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On the Uniform Ergodic for α−times Integrated Semigroups

A. Tajmouati, A. El Bakkali, F. Barki and M. A. Ould Mohamed Baba

abstract: Let A be the generator of an α−times integrated semigroup (S(t))t≥0.
We study the uniform ergodicity of (S(t))t≥0 and we show that the range of A

is closed if and only if λR(λ,A) is uniformly ergodic. Moreover, we obtain that

(S(t))t≥0 is uniformly ergodic if and only if α = 0. Finally, we get that 1

tα+1

∫
t

0
S(s)ds

converge uniformly for all α ≥ 0.
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1. Introduction

Throughout, X denotes a complex Banach space, B(X) the Banach algebra of all
bounded linear operators on X , let A be a closed linear operator on X with domain
D(A), we denote by ker(A), R(A), ρ(A) and R(., A), respectively the kernel, the
range, the resolvent set and the resolvent function of A.
The family (S(t))t≥0 ⊂ B(X) is called C0-semigroup [7] if it has the following
properties:

1. The map t → S(t)x from [0,+∞[ into X is continuous for all x ∈ X ,

2. S(t)S(s)=S(t+s),

3. S(0)=I.

In this case, its generator A is defined by

D(A) = {x ∈ X / lim
t→0+

S(t)x− x

t
},

with

Ax = lim
t→0+

S(t)x− x

t
.
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Now, we recall the notion of α-times integrated semigroup which is a generaliza-
tion of C0-semigroup. Let β ≥ −1 and f be a continuous function. The convolution
jβ ∗ f is defined for all t ≥ 0 by

jβ ∗ f(t) =

{

∫ t

0
(t−s)β

Γ(β+1)f(s)ds if β > −1,
∫ t

0
f(t− s)dδ0(s) if β = −1,

where Γ is the Euler integral giving by Γ(β + 1) =
∫ +∞

0 xβe−xdx, j−1 = δ0 the
Dirac measure and for all β > −1

jβ : ]0,+∞[ → R

t 7→ tβ

Γ(β+1) .

A strongly continuous (S(t))t≥0 ⊂ B(X) is called an α-times integrated semi-
group where α > 0 [3], if S(0) = 0 and for all t, s ≥ 0

Sn(t)Sn(s) =

∫ t+s

t

(s+ t− r)n−1

Γ(n)
Sn(r)dr −

∫ s

0

(s+ t− r)n−1

Γ(n)
Sn(r)dr, (∗)

where n− 1 < α ≤ n and Sn(t)(x) = (jn−α−1 ∗ S)(x) for all x ∈ X.
By (∗) the following equality hold for all t, s ≥ 0

S(t)S(s) = S(s)S(t).

Conversely, let α ≥ 0 and let A be a linear operator on a Banach space X .
We recall that A is the generator of an α-times integrated semigroup [1] if for some
ω ∈ R, we have ]ω,+∞[⊆ ρ(A) and there exists a strongly continuous mapping
S : [0,+∞[→ B(X) satisfying

‖S(t)‖ ≤ Meωt for all t ≥ 0 and some M > 0

R(λ,A) = λα

∫ +∞

0

e−λtS(t)dt for all λ > max{ω, 0},

in this case, (S(t))t≥0 is called the α-times integrated semigroup and the domain
of its generator A is defined by

D(A) = {x ∈ X :

∫ t

0

S(s)Axds = S(t)x−
tαx

Γ(α+ 1)
}.

From the uniqueness Theorem of Laplace Transforms, (S(t))t≥0 is uniquely de-
termined. In particular, an integrated semigroup is also an 1-times integrated
semigroup.

An important example of generators of an α−times integrated semigroup is the
adjoint A∗ on X∗ for all α > 0, where A is the generator of a C0-semigroup on
a Banach space X . In particular [3, Examples 3.8], we consider X = L1(R) and



On the Uniform Ergodic for α−times Integrated Semigroups 11

for all f ∈ D(A) := {f ∈ X : f is continuous and f ′ ∈ X}, we define the linear
operator by

Af = −f ′.

Since X∗ = L∞(R) and for all f ∈ D(A∗) = {f ∈ X∗ : f continuous and f ′ ∈
X∗}, the adjoint A∗ of A is defined by

A∗f = f ′.

Then for all α > 0, A∗ is a generator of an α-times integrated semigroup.

