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Extremal Number of Theta Graphs of Order 7

M.M.M. Jaradat*, M.S. Bataineh, A.A. Al-Rhayyel, and Zead Mustafa

ABSTRACT: For a set of graphs F, let H(n;F) denote the class of non-bipartite
Hamiltonian graphs on n vertices that does not contain any graph of J as a subgraph
and h(n;F) = max{&(G) : G € H(n;F)} where (G) is the number of edges in G.
In this paper we determine h(n;{64,0s,67}) and h(n;07) for sufficiently odd large
n. Our result confirms the conjecture made in [1] for k = 3.
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1. Introduction and preliminaries

For our purposes a graph GG is finite, undirected and has no loops or multiple
edges. We denote the vertex set of G by V(G) and the edge set of G by E(G).
The cardinalities of these sets are denoted by v(G) and &(G), respectively. The
cycle on n vertices is denoted by C,,. A theta graph 6,, is defined to be a cycle C,,
to which we add a new edge that joins two non-adjacent vertices. The neighbor set
of a vertex u of G in a subgraph H of G, denoted by Ny (u), consists of the vertices
of H adjacent to u. The joint G; V G2 of two vertex disjoint graphs GG; and Gy is
the graph whose vertex set V(G1) UV (G2) and edge set consists of E(G1) U E(G2)
together with all the edges joining V(G1) and V(G2). For vertex disjoint subgraphs
H, and H; of G, we let E(Hy,Hs) = {zy € E(G) : v € V(H;),y € V(Hz)} and
&(Hy, H2) = |E(Hy, H2)|.

For a proper subgraph H of G we write G[V (H)] and G —V (H) simply as G[H]|
and G — H, respectively (G[V(H)] is the induced subgraph). In this paper, we
consider the Turdn-type extremal problem with the #-graph being the forbidden
subgraph. Since a bipartite graph contains no odd 6-graph, we consider non-
bipartite graphs. First, we recall some notation and terminology. For a positive
integer n and a set of graphs F, let G(n;F) (and H(n;F)) denote the class of
non-bipartite F-free graphs (class of non-bipartite Hamiltonian F-free graphs) on
n vertices, and

f(n;F) = max{&(G):G € G(n; F)},
h(n;F) = max{&(Q): G € H(n;F)}.
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An important problem in extremal graph theory is that of determining the
values of the functions f(n;F) and h(n;F). Further, characterize the extremal
graphs of G(n; F) and H(n; F) where f(n;F) and h(n; F) are attained. For a given
C , the edge maximal graphs of §(n; C,.) have been studied by a number of authors
see [6], [7], [8] and [10]. Bondy [5] proved that a Hamiltonian graph G on n vertices
without a cycle of length r has at most %nQ edges with equality holding if and only
if n is even and r is odd. ,

Hoggkvist, Faudree and Schelp [9] proved that f(n;C,) < L%J + 1 for all

r. This result is sharp only for » = 3. Jia [12] proved that for n > 9, f(n;C5) <
2
L@J + 3 and he characterized the extremal graphs as well. In the same work,

Jia conjectured that f(n;Cory1) < @

+ 3 for n > 4k + 2. Bataineh [1]

confirmed positively the above conjecture for n > 36k. Further, he showed that
equality holds if and only if G € §*(n) where G*(n) is the class of graphs obtained
by adding a triangle, two vertices of which are new, to the complete bipartite graph
K| (n-2)/2],[(n—2)/2]- Also, he proved the following result:

Theorem 1.1. (Bataineh [1]) For positive integers k > and n > (4k + 2)(4k? +
10k),

=2k D® 4 gf 3, ifn s odd
2
@ +4k+1, if n is even.

h(n; Copy1) = {

For 05-graph, Bataineh et al [2] proved that for n > 5

oo = | 2522 1.

Later on, Bataineh et al [3], [4] and Jaradat et al [11] proved the following
results

Theorem 1.2. (Jaradat et al [11]) For positive integers n and k, let G be a graph
on n > 6k + 3 vertices which contains no 0sx41 as a subgraph, then

Theorem 1.3. (Jaradat et al [11] and Bataineh et al [}]) For sufficiently large
integer n and for k > 3,

f(n;02141) = {%J + 3.

