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Extremal Number of Theta Graphs of Order 7

M.M.M. Jaradat∗, M.S. Bataineh, A.A. Al-Rhayyel, and Zead Mustafa

abstract: For a set of graphs F, let H(n;F) denote the class of non-bipartite
Hamiltonian graphs on n vertices that does not contain any graph of F as a subgraph
and h(n;F) = max{E(G) : G ∈ H(n;F)} where E(G) is the number of edges in G.
In this paper we determine h(n; {θ4, θ5, θ7}) and h(n; θ7) for sufficiently odd large
n. Our result confirms the conjecture made in [1] for k = 3.
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1. Introduction and preliminaries

For our purposes a graph G is finite, undirected and has no loops or multiple
edges. We denote the vertex set of G by V (G) and the edge set of G by E(G).
The cardinalities of these sets are denoted by v(G) and E(G), respectively. The
cycle on n vertices is denoted by Cn. A theta graph θn is defined to be a cycle Cn

to which we add a new edge that joins two non-adjacent vertices. The neighbor set
of a vertex u of G in a subgraph H of G, denoted by NH(u), consists of the vertices
of H adjacent to u. The joint G1 ∨G2 of two vertex disjoint graphs G1 and G2 is
the graph whose vertex set V (G1)∪V (G2) and edge set consists of E(G1)∪E(G2)
together with all the edges joining V (G1) and V (G2). For vertex disjoint subgraphs
H1 and H2 of G, we let E(H1, H2) = {xy ∈ E(G) : x ∈ V (H1), y ∈ V (H2)} and
E(H1, H2) = |E(H1, H2)| .

For a proper subgraph H of G we write G[V (H)] and G−V (H) simply as G[H ]
and G − H , respectively (G[V (H)] is the induced subgraph). In this paper, we
consider the Turán-type extremal problem with the θ-graph being the forbidden
subgraph. Since a bipartite graph contains no odd θ-graph, we consider non-
bipartite graphs. First, we recall some notation and terminology. For a positive
integer n and a set of graphs F, let G(n;F) (and H(n;F)) denote the class of
non-bipartite F-free graphs (class of non-bipartite Hamiltonian F-free graphs) on
n vertices, and

f(n;F) = max{E(G) : G ∈ G(n;F)},

h(n;F) = max{E(G) : G ∈ H(n;F)}.
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An important problem in extremal graph theory is that of determining the
values of the functions f(n;F) and h(n;F). Further, characterize the extremal
graphs of G(n;F) and H(n;F) where f(n;F) and h(n;F) are attained. For a given
Cr , the edge maximal graphs of G(n;Cr) have been studied by a number of authors
see [6], [7], [8] and [10]. Bondy [5] proved that a Hamiltonian graphG on n vertices
without a cycle of length r has at most 1

2n
2 edges with equality holding if and only

if n is even and r is odd.
Höggkvist, Faudree and Schelp [9] proved that f(n;Cr) ≤

⌊

(n−1)2

4

⌋

+ 1 for all

r. This result is sharp only for r = 3. Jia [12] proved that for n ≥ 9, f(n;C5) ≤
⌊

(n−2)2

4

⌋

+ 3 and he characterized the extremal graphs as well. In the same work,

Jia conjectured that f(n;C2k+1) ≤
⌊

(n−2)2

4

⌋

+ 3 for n ≥ 4k + 2. Bataineh [1]

confirmed positively the above conjecture for n ≥ 36k. Further, he showed that
equality holds if and only if G ∈ G∗(n) where G∗(n) is the class of graphs obtained
by adding a triangle, two vertices of which are new, to the complete bipartite graph
K⌊(n−2)/2⌋,⌈(n−2)/2⌉. Also, he proved the following result:

Theorem 1.1. (Bataineh [1]) For positive integers k ≥ and n > (4k + 2)(4k2 +
10k),

h(n;C2k+1) =

{

(n−2k+1)2

4 + 4k − 3, if n is odd
(n−2k)2

4 + 4k + 1, if n is even.

For θ5-graph, Bataineh et al [2] proved that for n ≥ 5

f(n; θ5) =

⌊

(n− 1)2

4

⌋

+ 1.