An operator T ∈ B(X) is called uniformly ergodic if the averages 1
n

∑n−1
k=0 T

k

converge in the uniform operator topology (see [4, Chapitre II]).
In 1974, M. Lin showed in [5, Theorem] (called uniform ergodic theorem), that

when lim
n→∞

∥

∥

∥

T n

n

∥

∥

∥
= 0, the operator T is uniformly ergodic if and only if (I − T )X

is closed. In [2] the authors proved that, if 1 is a pole of the resolvent function,

then 1
n

∑n−1
k=0 T

k converge in norm if and only if lim
n→∞

T n

n
= 0.

A semigroup (S(t))t≥0 ⊂ B(X) is called uniformly ergodic if 1
t

∫ t

0
S(s)ds con-

verge uniformly when t → ∞. Also in [6, Theorem], M. Lin shows for a C0−semi-

group (S(t))t≥0 ⊂ B(X) satisfying lim
t→∞

∥

∥

∥

S(t)
t

∥

∥

∥
= 0, then the following conditions

are equivalents:

1. (S(t))t≥0 is uniformly ergodic,

2. the infinitesimal generator A has a closed range,

3. 1
n

∑n−1
k=0 R(1, A)k converge uniformly,

4. lim
λ→0+

λR(λ,A) exists in the uniform operator topology.

In this paper, we are motivated by application to the ergodic theory for an
α−times integrated semigroup (S(t))t≥0 in B(X) where α ≥ 0. We prove that
when we assume the same conditions of M. Lin’s theorem [6] for an α−times in-

tegrated semigroup (S(t))t≥0, the integral 1
t

∫ t

0
S(s)ds converge uniformly if and

only if α = 0.

Moreover, we obtain that if R(A) is closed, then for all α ≥ 0,
1

tα+1

∫ t

0 S(s)ds

converge uniformly when t → ∞.

2. Main results

The next lemma was investigated by W. Arendt [1, Proposition 3.3] in the case
of n−times integrated semigroup, n ∈ N. This results has been generalized by M.
Heiber [3, Proposition 2.4] to the α−times integrated semigroup with α ≥ 0 (for
interested reader we refer to [8, Lemma 2.1]).
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Lemma 2.1. [3, Proposition 2.4] Let A be the generator of an α−times integrated
semigroup (S(t))t≥0 ⊂ B(X) where α ≥ 0. Then for all x ∈ D(A) and all t ≥ 0 we
have

1. S(t)x ∈ D(A) and AS(t)x = S(t)Ax.

2. S(t)x = tα

Γ(α+1)x+
∫ t

0 S(s)Axds.

3. For all x ∈ X,
∫ t

0
S(s)xds ∈ D(A) and

A

∫ t

0

S(s)xds = S(t)x−
tα

Γ(α+ 1)
x.

Lemma 2.2. Let A be the generator of an α−times integrated semigroup (S(t))t≥0

in B(X) where α ≥ 0 satisfying lim
t→+∞

∥

∥

∥

S(t)
t

∥

∥

∥
= 0. Then for every λ > max{w, 0},

lim
n→+∞

‖[λR(λ,A)]n‖

n
= 0.

Proof: We put T (t) := λαS(t), since limt→+∞

∥

∥

∥

S(t)
t

∥

∥

∥
= 0, then we have

lim
t→+∞

∥

∥

∥

T (t)

t

∥

∥

∥
= 0.

Since

R(λ,A)x = λα

∫ ∞

0

e−λtS(t)xdt for all λ > max{w, 0}.

Then

R(λ,A)x =

∫ ∞

0

e−λtT (t)xdt.

From [2, Lemma VIII.1.12], we have

R(λ,A)nx =
1

(n− 1)!

∫ ∞

0

e−λttn−1T (t)xdt for all λ > max{w, 0}.

Fix ǫ > 0, then there exists t0 ≥ 0 such that for all t ≥ t0,

‖T (t)‖ ≤ ǫt.

Since ‖T (t)x‖ is continuous on [0, t0], then there exists K > 0 such that for all
t ∈ [0, t0],

‖T (t)‖ ≤ K.

Therefore

‖[λR(λ,A)]n‖

n
≤

λn

n!
K

∫ t0

0

e−λttn−1dt+ ǫ
λn

n!

∫ ∞

t0

e−λttndt.
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Finally as for all λ > 0,
λn

n!

∫ ∞

0

e−λttndt =
1

λ
,

consequently
‖[λR(λ,A)]n‖

n
≤

K

n
+

ǫ

λ
.

Hence we obtain when n → ∞ and ǫ → 0,

lim
n→+∞

‖[λR(λ,A)]n‖

n
= 0.

✷

Lemma 2.3. Let A be the generator of an α−times integrated semigroup (S(t))t≥0

in B(X) where α ≥ 0. Then we have the following assertions:

1. R(A) =
(

λR(λ,A)− I
)

X.