Caccetta and Jia [7] constructed the following class of graphs: The building
blocks of this class are the path P = ujus ... us, and the complete bipartite graph
B = K[%(n—Qk)],l_%(n—Qk)J' For 1 S a S (%(n — 2k)‘| — 1, we let B(n,k,a) denote
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the class of graphs obtained by partitioning the [1(n — 2k)] vertices of the larger
bipartitioning set of B into two sets Vi and V, with [V3| = a and then joining
each vertex of V; to u; and each vertex of V5 to ugi. Observe that for a graph
G € B(n, k,a)

£(G) = [3(n— 2k +1)°) + 2k~ 1

Further, G € §(n;Cs,Cs,...,Cort1). Caccetta and Jia [7] proved the following
results:

Theorem 1.4. (Caccetta and Jia [7] ) Let G € G(n; Cs,Cs, ..., Cary1). Then
1
&(G) < Lz(nnkﬂ)ﬂ + 2k — 1,

with equality possible if and only if G € B(n, k,a).

Theorem 1.5. (Caccetta and Jia [7]) Let Fy, = {C5,C5,Cxr, ..., Copi1}. For even
n >4k + 4,k > 2, we have

(n — 4k —4)?

h(n; Fy) = 1

+ 8k — 11.

Analoguely, In [1], Bataineh proved the following result concerning theta graphs:

Theorem 1.6. (Bataineh [1])) Let ©y = {04} U{05,07,...,025+1}, then fork >5

and large odd n, we have

(n — 2k + 3)?

h(n; ®k) = 4

+ 2k - 3.

Bataineh [1] made the following conjecture

Conjecture 1. Let k > 3 be a positive integer. For odd n > 4k+4, h(n;fa,11) <
(n—2k+3)? 2% — 3
1 T2k-3

In this work, we prove the above conjecture for k = 3. In fact, we present exact
values of h(n;F) for sufficiently large odd n for F = {04, 05,07} and F = {67}.

2. Main results

We start this section by the following lemmas which will play a crucial role in
proving our main results.

Lemma 2.1. Let H € H(n,{04,05,07}) and H contains a cycle C' of length 7. If
u€V(H-=C), then &(u,C) < 3. Moreover, if B={ue€V(H-C): &(u,C) =3},
then |B| < 1.
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Proof: Let C' = x1x2x3... 2721 be a cycle of length 7. Since H contains no 07 as a
subgraph, so H[C| = C' and so E(H[C]) = 7. Ifu € V(G—H) such that &(u, C) = 4,
then with out loss of generality one can easily check that No(u) = {21, x2, x3,24}
or No(u) = {1, 22, 23,25} or No(u) = {x1, 22,24, x5} or No(u) = {21, 22, 24,26}
and each one of which produces a 07 as a subgraph in H. Thus, we conclude
that &(u,C') < 3 with equality holds only if Ne(u) = {x;, 211, xiya} for some
i=1,2,...,7 (x; = xj_7 for j > 7). Suppose that |B| > 2. Let z,y € B with
x # y. Without loss of generality, we may assume that No(z) = {x1, 22,25}, If
zy € E(H) and y is adjacent to x1, then the trail zyzxoz2; would form a 64 as a
subgraph in H, a contradiction. Similarly, one can show that y cannot be adjacent
to xa, x4, x5 Or xg as otherwise a 64 or a 67 is produced as a subgraph. Thus,
we assume that xy ¢ E(H). If No(z) N No(y) = &, then Ne(y) = {a3, 24,27}
or {x3,x6,27}. If No(y) = {3, x4, 27}, then the trail zesx yrraizoze, forms a
07 as a subgraph. Also if No(y) = {x3, 26,27}, then the trail xasrgyrrrizoxa;
forms a @7 as a subgraph. Therefore, No(x) N Neo(y) # @. We now consider the
case that 1 € N¢o(y) N Ne(x). If y is adjacent to xa, then the trail xjxzayx;as
forms a 64 as a subgraph, a contradiction. Similarly we can show that y cannot be
adjacent to x3, x5 or x7 as otherwise a 07 is produced as a subgraph. Thus y is
adjacent to x4 and xg, but the trial yrgrsrqrsreoriyry forms a 07 as a subgraph,
a contradiction. By using the same argument as a above one can show that if x5
or x5 belongs to Neo(y) N Ne(x), then we get the same contradiction. Therefore,
|B| < 1. This completes the proof. O

Lemma 2.2. Let H € H(n,{04,05,07}) and H contains a cycle C of length 7. If
|B| =1 and uv is an edge in the subgraph H — C — B, then E({u,v},C) < 3 where
B is as defined in Lemma 2.1.