Later on, Bataineh et al [3], [4] and Jaradat et al [11] proved the following
results

Theorem 1.2. (Jaradat et al [11]) For positive integers n and k, let G be a graph
on n ≥ 6k + 3 vertices which contains no θ2k+1 as a subgraph, then

E(G) ≤

⌊

n2

4

⌋

.

Theorem 1.3. (Jaradat et al [11] and Bataineh et al [4]) For sufficiently large
integer n and for k ≥ 3,

f(n; θ2k+1) =

⌊

(n− 2)2

4

⌋

+ 3.

Caccetta and Jia [7] constructed the following class of graphs: The building
blocks of this class are the path P = u1u2 . . . u2k and the complete bipartite graph
B = K⌈ 1

2
(n−2k)⌉,⌊ 1

2
(n−2k)⌋. For 1 ≤ a ≤ ⌈ 1

2 (n − 2k)⌉ − 1, we let B(n, k, a) denote
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the class of graphs obtained by partitioning the ⌈ 1
2 (n − 2k)⌉ vertices of the larger

bipartitioning set of B into two sets V1 and V2 with |V1| = a and then joining
each vertex of V1 to u1 and each vertex of V2 to u2k. Observe that for a graph
G ∈ B(n, k, a)

E(G) = ⌊
1

4
(n− 2k + 1)2⌋+ 2k − 1.

Further, G ∈ G(n;C3, C5, . . . , C2k+1). Caccetta and Jia [7] proved the following
results:

Theorem 1.4. (Caccetta and Jia [7] ) Let G ∈ G(n;C3, C5, . . . , C2k+1). Then

E(G) ≤ ⌊
1

4
(n− 2k + 1)2⌋+ 2k − 1,

with equality possible if and only if G ∈ B(n, k, a).

Theorem 1.5. (Caccetta and Jia [7]) Let Fk = {C3, C5, C7, . . . , C2k+1}. For even
n ≥ 4k + 4, k ≥ 2, we have

h(n;Fk) =
(n− 4k − 4)2

4
+ 8k − 11.

Analoguely, In [1], Bataineh proved the following result concerning theta graphs:

Theorem 1.6. (Bataineh [1])) Let Θk = {θ4}∪{θ5, θ7, . . . , θ2k+1}, then for k ≥ 5
and large odd n, we have

h(n; Θk) =
(n− 2k + 3)2

4
+ 2k − 3.

Bataineh [1] made the following conjecture

Conjecture 1. Let k ≥ 3 be a positive integer. For odd n ≥ 4k+4, h(n; θ2k+1) ≤
(n−2k+3)2

4 + 2k − 3.

In this work, we prove the above conjecture for k = 3. In fact, we present exact
values of h(n;F) for sufficiently large odd n for F = {θ4, θ5, θ7} and F = {θ7}.

2. Main results

We start this section by the following lemmas which will play a crucial role in
proving our main results.

Lemma 2.1. Let H ∈ H(n, {θ4, θ5, θ7}) and H contains a cycle C of length 7. If
u ∈ V (H −C), then E(u,C) ≤ 3. Moreover, if B = {u ∈ V (H −C) : E(u,C) = 3},
then |B| ≤ 1.
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Proof: Let C = x1x2x3 . . . x7x1 be a cycle of length 7. Since H contains no θ7 as a
subgraph, soH [C] = C and so E(H [C]) = 7. If u ∈ V (G−H) such that E(u,C) = 4,
then with out loss of generality one can easily check that NC(u) = {x1, x2, x3, x4}
or NC(u) = {x1, x2, x3, x5} or NC(u) = {x1, x2, x4, x5} or NC(u) = {x1, x2, x4, x6}
and each one of which produces a θ7 as a subgraph in H . Thus, we conclude
that E(u,C) ≤ 3 with equality holds only if NC(u) = {xi, xi+1, xi+4} for some
i = 1, 2, . . . , 7 (xj = xj−7 for j > 7). Suppose that |B| ≥ 2. Let x, y ∈ B with
x 6= y. Without loss of generality, we may assume that NC(x) = {x1, x2, x5}. If
xy ∈ E(H) and y is adjacent to x1, then the trail xyx1x2xx1 would form a θ4 as a
subgraph in H , a contradiction. Similarly, one can show that y cannot be adjacent
to x2, x4, x5 or x6 as otherwise a θ4 or a θ7 is produced as a subgraph. Thus,
we assume that xy /∈ E(H). If NC(x) ∩ NC(y) = ∅, then NC(y) = {x3, x4, x7}
or {x3, x6, x7}. If NC(y) = {x3, x4, x7}, then the trail xx5x4yx7x1x2xx1 forms a
θ7 as a subgraph. Also if NC(y) = {x3, x6, x7}, then the trail xx5x6yx7x1x2xx1

