C be a nonempty closed and convex subset of a Hadamard
space X and T be a generalized nonspreading mapping on C with F (T ) 6= ∅. Let
u, x1 ∈ C be arbitrary and the sequence {xn} be generated by











un = (1− tn)xn ⊕ tnu,

yn = (1 − βn)un ⊕ βnTun,

xn+1 = (1− αn)un ⊕ αnTyn, n ≥ 1,

(3.36)

where {tn}, {βn} and {αn} are sequences in [0, 1], satisfying the following condi-
tions:
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C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ αn ≤ b < 1 and 0 < a ≤ βn ≤ b < 1.

Then {xn} converges strongly to an element of F (T ).

Corollary 3.14. Let C be a nonempty closed and convex subset of a Hadamard
space X. Let T be an L-Lipschitzian and k-strictly pseudononspreading mapping
on C with constant k ∈ (0, 1). Suppose F (T ) 6= ∅ and for arbitrary u, x1 ∈ C, the
sequence {xn} be generated by











un = (1− tn)xn ⊕ tnu,

yn = (1 − βn)un ⊕ βnTun,

xn+1 = (1− αn)un ⊕ αnTyn, n ≥ 1,

(3.37)

where {tn}, {βn} and {αn} are sequences in [0, 1], satisfying the following condi-
tions:

C1: lim
n→∞

tn = 0,

C2:
∑∞

n=1 tn = ∞,

C3: 0 < a ≤ αn ≤ kβn < βn ≤ b < 2

( k+1
k )+

√

( k+1
k )2+4L2

.

Then {xn} converges strongly to an element of F (T ).
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13. P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and non-
strictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.

14. B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive map-
pings in CAT(0) spaces, Fixed Point Theory Appl., 2010, Article ID 268780, 2010, 14 pages.

15. E. Naraghirad, On an open question of Takahashi for nonspreading mappings in Banach
spaces, Fixed Point Theory Appl., 2013, 2013:228.

16. F.U Ogbuisi and O.T. Mewomo, Iterative solution of split variational inclusion problem in
real Banach space, Afr. Mat, 28 (2017), 295-309.

17. C.C. Okeke, A.U. Bello, C. Izuchukwu and O.T. Mewomo, Split equality for monotone in-
clusion problem and fixed point problem in real Banach spaces, Aust. J. Math. Anal. Appl,
14 (2)(2018), 1-20.

18. M. O. Osilike and F. O. Isiogugu, Weak and strong convergence theorems for nonspreading-
type mappings in Hilbert spaces, Nonlinear Anal., 74 (2011), 1814-1822.

19. W. Phuengrattana, On the generalized asymptotically nonspreading mappings in convex met-
ric spaces, Appl. Gen. Topol., 18(1) (2017), 117-129.

20. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15
(1990), 537-558.

21. H. K. Xu, Iterative algorithms for nonlinear operators, J. London. Math. Soc., 2 (2002),
240-256.

Godwin Chidi Ugwunnadi,
University of Eswatini,
Private Bag Kwaluseni,
Eswatini.
E-mail address: ugwunnadi4u@yahoo.com

and

Chinedu Izuchukwu,
School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal,
Durban, South Africa.
E-mail address: izuchukwuc@ukzn.ac.za, izuchukwu c@yahoo.com

and

Oluwatosin Temitope Mewomo,
School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal,
Durban, South Africa.
E-mail address: mewomoo@ukzn.ac.za


	Introduction
	Preliminaries
	Main Results