Proof: Let uv be an edge in H—C— B. Then by Lemma 2.1., &(u, C), E(v,C) < 2.
Now we shall prove by contradiction that the case &(u,C) = E(v, C') = 2 is impos-
sible. Suppose &(u,C) = E(v,C') = 2, then one can see that each of N¢(u) and
Ne(v) is of the form {a;, z;42} or {z;, x;43} or {x;, 2,14} as otherwise at least one
of 64,05, and 07 is produced as a subgraph. Let B = {«} and with out loss of gen-
erality assume x is adjacent to 1,2 and z5. Note that if No(u) or Neo(v) is of the
form {x;,z;42}, then the only possibilities for that are {xa, x4}, {23, 25}, {25, 27}
and {z1,x¢} as otherwise at least one of 04,605 and 07 is produced as a subgraph.
Further, if No(u) or N¢(v) is of the form {z;, zit3} or {;, &i+4}, then the only
possibilities for that are {x1, x4}, {2, 26} and {z3, 27} as otherwise at least one of
04,05 and 07 is produced as a subgraph. Note that, |[No(u) NNe(v)| = 0 or 1 as
otherwise a 6,4 is produced as a subgraph. To this end we consider two cases:
Case 1: |[N¢(u) NNe(v)] = 0. Then, without loss of generality, we list all the
possibilities as follows:

1) Ne(u) = {22, 24} and Ne(v) = {z3,25}. Then the trail uwvrsrizsrrqury is
a 07 subgraph, a contradiction.

2) Ne(u) = {x2,24} and Ne(v) = {a5,27}. Then the trail urszrszoxzsvurs is
a 07 subgraph, a contradiction.
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3) No(u) = {x2,z4} and Ne(v) = {x1,24} or {z1,26}. Then the trail
ToxrivuTery is a A5 subgraph, a contradiction.

4) No(u) = {x2, 24} and N (v) = {2, 26}. Then the trail uxszszovurs is a
05 subgraph, a contradiction.

5) No(u) = {xe, x4} and N (v) = {z3,27}. Then the trail zsvursrasrazses
is a 07 subgraph, a contradiction.

6) No(u) = {x3,z5} and Ne(v) = {x1,26} or {x2,z6}. Then the trail
T5TeUUT3T2TT5U 1S a 7 subgraph, a contradiction.

7) No(u) = {x3,25} and Ne(v) = {x1,24}. Then the trail xzzozasuvraizsu
is a 07 subgraph, a contradiction.

8) No(u) = {z5,27} and Neo(v) = {xe,21}. Then by symmetry we get the
same contradiction as in (1).

9) No(u) = {ws,27} and Neo(v) = {x1,24}. Then the trail uzrzizeszivues is
a 07 subgraph, a contradiction.

10) Ne(u) = {5, 27} and Ne(v) = {a2,26}. Then the trail zjxzovuzias is a
05 subgraph, a contradiction.

11) No(u) = {x1, 26} and Ne(v) = {z3,27}. Then the trail z1x7xsuvrsroziu
is a 07 subgraph, a contradiction.

12) Neo(u) = {x1,24} and No(v) = {2, 26}. Then the trail zzzouvaizs is a
05 subgraph, a contradiction.

13) No(u) = {z1,24} and N¢(v) = {x3,27}. Then the trail worizrsrszsvas
is a 07 subgraph, a contradiction.

14) No(u) = {2, 26} and N¢o(v) = {x3,27}. Then the trail woxrzzeszeuv is
a 07 subgraph, a contradiction.
Case 2: |N¢(u) NNe(v)| = 1. Then, without loss of generality, we list all of the
possibilities as follows:

1) No(u) = {z1,26} and No(v) = {x1,24}. Then the trail wvrzrrerszsvey
is a 07 subgraph, a contradiction.