2.

Ker(A) = {x ∈ X : S(t)x =
tα

Γ(α+ 1)
x for all t ≥ 0}

= {x ∈ X : λR(λ,A)x = x}.

Proof: It is known that for all λ > max{w, 0} we have

(λI −A)R(λ,A) = I

and for every x ∈ D(A)
R(λ,A)(λI −A)x = x.

1. Let y ∈
(

λR(λ,A)− I
)

X , then there exists x ∈ X such that

y = λR(λ,A)x − x.

Since x = (λ−A)R(λ,A)x, then

λR(λ,A)x− x = AR(λ,A)x.

Therefore y = AR(λ,A)x ∈ R(A), hence
(

λR(λ,A)− I
)

X ⊂ R(A).

Conversely, let y ∈ R(A), then there exists x ∈ D(A) such that y = Ax,
since

x = R(λ,A)(λI −A)x

= λR(λ,A)x−R(λ,A)Ax

= λR(λ,A)x−R(λ,A)y.
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Thus

R(λ,A)y = λR(λ,A)x− x

=
(

λR(λ,A)− I
)

x.

Since (λI −A) and
(

λR(λ,A)− I
)

commute on D(A), we get

y = (λI −A)R(λ,A)y

= (λI −A)
(

λR(λ,A)− I
)

x

=
(

λR(λ,A)− I
)

(λI −A)x

=
(

λR(λ,A)− I
)

z,

where z = (λI −A)x, hence R(A) ⊂
(

λR(λ,A)− I
)

X .

Then we conclude that R(A) =
(

λR(λ,A)− I
)

X.

2. Firstly, let x ∈ Ker(A), then by Lemma 2.1, we obtain

S(t)x =
tα

Γ(α+ 1)
x+

∫ t

0

S(s)Axds

=
tα

Γ(α+ 1)
x.

Hence x ∈ {x ∈ X : S(t)x = tα

Γ(α+1)x for all t ≥ 0}.

Conversely, let x ∈ X such that for all t ≥ 0

S(t)x =
tα

Γ(α+ 1)
x.

Then by Lemma 2.1, we obtain

A

∫ t

0

S(s)xds = S(t)x−
tα

Γ(α+ 1)
x = 0.

Hence for every t ≥ 0,

A

∫ t

0

S(s)xds = 0.

Thus we conclude that
∫ t

0 S(s)xds ∈ Ker(A), hence x ∈ Ker(A). Therefore

Ker(A) = {x ∈ X : S(t)x =
tα

Γ(α+ 1)
x for all t ≥ 0}.

Let x ∈ Ker(A). Since R(λ,A)(λ −A)x = x, then

λR(λ,A)x = x.
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Conversely, let x ∈ X such that λR(λ,A)x = x, then x ∈ D(A).
Since (λI −A)R(λ,A)x = x, we deduce that

AR(λ,A)x = λR(λ,A)x− x = 0.

Hence

Ax = A
(

λR(λ,A)x
)

= λAR(λ,A)x

= 0.

Therefore we conclude that x ∈ Ker(A) and finally

Ker(A) = {x ∈ X : λR(λ,A)x = x}.

✷

Now, we give a new characterization of Ker(A).

Corollary 2.4. Let A be the generator of an α−times integrated semigroup

(S(t))t≥0 in B(X) where α ≥ 0 such that lim
t→∞

∥

∥

∥

S(t)

t

∥

∥

∥
= 0.

If α ≥ 1, then A is one to one.

Proof: Let (S(t))t≥0 be an α−times integrated semigroup in B(X) where α ≥ 0

such that lim
t→∞

∥

∥

∥

S(t)

t

∥

∥

∥
= 0. Let x ∈ ker(A), then

S(t)x =
tα

Γ(α+ 1)
x ; for all t ≥ 0.

Therefore we obtain

lim
t→∞

∥

∥

∥

S(t)

t

∥

∥

∥
= lim

t→∞

∥

∥

∥

tα−1

Γ(α+ 1)
x
∥

∥

∥
= 0.

Which means that if α ≥ 1, then x = 0. ✷

Theorem 2.5. Let A be the generator of an α−times integrated semigroup

(S(t))t≥0 in B(X) where α ≥ 0 such that lim
t→∞

∥

∥

∥

S(t)
t

∥

∥

∥
= 0. Then the following

conditions are equivalents:

1. R(A) is closed,

2. λR(λ,A) is uniformly ergodic, λ ∈ ρ(A).
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Proof: (1) ⇒ (2) Assume that R(A) is closed, then by Lemma 2.3, we obtain

Y = R(A) =
(

λR(λ,A)− I
)

X.