forms a θ7 as a subgraph. Therefore, NC(x) ∩ NC(y) 6= ∅. We now consider the
case that x1 ∈ NC(y) ∩ NC(x). If y is adjacent to x2, then the trail x1xx2yx1x2

forms a θ4 as a subgraph, a contradiction. Similarly we can show that y cannot be
adjacent to x3, x5 or x7 as otherwise a θ7 is produced as a subgraph. Thus y is
adjacent to x4 and x6, but the trial yx6x5x4x3x2x1yx4 forms a θ7 as a subgraph,
a contradiction. By using the same argument as a above one can show that if x2

or x5 belongs to NC(y) ∩ NC(x), then we get the same contradiction. Therefore,
|B| ≤ 1. This completes the proof. ✷

Lemma 2.2. Let H ∈ H(n, {θ4, θ5, θ7}) and H contains a cycle C of length 7. If
|B| = 1 and uv is an edge in the subgraph H −C −B, then E({u, v}, C) ≤ 3 where
B is as defined in Lemma 2.1.

Proof: Let uv be an edge in H−C−B. Then by Lemma 2.1., E(u,C),E(v, C) ≤ 2.
Now we shall prove by contradiction that the case E(u,C) = E(v, C) = 2 is impos-
sible. Suppose E(u,C) = E(v, C) = 2, then one can see that each of NC(u) and
NC(v) is of the form {xi, xi+2} or {xi, xi+3} or {xi, xi+4} as otherwise at least one
of θ4, θ5, and θ7 is produced as a subgraph. Let B = {x} and with out loss of gen-
erality assume x is adjacent to x1, x2 and x5. Note that if NC(u) or NC(v) is of the
form {xi, xi+2}, then the only possibilities for that are {x2, x4}, {x3, x5}, {x5, x7}
and {x1, x6} as otherwise at least one of θ4, θ5 and θ7 is produced as a subgraph.
Further, if NC(u) or NC(v) is of the form {xi, xi+3} or {xi, xi+4}, then the only
possibilities for that are {x1, x4}, {x2, x6} and {x3, x7} as otherwise at least one of
θ4, θ5 and θ7 is produced as a subgraph. Note that, |NC(u) ∩NC(v)| = 0 or 1 as
otherwise a θ4 is produced as a subgraph. To this end we consider two cases:
Case 1: |NC(u) ∩NC(v)| = 0. Then, without loss of generality, we list all the
possibilities as follows:

1) NC(u) = {x2, x4} and NC(v) = {x3, x5}. Then the trail uvx3x4x5xx2ux4 is
a θ7 subgraph, a contradiction.

2) NC(u) = {x2, x4} and NC(v) = {x5, x7}. Then the trail ux4x3x2xx5vux2 is
a θ7 subgraph, a contradiction.
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3) NC(u) = {x2, x4} and NC(v) = {x1, x4} or {x1, x6}. Then the trail
x2xx1vux2x1 is a θ5 subgraph, a contradiction.

4) NC(u) = {x2, x4} and NC(v) = {x2, x6}. Then the trail ux4x3x2vux2 is a
θ5 subgraph, a contradiction.

5) NC(u) = {x2, x4} and NC(v) = {x3, x7}. Then the trail x3vux2xx5x4x3x2

is a θ7 subgraph, a contradiction.

6) NC(u) = {x3, x5} and NC(v) = {x1, x6} or {x2, x6}. Then the trail
x5x6vux3x2xx5u is a θ7 subgraph, a contradiction.

7) NC(u) = {x3, x5} and NC(v) = {x1, x4}. Then the trail x3x2xx5uvxx4x3u
is a θ7 subgraph, a contradiction.