2) No(u) = {x2,24} and Ne(v) = {x2,26}. Then the trail zozsziuvzau is a
05 subgraph, a contradiction.

3) No(u) = {xs,25} and No(v) = {x3,27}. Then the trail uzszizszerrvurs
is a 07 subgraph, a contradiction.

4) No(u) = {x1,24} and N (v) = {x2,24}. Then the trail uzizrszsrivury is
a 07 subgraph, a contradiction.

5) No(u) = {z3,25} and Ne(v) = {x5,27}. Then the trail zsasxrvuzsv is a
05 subgraph, a contradiction.

6) No(u) = {z1,26} and Neo(v) = {x2,26}. Then the trail zgvuzizrasu is a
05 subgraph, a contradiction.

7) No(u) = {z3,27} and Ne(v) = {z5,27}. Then the trail zruvasaerrv is a
05 subgraph, a contradiction. O

The following remark follows from the fact that if H € H(n,{04,05,07}), C
is a cycle of length 7 in H, w € V(H — C) and &(u,C) = 3, then N¢(u) =
{@i, Tig1, wigal}.
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Remark 2.3. For H € H(n,{C5,04,05,07}), if H contains a cycle C of length 7,
then B = @ where B is as defined in Lemma 2.1.

We now establish the following result which will be used in the rest of this
section. We begin with the following construction. For odd n, let H; be the class of
graphs obtained from K n=s VK n_s by replacing one edge, say y1ys € K n=s VK ns,
by the path yjwewsw,ys with the vertices ws, w3, wy, being all new vertices. Note
that H; is a class of non-bipartite Hamiltonian graphs containing none of 64,05

and 07 as a subgraphs. Also &(H) = {@J + 3 for any H € H;. Thus

(n—3)

2
h(n; {04, 05,07}) > ~———+3 for odd n. (2.1)

Theorem 2.4. For sufficiently large odd n, we have

(n—3)*

3.
n +

h(n; {04,05,07}) =
Proof: Let H € H(n,{04,05,07}). By 2.1 it is enough to show that E(H) <
@ + 3. If H contains no cycle of length 7, then by Theorem 1.1, we have

(n=5° o (n=3)

E(H) < 1 < 1

+ 3,

for sufficiently large odd n, as required. Suppose H contains a cycle C' of length 7.
Define the set B = {u € V(H —C) : €E(u,C) = 3}. Then from Lemma 2.1, |B| < 1.
If |B| = 0, then again from Lemma 2.1 &(u,C) < 2 for all u € V(H — C) and so
E(H—-C,C) <2(n—T7). Now, suppose |B| = 1. Since H is Hamiltonian, the graph
H — C — B must have an edge uv. By Lemma 2.2, we obtain &({u,v},C) < 3, thus

EH-C,C) = &H-B—{u,v},0)+&B,C)+ &({u,v},0)
< 2(n—10)+3+3=2(n—71).

By Theorem 1.2, we have

(=7

EH -C) = ~—

Therefore

E(H) = &H—C)+&H —C,C)+&(C)
(n—7)°
4
(n —3)?

= 3

IN

+2n—T)+7

This completes the proof. O
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We now determine h(n;07) for sufficiently large odd n. Note that the class
H; consists of non-bipartite Hamiltonian graphs containing no 6 as a subgraph.

Further, E(H) = @ + 3 for any H € H;. Thus we establish that

(n—3)*

h(n;97) Z 4

+3 (2.2)

for sufficiently large odd n.

Theorem 2.5. For sufficiently large odd n, let H € H(n;07) with §(H) > 20.
Then
(n—3)°

E(H) <

+ 3.

Proof: To prove the theorem, we split the proof into two cases, according to the
existence of 05 in H as a subgraph:

Case 1: H contains 05 as a subgraph, namely let z;xox3x4252124 be a 05-graph
in H. Since §(H) > 20, we can define the sets A; for i = 1,2, 3, that consist of
5 neighbors of z; in H — {1, x2, %3, 24,25} so that 4, N A; = & for i # j. Let
T = H[x1, 22, T3, 24, x5, A1, As, Azl and B = H —T. Let u € V(B), if u is adjacent
to a vertex in one of the sets A1, As or As, then u cannot be adjacent to a vertex
in the other two sets, as otherwise H would have a 07-graph as a subgraph. Also,
if w is adjacent to a vertex in A; for some ¢ = 1,2, 3, then u cannot be adjacent to
any of x; 11 and x;_1, as otherwise H would have a 07-graph as a subgraph. Thus,

&(u,T) <38,

which implies that
&(B,T) < 8(n — 20).