Hence, by Lemma 2.1, we obtain

lim
n→+∞

‖[λR(λ,A)]n‖

n
= 0.

Therefore, by [5, Theorem], we conclude that λR(λ,A) is uniformly ergodic.
(2) ⇒ (1) By the uniform ergodic theorem for the operator λR(λ,A), we obtain

X = (I − λR(λ,A))X ⊕Ker(I − λR(λ,A)).

Since
(

I−λR(λ,A)
)

X is closed, then by Lemma 2.3, we deduce that R(A) is closed.
✷

We show in the next proposition that an α−times integrated semigroup (S(t))t≥0

in B(X) is uniformly ergodic if and only if α = 0.

Proposition 2.6. Let A be the generator of an α−times integrated semigroup

(S(t))t≥0 ⊂ B(X) where α > 0 such that lim
t→∞

∥

∥

∥

S(t)
t

∥

∥

∥
= 0. If R(A) is closed, then

(S(t))t≥0 is not uniformly ergodic.

Proof: Assume that R(A) is closed. Then, by Theorem 2.5 λR(λ,A) is uniformly
ergodic. So

X =
(

I − λR(λ,A)
)

X ⊕ {x ∈ X : λR(λ,A)x = x}.

Hence by Lemma 2.3, we obtain

X = R(A)⊕Ker(A).

Now, assume that (S(t))t≥0 is uniformly ergodic and 0 < α < 1, let x ∈ Ker(A),
then by Lemma 2.2

S(t)x =
tα

Γ(α+ 1)
x.

Therefore we obtain

∥

∥

∥

1

t

∫ t

0

S(s)xds
∥

∥

∥
=

∥

∥

∥

1

t

∫ t

0

sα

Γ(α+ 1)
xds

∥

∥

∥

=
∥

∥

∥

tα

Γ(α+ 2)
x
∥

∥

∥
.

Hence (S(t))t≥0 is not uniformly ergodic.
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Let α ≥ 1. Then by Corollary 2.4, A is one to one. Hence by the ergodic
decomposition and Lemma 2.3, we obtain

X = R(A)⊕ ker(A)

= R(A).

Hence A is bijective and A−1 is defined for all X . Then by the Closed Graph
Theorem, we obtain A−1 is continuous.

Assume that (S(t))t≥0 is uniformly ergodic, then there exists an operator P

such that lim
t→∞

‖t−1
∫ t

0 S(s)ds − P‖ = 0, P 2 = P and X = P (X)⊕Ker(P ). Thus

we conclude that

P (X) = Ker(I − λR(λ,A)) = Ker(A) = {0}.

Therefore X = Ker(P ) = R(A) and lim
t→∞

‖t−1
∫ t

0 S(s)ds‖ = 0.

For x 6= 0, we applied Lemma 2.1, we get

A

∫ t

0

S(s)xds = S(t)x−
tα

Γ(α+ 1)
x.

Then
1

t
A

∫ t

0

S(s)xds =
S(t)

t
x−

tα−1

Γ(α+ 1)
x.

Since A is invertible, we get

lim
t→∞

(

A
1

t

∫ t

0

S(s)xds
)

= A
(

lim
t→∞

1

t

∫ t

0

S(s)xds
)

= lim
t→∞

S(t)

t
x− lim

t→∞

tα−1

Γ(α+ 1)
x

= − lim
t→∞

tα−1

Γ(α+ 1)
x.

It follows that

lim
t→∞

tα−1

Γ(α+ 1)
x = 0,

which is absurd because α ≥ 1 and x 6= 0. Finally, we deduce that (S(t))t≥0 is not
uniformly ergodic. ✷

Eventually, we give the following theorem.

Theorem 2.7. Let A be the generator of an α−times integrated semigroup (S(t))t≥0

in B(X) where α ≥ 0 such that lim
t→∞

∥

∥

∥

S(t)
t

∥

∥

∥
= 0. If R(A) is closed, then

1

tα+1

∫ t

0

S(s)ds

converge uniformly for all α ≥ 0.
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Proof: Assume that R(A) is closed and denoted by Y .
From Lemma 2.1, we have for all x ∈ D(A); AS(t)x = S(t)Ax, hence S(t)Y ⊂ Y .
We denote by A1 the generator of the restriction of S(t) to Y , that is the restriction
of A to Y ∩D(A). Since Y = (I−λR(λ,A))X , the uniform ergodic theorem shows
that (I − λR(λ,A)) is invertible on Y .
If A1y = 0 for y ∈ Y ∩D(A), then by

R(λ,A)(λI −A)x = x for all x ∈ D(A)

we obtain
R(λ,A)(λI −A)y = y.