8) NC(u) = {x5, x7} and NC(v) = {x6, x1}. Then by symmetry we get the
same contradiction as in (1).

9) NC(u) = {x5, x7} and NC(v) = {x1, x4}. Then the trail ux7x1xx5x4vux5 is
a θ7 subgraph, a contradiction.

10) NC(u) = {x5, x7} and NC(v) = {x2, x6}. Then the trail x1xx2vux1x2 is a
θ5 subgraph, a contradiction.

11) NC(u) = {x1, x6} and NC(v) = {x3, x7}. Then the trail x1x7x6uvx3x2x1u
is a θ7 subgraph, a contradiction.

12) NC(u) = {x1, x4} and NC(v) = {x2, x6}. Then the trail x1xx2uvx1x2 is a
θ5 subgraph, a contradiction.

13) NC(u) = {x1, x4} and NC(v) = {x3, x7}. Then the trail uvx1xx5x4x3vx3

is a θ7 subgraph, a contradiction.

14) NC(u) = {x2, x6} and NC(v) = {x3, x7}. Then the trail uvx7x1xx5x6uv is
a θ7 subgraph, a contradiction.

Case 2: |NC(u) ∩NC(v)| = 1. Then, without loss of generality, we list all of the
possibilities as follows:

1) NC(u) = {x1, x6} and NC(v) = {x1, x4}. Then the trail uvx1x7x6x5x4vx1

is a θ7 subgraph, a contradiction.

2) NC(u) = {x2, x4} and NC(v) = {x2, x6}. Then the trail x2x3x4uvx2u is a
θ5 subgraph, a contradiction.

3) NC(u) = {x3, x5} and NC(v) = {x3, x7}. Then the trail ux3x4x5x6x7vux5

is a θ7 subgraph, a contradiction.

4) NC(u) = {x1, x4} and NC(v) = {x2, x4}. Then the trail ux1xx2x3x4vux4 is
a θ7 subgraph, a contradiction.

5) NC(u) = {x3, x5} and NC(v) = {x5, x7}. Then the trail x5x6x7vux5v is a
θ5 subgraph, a contradiction.

6) NC(u) = {x1, x6} and NC(v) = {x2, x6}. Then the trail x6vux1x7x6u is a
θ5 subgraph, a contradiction.

7) NC(u) = {x3, x7} and NC(v) = {x5, x7}. Then the trail x7uvx5x6x7v is a
θ5 subgraph, a contradiction. ✷

The following remark follows from the fact that if H ∈ H(n, {θ4, θ5, θ7}), C
is a cycle of length 7 in H , u ∈ V (H − C) and E(u,C) = 3, then NC(u) =
{xi, xi+1, xi+4}.
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Remark 2.3. For H ∈ H(n, {C3, θ4, θ5, θ7}), if H contains a cycle C of length 7,
then B = ∅ where B is as defined in Lemma 2.1.

We now establish the following result which will be used in the rest of this
section. We begin with the following construction. For odd n, let H1 be the class of
graphs obtained fromK n−3

2

∨K n−3

2

by replacing one edge, say y1y2 ∈ K n−3

2

∨K n−3

2

,

by the path y1w2w3w4y2 with the vertices w2, w3, w4, being all new vertices. Note
that H1 is a class of non-bipartite Hamiltonian graphs containing none of θ4, θ5

and θ7 as a subgraphs. Also E(H) =
⌊

(n−3)2

4

⌋

+ 3 for any H ∈ H1. Thus

h(n; {θ4, θ5, θ7}) ≥
(n− 3)2

4
+ 3 for odd n. (2.1)

Theorem 2.4. For sufficiently large odd n, we have

h(n; {θ4, θ5, θ7}) =
(n− 3)2

4
+ 3.