Also, by Theorem 1.2, we have

o)< | C2 | ey 228

4
Consequently
E(H) = &(B)+&(B,T)+&(T)

(n — 20)2 (20)?
< = _
< 1 +8(n—20)+ 1
- n? — 8n + 160
- 4
 (n—4)?
= 1 + 36

(n—3)?
< 1 + 3,

for sufficiently large odd n, as required.
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Case 2: H contains no f5-graph as a subgraph. If H contains no 6, as a subgraph,
then the result is immediate from Theorem 2.4. So, assume H contains a 04-graph,
namely let x1zox3242123 be a 04-graph in H. Since 6(H) > 20, we can define the
sets A; (i =1,2,4) that consist of 5 neighbors of x; in H — {x1zex324} selected so
that Al n Aj = o for i 7& j Let T = H[$1,$2,$3,$4,A1,A2,A4] and B=H —1T.
Then, the rest of the proof is rather similar to that of Case 1. a

Now we are ready to establish our main result. In the following theorem we
determine h(n;07) for odd large n and 6(H) > 7.

Theorem 2.6. For sufficiently large odd n, let H € H(n;07) with 6(H) > 7. Then

(n—3)*

E(H) < 1

+ 3.

Proof: Let H € H(n;07) with §(H) > 7. Let A be the set of vertices in H with
degree less than or equal to 19. Let |A| = m. Observe that,

E(H—AA) 4+ E(A) < 19m.
By Theorem 1.2,
EH) = EH-A)+EH-AA)+EA)

LT

IN

If m > 4, then by remembering that n is sufficiently large, we have that the right
hand side of the last inequality is maximum when m = 4. Thus,

&(H) g{ﬁjﬂq+m

[

If m = 0, then by Theorem 2.5, we have

s < [ =21

as required. Now, for m = 1,2,3, we consider two cases according to the graph
H— A
Case 1: If H — A is a non-bipartite graph. Then Theorem 1.3 implies that

&H—Mg{@;%;aq+&
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And so,

E(H) = E&(H—A)+E&(H— A, A)+&(A)

L o\2
< Li(n ni 2)J+3+19m.

For m = 2 and m = 3, the above inequality has it is maximum at m = 2, so

E(H) < L%J +41

EE

for odd large n, as required. Therefore, we now consider only the case when m = 1.
Assume A = {xo}, then according to the existance of 6, and 05 in H, we consider
the following three cases:

Subcase 1.1: H contains niether §5-graph as a subgraph nor 84-graph as subgraph.
Then as a above, the result follows from Theorem 2.4.

Subcase 1.2: H contains 05-graph as a subgraph. Assume zo ¢ V(65) and let
T1ToT3T4T5T1T4 be a O5-graph. Consider the same construction as in Case 1 of
Theorem 2.5 and define R = H — A — T, then we have

E(R,T) < 8(n — 21).

Observe that E(R, A) + E(T, A) + E(A) < 19. Also, by Theorem 1.2 we have

_ 2 2
ey < 220 L ey < 2O
4 4
Consequently
EH) = ER)+ER,T)+ET)+ER,A) + E(T,A) + E(A)
—21)2 20)2
< (”T)jLs(n—m)Jr%er
- n? — 10n + 245
= 4
_ 2
_ 45) +55
92
< (nTs)_’_g,

for odd large n, as required.
Now we consider xg € V(05). Assume that xg = x5 that is xjzoxsx4202124 be a
Os-graph in H. Let T = H[x1,x2, x5, 24, g, A1, Aa, A3] and R = H — T where A;
is as defined in Theorem?2.5, then as in Case 1 of Theorem 2.5, £(z,T") < 8 for each
r € R, and so

&(R,T) < 8(n — 20).
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Also, by Theorem 1.2 we get

_ 2 2
ey < =207 L ey < 2O
4 4
AS a consequence
EH) = E&R)+ER,T)+E(T)
—20)? 20)2
< me+8(n—2o)+ (20
- n? —8n + 144
= 4
 (n—4)?
= 30
(n—3)°
< ot

Similarly, if xg = 21 or x5 or x3 or x4 in 05, then we can choose i’'s so that A;/
satisfied the required properties as in above and then word by word we use the
above technique.