Hence
λR(λ,A)y = y.

Then
y ∈ Ker(I − λR(λ,A)).

That implies y = 0, thus A1 is one to one.
Since (I − λR(λ,A))Y ⊂ R(A1), we conclude that

Y ⊃ R(A1) ⊃ (I − λR(λ,A))Y = (I − λR(λ,A))X = Y = R(A).

Hence R(A1) = Y , so A−1
1 is defined for all Y , and by the Closed Graph Theorem,

we obtain A−1
1 is continuous.

Let z ∈ Y there is an x ∈ Y ∩D(A) such that A1x = z and ‖x‖ ≤ ‖A−1
1 ‖‖z‖.

By Lemma 2.1, we have

∫ t

0

S(s)A1xds = S(t)x−
tα

Γ(α+ 1)
x.

If 0 ≤ α < 1, we have the ergodic decomposition below

X = Y ⊕ {x ∈ X : S(t)x =
tα

Γ(α+ 1)
x ; t ≥ 0}.

Therefore we obtain

∥

∥

∥

1

tα+1

∫ t

0

S(s)zds
∥

∥

∥
=

∥

∥

∥

1

tα+1

∫ t

0

S(s)A1xds
∥

∥

∥

=
∥

∥

∥

1

tα+1

(

S(t)x−
tα

Γ(α+ 1)
x
)
∥

∥

∥

≤
∥

∥

∥

S(t)
α+1

x
∥

∥

∥
+
∥

∥

∥

I

tΓ(α+ 1)
x
∥

∥

∥

≤
(∥

∥

∥

S(t)

tα+1

∥

∥

∥
+
∥

∥

∥

I

tΓ(α+ 1)

∥

∥

∥

)

‖x‖

≤
(
∥

∥

∥

S(t)

tα+1

∥

∥

∥
+
∥

∥

∥

I

tΓ(α+ 1)

∥

∥

∥

)

‖A−1
1 ‖‖z‖.
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For t → ∞, we obtain the uniform convergence to 0 on Y .

Now, let z ∈ {x ∈ X : S(t)x = tα

Γ(α+1)x for all t ≥ 0}.

Therefore we obtain

∥

∥

∥

1

tα+1

∫ t

0

S(s)zds
∥

∥

∥
=

∥

∥

∥

1

tα+1

∫ t

0

sα

Γ(α+ 1)
zds

∥

∥

∥

=
∥

∥

∥

1

tα+1

[ sα+1

(α+ 1)Γ(α+ 1)
z
]t

0

∥

∥

∥

=
∥

∥

∥

I

Γ(α+ 2)
z
∥

∥

∥
.

Hence, we get the convergence to z
Γ(α+2) on {x ∈ X : S(t)x = tα

Γ(α+1)x; t ≥ 0}.

By the ergodic decomposition above, we conclude that 1
tα+1

∫ t

0
S(s)ds converge uni-

formly for 0 ≤ α < 1.

If α ≥ 1, we find that Ker(A) = {0}.
By the ergodic decomposition and by Lemma 2.3,

X = R(A)⊕Ker(A) = R(A).

Hence A−1 is defined for all X and by the Closed Graph Theorem, we obtain A−1

is continuous. Then for z ∈ X there exists x ∈ D(A) such that Ax = z and
‖x‖ ≤ ‖A−1‖ ‖z‖.
Hence

∥

∥

∥

1

tα+1

∫ t

0

S(s)zds
∥

∥

∥
=

∥

∥

∥

1

tα+1

∫ t

0

S(s)Axds
∥

∥

∥

=
∥

∥

∥

1

tα+1

(

S(t)x−
tα

Γ(α+ 1)
x
)∥

∥

∥

≤
∥

∥

∥

S(t)
α+1

x
∥

∥

∥
+
∥

∥

∥

I

t Γ(α+ 1)
x
∥

∥

∥

≤
(
∥

∥

∥

S(t)

tα+1

∥

∥

∥
+
∥

∥

∥

I

t Γ(α+ 1)

∥

∥

∥

)

‖A−1‖‖z‖.

For t → ∞, we obtain the uniform convergence to 0 on X . ✷

Remark 2.8. As mentioned above, the uniform ergodicity implies the ergodic de-
composition of X = Ker(A) ⊕ R(A). But The convergence obtained in the last
theorem does not imply this decomposition, which is means that the converse of
implication above that is no satisfy in general.
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