Proof: Let H ∈ H(n, {θ4, θ5, θ7}). By 2.1 it is enough to show that E(H) ≤
(n−3)2

4 + 3. If H contains no cycle of length 7, then by Theorem 1.1, we have

E(H) ≤
(n− 5)2

4
+ 9 ≤

(n− 3)2

4
+ 3,

for sufficiently large odd n, as required. Suppose H contains a cycle C of length 7.
Define the set B = {u ∈ V (H−C) : E(u,C) = 3}. Then from Lemma 2.1, |B| ≤ 1.
If |B| = 0, then again from Lemma 2.1 E(u,C) ≤ 2 for all u ∈ V (H − C) and so
E(H−C,C) ≤ 2(n−7). Now, suppose |B| = 1. Since H is Hamiltonian, the graph
H−C−B must have an edge uv. By Lemma 2.2, we obtain E({u, v}, C) ≤ 3, thus

E(H − C,C) = E(H −B − {u, v}, C) + E(B,C) + E({u, v}, C)

≤ 2(n− 10) + 3 + 3 = 2(n− 7).

By Theorem 1.2, we have

E(H − C) ≤
(n− 7)2

4
.

Therefore

E(H) = E(H − C) + E(H − C,C) + E(C)

≤
(n− 7)2

4
+ 2(n− 7) + 7

=
(n− 3)2

4
+ 3.

This completes the proof. ✷
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We now determine h(n; θ7) for sufficiently large odd n. Note that the class
H1 consists of non-bipartite Hamiltonian graphs containing no θ7 as a subgraph.

Further, E(H) = (n−3)2

4 + 3 for any H ∈ H1. Thus we establish that

h(n; θ7) ≥
(n− 3)2

4
+ 3 (2.2)

for sufficiently large odd n.

Theorem 2.5. For sufficiently large odd n, let H ∈ H(n; θ7) with δ(H) ≥ 20.
Then

E(H) ≤
(n− 3)2

4
+ 3.

Proof: To prove the theorem, we split the proof into two cases, according to the
existence of θ5 in H as a subgraph:
Case 1: H contains θ5 as a subgraph, namely let x1x2x3x4x5x1x4 be a θ5-graph
in H . Since δ(H) ≥ 20, we can define the sets Ai for i = 1, 2, 3, that consist of
5 neighbors of xi in H − {x1, x2, x3, x4, x5} so that Ai ∩ Aj = ∅ for i 6= j. Let
T = H [x1, x2, x3, x4, x5, A1, A2, A3] and B = H−T . Let u ∈ V (B), if u is adjacent
to a vertex in one of the sets A1, A2 or A3, then u cannot be adjacent to a vertex
in the other two sets, as otherwise H would have a θ7-graph as a subgraph. Also,
if u is adjacent to a vertex in Ai for some i = 1, 2, 3, then u cannot be adjacent to
any of xi+1 and xi−1, as otherwise H would have a θ7-graph as a subgraph. Thus,

E(u, T ) ≤ 8,

which implies that
E(B, T ) ≤ 8(n− 20).

Also, by Theorem 1.2, we have

E(B) ≤

⌊

(n− 20)2

4

⌋

and E(T ) ≤

⌊

(20)2

4

⌋

.

Consequently

E(H) = E(B) + E(B, T ) + E(T )

≤
(n− 20)2

4
+ 8(n− 20) +

(20)2

4

≤
n2 − 8n+ 160

4

=
(n− 4)2

4
+ 36

<
(n− 3)2

4
+ 3,

for sufficiently large odd n, as required.
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Case 2: H contains no θ5-graph as a subgraph. If H contains no θ4 as a subgraph,
then the result is immediate from Theorem 2.4. So, assume H contains a θ4-graph,
namely let x1x2x3x4x1x3 be a θ4-graph in H . Since δ(H) ≥ 20, we can define the
sets Ai (i = 1, 2, 4) that consist of 5 neighbors of xi in H −{x1x2x3x4} selected so
that Ai ∩ Aj = ∅ for i 6= j. Let T = H [x1, x2, x3, x4, A1, A2, A4] and B = H − T .
Then, the rest of the proof is rather similar to that of Case 1. ✷

Now we are ready to establish our main result. In the following theorem we
determine h(n; θ7) for odd large n and δ(H) ≥ 7.

Theorem 2.6. For sufficiently large odd n, let H ∈ H(n; θ7) with δ(H) ≥ 7. Then

E(H) ≤
(n− 3)2

4
+ 3.

Proof: Let H ∈ H(n; θ7) with δ(H) ≥ 7. Let A be the set of vertices in H with
degree less than or equal to 19. Let |A| = m. Observe that,

E(H −A,A) + E(A) ≤ 19m.