Subcase 1.3: H contains no #5-graph as a subgraph but it contains 64-graph as
a subgraph. Assume that zo ¢ V(04). By Consideing the same construction as in
Theorem 2.5 and define R = H — A — T', we obtain that

(R, T) < 6(n — 17).

Recall that E(R, A) + &(T, A) + €(A) < 19. Also, by Theorem 1.2 we have

172 2
er) < T ey < W92
4 1
Therefore,
E(H) = &(R)+E&R,T)+E(T)+E(R,A) + &(T, A) + E(A)
-1 2 1 2
< (nTﬂ—l—G(n—N)—i-%—i—lQ
- n? —10n + 213
= 1
52
- b 45) +47
(n—3)?
< s,

for odd large n as required.
Now, we consider zg € V(64), then assume that zg = x4 that is z1zaz3202123
forms 64-graph is in H. Since 6(H) > 7, so for i = 0,1,2, let A; be the set that
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consist of 4 neighbors of x; in H selected so that A; N A; = @ for ¢ # j. Let
T = Hlxzo,x1, 2,23, Ag, A1, A2] and R = H — T. Observe that

E(R,T) < 6(n—16).
Also, by Theorem 1.2, we have

< [22] < |27]

Consequently
E(H) = &R)+ER,T)+ET)
(n—4)°
< AN
< \‘ 1 + 28
n—3)32
< 1 + 3,

for odd large n as required. Similarly, we can do the same construction and get
the same result if xg = a1 or x5 or x3.
Case 2: H — A is a bipartite graph with the partitioning sets X and Y. Recall
that A is the set of vertices in H with degree less than or equal to 19 and we have
proved the theorem for the case when m > 4 or m = 0 where |A| = m. Sine H
is a non-bipartite graph, then it contains an odd cycle, in fact any odd cycle in
H must involve vertices of A. If H contains no cycles of length 3 and 5, then the
result follows from Theorem 1.5. So, we have to study two cases according to the
length of the odd cycles in H.
Subcase 2.1: H contains an odd cycle of length 5. Let C' = xyxox3z47521 be
a cycle of length 5 with minimum vertices of A and n1,no be the cardinalities of
X -V(C)—AY —V(C) — A, respectively. According to the possibilities of m we
consider the following three cases:
Subsubcase 2.1.1. m = 1. Let A = {z5} and z1,22,23,24 € H — A. Observe
that, Ng_c(2;) " Ng—c(xi41) = @ for i = 1,2,3,4, otherwise H — A would have
an odd cycle of length 3. Also, E(Ny_c(2;), No—c(zi+1)) =@ fori=1 and 3,
otherwise H would have a f7-graph as subgraph of H. Let |[Ny_c(z;)| = ki, for
i =1,...,4. Note that H — C' is a bipartite graph with the above observations, we
have

E(H - C) S ning — kle - k3k4,

where ny +n9 =n — 5. Now
EH) = EH-CO)+EH-C,C)+E(C)
< ning — kiks — ksks + k1 + ko + k3 + kg + 27.

Note that k; > 18 and the right hand side of the above inequality is maximum
when k; = 18 and n; = ng = "T*E’, thus

M_549<M

§H) s 4

+ 3,
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as required.

Subsubcase 2.1.2. m = 2. It is easy to see that there is an edge of C' non of its
end points in A, say x1,z2 ¢ A. Then by the same argument as above we have
Ny_c(z1) N Np_c(xe) = @ and E(Ng_c(z1), Nu—c(z2)) = @. If A C V(C),
then H — C' is a bipartite graph with the above observations, we have

8(H — C) S ning — k/’lkg,
where Ny_c(x2)| = k1 and |[Ny_¢(x4)| = ko. Thus,
E&H) = EH-C)+EH-C,C)+EC)
< nyng — kika + k1 + ko + max{ny, na} + 44.