By Theorem 1.2,

E(H) = E(H −A) + E(H −A,A) + E(A)

≤

⌊

(n−m)2

4

⌋

+ 19m.

If m ≥ 4, then by remembering that n is sufficiently large, we have that the right
hand side of the last inequality is maximum when m = 4. Thus,

E(H) ≤

⌊

(n− 4)2

4

⌋

+ 76

<

⌊

(n− 3)2

4

⌋

+ 3.

If m = 0, then by Theorem 2.5, we have

E(H) ≤

⌊

(n− 3)2

4

⌋

+ 3,

as required. Now, for m = 1, 2, 3, we consider two cases according to the graph
H −A.
Case 1: If H −A is a non-bipartite graph. Then Theorem 1.3 implies that

E(H −A) ≤

⌊

(n−m− 2)2

4

⌋

+ 3.
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And so,

E(H) = E(H −A) + E(H −A,A) + E(A)

≤

⌊

(n−m− 2)2

4

⌋

+ 3 + 19m.

For m = 2 and m = 3, the above inequality has it is maximum at m = 2, so

E(H) ≤

⌊

(n− 4)2

4

⌋

+ 41

<

⌊

(n− 3)2

4

⌋

+ 3,

for odd large n, as required. Therefore, we now consider only the case when m = 1.
Assume A = {x0}, then according to the existance of θ4 and θ5 in H , we consider
the following three cases:
Subcase 1.1: H contains niether θ5-graph as a subgraph nor θ4-graph as subgraph.
Then as a above, the result follows from Theorem 2.4.
Subcase 1.2: H contains θ5-graph as a subgraph. Assume x0 /∈ V (θ5) and let
x1x2x3x4x5x1x4 be a θ5-graph. Consider the same construction as in Case 1 of
Theorem 2.5 and define R = H −A− T , then we have

E(R, T ) ≤ 8(n− 21).

Observe that E(R,A) + E(T,A) + E(A) ≤ 19. Also, by Theorem 1.2 we have

E(R) ≤
(n− 21)2

4
and E(T ) ≤

(20)2

4
.

Consequently

E(H) = E(R) + E(R, T ) + E(T ) + E(R,A) + E(T,A) + E(A)

≤
(n− 21)2

4
+ 8(n− 21) +

(20)2

4
+ 19

≤
n2 − 10n+ 245

4

=
(n− 5)2

4
+ 55

<
(n− 3)2

4
+ 3,

for odd large n, as required.
Now we consider x0 ∈ V (θ5). Assume that x0 = x5 that is x1x2x3x4x0x1x4 be a
θ5-graph in H . Let T = H [x1, x2, x3, x4, x0, A1, A2, A3] and R = H − T where Ai

is as defined in Theorem2.5, then as in Case 1 of Theorem 2.5, E(x, T ) ≤ 8 for each
x ∈ R, and so

E(R, T ) ≤ 8(n− 20).
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Also, by Theorem 1.2 we get

E(R) ≤
(n− 20)2

4
and E(T ) ≤

(20)2

4
.

As a consequence

E(H) = E(R) + E(R, T ) + E(T )

≤
(n− 20)2

4
+ 8(n− 20) +

(20)2

4

≤
n2 − 8n+ 144

4

=
(n− 4)2

4
+ 36

<
(n− 3)2

4
+ 3.

Similarly, if x0 = x1 or x2 or x3 or x4 in θ5, then we can choose i′s so that Ai′s

satisfied the required properties as in above and then word by word we use the
above technique.
Subcase 1.3: H contains no θ5-graph as a subgraph but it contains θ4-graph as
a subgraph. Assume that x0 /∈ V (θ4). By Consideing the same construction as in
Theorem 2.5 and define R = H −A− T , we obtain that

E(R, T ) ≤ 6(n− 17).

Recall that E(R,A) + E(T,A) + E(A) ≤ 19. Also, by Theorem 1.2 we have

E(R) ≤
(n− 17)2

4
and E(T ) ≤

(16)2

4
.

Therefore,

E(H) = E(R) + E(R, T ) + E(T ) + E(R,A) + E(T,A) + E(A)

≤
(n− 17)2

4
+ 6(n− 17) +

(16)2

4
+ 19

≤
n2 − 10n+ 213

4

=
(n− 5)2

4
+ 47

<
(n− 3)2

4
+ 3,

for odd large n as required.
Now, we consider x0 ∈ V (θ4), then assume that x0 = x4 that is x1x2x3x0x1x3

forms θ4-graph is in H . Since δ(H) ≥ 7, so for i = 0, 1, 2, let Ai be the set that
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consist of 4 neighbors of xi in H selected so that Ai ∩ Aj = ∅ for i 6= j. Let
T = H [x0, x1, x2, x3, A0, A1, A2] and R = H − T . Observe that

E(R, T ) ≤ 6(n− 16).

Also, by Theorem 1.2, we have

E(R) ≤

⌊

(n− 16)2

4

⌋

and E(T ) ≤

⌊

(16)2

4

⌋

.

Consequently

E(H) = E(R) + E(R, T ) + E(T )

≤

⌊

(n− 4)2

4

⌋

+ 28

<
(n− 3)2

4
+ 3,

for odd large n as required. Similarly, we can do the same construction and get
the same result if x0 = x1 or x2 or x3.
Case 2: H − A is a bipartite graph with the partitioning sets X and Y . Recall
that A is the set of vertices in H with degree less than or equal to 19 and we have
proved the theorem for the case when m ≥ 4 or m = 0 where |A| = m. Sine H
is a non-bipartite graph, then it contains an odd cycle, in fact any odd cycle in
H must involve vertices of A. If H contains no cycles of length 3 and 5, then the
result follows from Theorem 1.5. So, we have to study two cases according to the
length of the odd cycles in H .
Subcase 2.1: H contains an odd cycle of length 5. Let C = x1x2x3x4x5x1 be
a cycle of length 5 with minimum vertices of A and n1, n2 be the cardinalities of
X − V (C)−A, Y − V (C)−A, respectively. According to the possibilities of m we
consider the following three cases:
Subsubcase 2.1.1. m = 1. Let A = {x5} and x1, x2, x3, x4 ∈ H − A. Observe
that, NH−C(xi) ∩NH−C(xi+1) = ∅ for i = 1, 2, 3, 4, otherwise H −A would have
an odd cycle of length 3. Also, E(NH−C(xi), NH−C(xi+1)) = ∅ for i = 1 and 3,
otherwise H would have a θ7-graph as subgraph of H . Let |NH−C(xi)| = ki, for
i = 1, ..., 4. Note that H − C is a bipartite graph with the above observations, we
have

E(H − C) ≤ n1n2 − k1k2 − k3k4,

where n1 + n2 = n− 5. Now

E(H) = E(H − C) + E(H − C,C) + E(C)

≤ n1n2 − k1k2 − k3k4 + k1 + k2 + k3 + k4 + 27.

Note that ki ≥ 18 and the right hand side of the above inequality is maximum
when ki = 18 and n1 = n2 = n−5

2 , thus

E(H) ≤
(n− 5)2

4
− 549 <

(n− 3)2

4
+ 3,
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as required.
Subsubcase 2.1.2. m = 2. It is easy to see that there is an edge of C non of its
end points in A, say x1, x2 /∈ A. Then by the same argument as above we have
NH−C(x1) ∩ NH−C(x2) = ∅ and E(NH−C(x1), NH−C(x2)) = ∅. If A ⊆ V (C),
then H − C

′

is a bipartite graph with the above observations, we have

E(H − C) ≤ n1n2 − k1k2,

where NH−C(x2)| = k1 and |NH−C(x4)| = k2. Thus,

E(H) = E(H − C) + E(H − C,C) + E(C)

≤ n1n2 − k1k2 + k1 + k2 +max{n1, n2}+ 44.

Recall that n1 + n2 = n − 5 and the right hand side of the above inequality is
maximum when n1 = n2 = n−5

2 . Thus

E(H) ≤
(n− 4)2

4
− k1k2 + k1 + k2 + 43.