Recall that ny + ny = n — 5 and the right hand side of the above inequality is

maximum when n; = ny = "T_5 Thus

(n—4)?
4

Note that k; > 18 and the right hand side of the above is maximum when k; = 18,
thus

E(H) < — Kykg + k1 4 ko + 43.

(-4 s (=3

1 1 + 3,

E(H) <

as required.
If AZ V(C), then C contains only one vertex of A, say z5. As in Subsubcase 2.1.1
we have Ny_co(x;)) " Ny_c(x;41) = @ for i =1,2,3,4 and

E(Np-c(zi), Nu-c(zit1)) = @

fori =1, 3. Note that H—C—{x5} is a bipartite graph with the above observations,
we have

E(H —C - 1'5) S ning — kle - k3k4.
where k; = |[Ny_c—z (2;)|. Thus,
EH) = &H-C—a5)+EH —C —u5,C) + E(C) + E(x5)
+8(H - C — $5,$5) + E(C, .T5)
S nlngfklkg7k3k4+k1+k2+k3+k4+44

Recall that n; +ns = n— 6 and the right hand side of the above is maximum when
ny = ng = nT% Thus,

(n—6)?
4
Note that k; > 18. The right hand side of the above is maximum when k; = 18,

thus
(n—3)*
4

E(H) < — kiko — kaky 4 k1 + ko + k3 + Ky + 46.

a2
E(H) < (=6 699 < +3,
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as required.

Subsubcase 2.1.3. m = 3. If C' has an edge none of its end points belongs to A,
then by applying a similar argument as above, we get the result. So, without loss
of generality, assume that x1, x3, x5 are in A and x5, x4 are in H — A. Observe that
Ny_c(z2) N Ny_c(x4) = @ and E(Ny_c(x2), Ng—c(x4)) = &, otherwise a new
cycle of length 5 with minimum vertices of A is produced. If zo and z4 are not in
the same partition of the bipartite graph H — A, then the result holds as above. If
r9 and x4 are in the same partition, then

EH) = EH-C)+EH-C,C)+E(C)
< ning + k1 + ko + 61,

where |[Ny_c(22)| = k1, |[Ng—c(x4)| = keand ny +n2 = n—5. Note that ky + ko <
max{ni,na}. Thus

—3)2
E(H) < ning + max{ni,na} + 61 < u

as required.

Subcase 2.2: H contains no cycle of length 5 but it contains cycles of length 3.
Let C = z1x9x3 be a cycle of length 3 with minimum vertices of A. As above we
consider three cases according to the value of m.

Subsubcase 2.2.1. m = 1. Let 21,290 € H — A and 235 € A. Then, Ny_c(z1) N
Ny_c(x2) = & as otherwise H — A would have an odd cycle. Also E(Ny_c(x1),
Npy_c(z2)) = @, as otherwise H would have a cycle of length 5. Using the same
arguments as above, we get the result.

Subsubcase 2.2.2. m = 2. If only one vertex of A belongs to V(C), then
we use the same argument as in Subsubcases 1.2.2 and 2.2.1. So, we assume
that xr1 € H — A and 29,23 € A. Since H is Hamiltonian, then there is a ver-
tex z ¢ {x1,x2,23} such that a2z € E(H). Define C* = H[xy, 22,23, 2], then
Npy_c«(x1) N Ny_c+(2) = &, as otherwise H would have a cycle of length 5.
Also, E(Ny—c+(x1), Nu—c+(2)) = &, as otherwise a cycle of length 5 is produced.
Apply the same argument as in above, we get the result.

Subsubcase 2.2.3. m = 3. If |[ANV(C)| = 1 or 2, then we use the same
argument as in Subsubcases 2.2.2 and 1.2.3. Thus, we assume that x1,z9, 23 € A.
Since H is Hamiltonian, then there are two different vertices w,z with w,z ¢
{x1,22,23}, wry € E(H) and za9 € E(H). Define C* = Hlxy,x9, 23, w, 2], then
Ny—c+(w) N Ng_c+(z) = &, as otherwise we have a cycle of length 5 in H. Also,
E(Ngy_c+(w), Ng_c+(2)) = &, as otherwise a 07 is produced. Apply the same
argument as in above, we get the result. This completes the proof. O
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