Note that ki ≥ 18 and the right hand side of the above is maximum when ki = 18,
thus

E(H) ≤
(n− 4)2

4
− 245 <

(n− 3)2

4
+ 3,

as required.
If A * V (C), then C contains only one vertex of A, say x5. As in Subsubcase 2.1.1
we have NH−C(xi) ∩NH−C(xi+1) = ∅ for i = 1, 2, 3, 4 and

E(NH−C(xi), NH−C(xi+1)) = ∅

for i = 1, 3. Note thatH−C−{x5} is a bipartite graph with the above observations,
we have

E(H − C − x5) ≤ n1n2 − k1k2 − k3k4.

where ki = |NH−C−x5
(xi)|. Thus,

E(H) = E(H − C − x5) + E(H − C − x5, C) + E(C) + E(x5)

+E(H − C − x5, x5) + E(C, x5)

≤ n1n2 − k1k2 − k3k4 + k1 + k2 + k3 + k4 + 44

Recall that n1+n2 = n− 6 and the right hand side of the above is maximum when
n1 = n2 = n−6

2 . Thus,

E(H) ≤
(n− 6)2

4
− k1k2 − k3k4 + k1 + k2 + k3 + k4 + 46.

Note that ki ≥ 18. The right hand side of the above is maximum when ki = 18,
thus

E(H) ≤
(n− 6)2

4
− 622 <

(n− 3)2

4
+ 3,
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as required.
Subsubcase 2.1.3. m = 3. If C has an edge none of its end points belongs to A,
then by applying a similar argument as above, we get the result. So, without loss
of generality, assume that x1, x3, x5 are in A and x2, x4 are in H−A. Observe that
NH−C(x2) ∩NH−C(x4) = ∅ and E(NH−C(x2), NH−C(x4)) = ∅, otherwise a new
cycle of length 5 with minimum vertices of A is produced. If x2 and x4 are not in
the same partition of the bipartite graph H −A, then the result holds as above. If
x2 and x4 are in the same partition, then

E(H) = E(H − C) + E(H − C,C) + E(C)

≤ n1n2 + k1 + k2 + 61,

where |NH−C(x2)| = k1, |NH−C(x4)| = k2and n1+n2 = n−5. Note that k1+k2 ≤
max{n1, n2}. Thus

E(H) ≤ n1n2 +max{n1, n2}+ 61 <
(n− 3)2

4
+ 3,

as required.
Subcase 2.2: H contains no cycle of length 5 but it contains cycles of length 3.
Let C = x1x2x3 be a cycle of length 3 with minimum vertices of A. As above we
consider three cases according to the value of m.
Subsubcase 2.2.1. m = 1. Let x1, x2 ∈ H − A and x3 ∈ A. Then, NH−C(x1) ∩
NH−C(x2) = ∅ as otherwise H −A would have an odd cycle. Also E(NH−C(x1),
NH−C(x2)) = ∅, as otherwise H would have a cycle of length 5. Using the same
arguments as above, we get the result.
Subsubcase 2.2.2. m = 2. If only one vertex of A belongs to V (C), then
we use the same argument as in Subsubcases 1.2.2 and 2.2.1. So, we assume
that x1 ∈ H − A and x2, x3 ∈ A. Since H is Hamiltonian, then there is a ver-
tex z /∈ {x1, x2, x3} such that x2z ∈ E(H). Define C∗ = H [x1, x2, x3, z], then
NH−C∗(x1) ∩ NH−C∗(z) = ∅, as otherwise H would have a cycle of length 5.
Also, E(NH−C∗(x1), NH−C∗(z)) = ∅, as otherwise a cycle of length 5 is produced.
Apply the same argument as in above, we get the result.
Subsubcase 2.2.3. m = 3. If |A ∩ V (C)| = 1 or 2, then we use the same
argument as in Subsubcases 2.2.2 and 1.2.3. Thus, we assume that x1, x2, x3 ∈ A.
Since H is Hamiltonian, then there are two different vertices w, z with w, z /∈
{x1, x2, x3}, wx1 ∈ E(H) and zx2 ∈ E(H). Define C∗ = H [x1, x2, x3, w, z], then
NH−C∗(w) ∩NH−C∗(z) = ∅, as otherwise we have a cycle of length 5 in H . Also,
E(NH−C∗(w), NH−C∗(z)) = ∅, as otherwise a θ7 is produced. Apply the same
argument as in above, we get the result. This completes the proof. ✷
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