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On the Extremal Solutions of Superlinear Helmholtz Problems

Makkia Dammak, Majdi El Ghord and Saber Kharrati

ABSTRACT: In this note, we deal with the Helmholtz equation —Aw + cu = Af(u) with Dirichlet boundary
condition in a smooth bounded domain €2 of R™, n. > 1. The nonlinearity is superlinear that is lim¢— @ =
oo and f is a positive, convexe and C' function defined on [0, 00). We establish existence of regular solutions
for X small enough and the bifurcation phenomena. We prove the existence of critical value \* such that the
problem does not have solution for A > A* even in the weak sense.

We also prove the existence of a type of stable solutions u* called extremal solutions. We prove that for
f(t) =e', Q= By and n <9, u* is regular.
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1. Introduction

Let € be a bounded smooth domain in R, n > 2, ¢ > 0 a positive real parameter and g : @ x Ry — R
be a continuous function. The semilinear elliptic equation

—Au+cu = g(xr,u) in
u > 0 n Q (1.1)
u = 0 on  0f),

has by now been widely investigated under various assumption on the nonlinearity g.
In this paper, we will suppose that

g9(z,t) = Af(1), (1.2)
where f is C*, positive, nondecreasing and convex function on [0, +-00) satisfying
t
lim () = 00. (1.3)
t—soo

The condition (1.3) means that f is a superlinear function and the choice of the function g is motivated
by the role of bifurcation problem in applied mathematics and which has been synthesized by Kielhdofer
[6]. We say that a problem has a bifurcation if any change of its parameters cause a sudden change of
regime and this is occur in nonlinear physics where the phenominon usually depends on a number of
parameters, that control the evolution of the system.

If g(z,t) = Af(t) and f is asymptotically linear that is lim @ =a < o0,

t—>o0

the problem
—Au+tcu = Af(t) in
(Pa.c) u > 0 in Q (1.4)
u = 0 on 09,
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was treated by Dammak et al. in [1] where the hypothese f(0) > 0 was fondamental. The authors prove
the existence of a critical value \* such that for A < A", the problem (1.4) has at least one solution, for
A > A" the problem (1.4) has no solution and for A = \*, the existence of a solution, named extremal
solution depends of the signe of tgnoo(f(t) — at).

If ¢ = 0 and g(z,t) = Af(t), the problem (1.4) has been treated by many authors. For the super-
linear case, we can cite [3] and for the asymptotically linear and f(0) > 0, we can see [8] and their
references.

In this work, we take the following definition of a weak solution.

Definition 1.1. A weak solution of (1.4) is a function u € L*(Q), u > 0 such that f(u) € L*(9), and

—/QUAC—I—C/QCu:)\/Qf(u)C, (1.5)

for all ¢ € C%(Q) and ¢ =0 on 0.
Moreover, we say that u is weak super solution of (1.4) if the 7 =7 s replaced by 7 > 7 for all
functions ¢ € C*(Q), ¢ =0 on 9 and ¢ > 0.

If a weak solution u € L>®(R), we say that u is regular while if u ¢ L% (), we say that u is singular.
We say that a solution u of (1.4) is minimal if v < v in Q for any solution v of problem (1.4).

Remark 1.2. If u is a regular solution of (1.4), then by standard bootstrap argument and elliptic requ-
larity, w is a classical solution.

For regular solution, we will study the stability properties.
Let

I(u) = %/QUVUF + cu?)dr — )\/QF(u)dx, (1.6)
for u € H(Q) and where
Flu) = /0 F(s)ds. (1.7)

u is a solution of (1.4) if it is a critical point of the fonction I. The second variation of the energy is
given by

Qlp) = /Q Vel + /Q (e — f'(w)¢?, (18)
for all o € HL(Q).

Definition 1.3. We say that a regular solution u of (1.4) is stable if the second variation of energy @,
satisfies Q(p) > 0 for all ¢ € H} (). Otherwise, we say that u is unstable.

Theorem 1.4. Let Q) C R™, n > 2 a smooth bounded domain and assume that f is a function satisfying
(1.3). Then there exists a critical value \* € (0,00) such that

1. For any A € (0, \™), problem (1.4) has a minimal solution wy, which is regular and the map A — u
1S 1ncreasing.
Moreover, wy is the unique stable solution of (1.4).

2. For A = \*, the problem (1.4) admits a unique weak solution u*, u* = Alim}\ uy, called the extremal
e

solution.
3. For A >\, (1.4) admits no weak solution.

Theorem 1.4 applies to the existence of stable solution for all A < A*. For the case A = \*, we prove
the following result.
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Theorem 1.5. Let Q C R™ (n > 2) be a smooth bounded domain and assume that f satisfies condition
(1.3). Let v € HY(Q) be a singular weak solution of (1.4). Then, the following facts are equivalent:

(i)
/ |Vl + c/ O dr > )\/ fw)pPde Yo € CHQ) (1.9)
Q Q Q
(17) v =u* and A = \".

As consequence if the problem (1.4) has a singular solution that is "stable” then necessary A = \*
the extremal value for which the problem has solution.
In the case ¢ = 0, we prove the following result which assert that u* is regular for n < 9.

Theorem 1.6. Assume that Q = By, n > 2, and that f(u) = e*. Then u* € L>=(R), for alln <9 and
so it is a reqular solution.

For n > 10 and ¢ = 0, u* is a singular solution of (1.4) [4,5] but for ¢ # 0 the problem still an open
one and this is due to the missing of an adequate Hardy ineguality.

2. Technical Lemmas

In all this section, we suppose that €2 is a smooth bounded subset of R™, n > 2. For proving our first
theorem, we need to prove auxiliary results.

Lemma 2.1. Given g € L*(Q), there exists a unique v € L' (Q) which is a weak solution of

—Av+cw = g in S
{ v = 0 on 09, (2.1)
in the sense that
/ v(=A(+ () = / g¢, for all (€ C*Q) and ¢ =0 on 09. (2.2)
Q Q
Moreover
vl < collgllrie, s(zydx) (2.3)
for some constant co > 0 independent of g. In addition, if g > 0 in Q, then v > 0 in Q.
Proof. The uniqueness. Let v; and ve be two solutions of problem (2.1), then v = v; — vy satisfies
/ v(—=AC+¢c¢) =0, Y¢eC*Q)and ¢ =0ond0. (2.4)
Q
Given any ¢ € D(Q), let ¢ be solution of
—Al+c¢ = ¢ in Q
{ ¢ =0 on 09 (25)

¢ € C?(Q) and ¢ = 0 on 9. It follows that

/Qvgo:/ﬂv(—AC—i—cC)ZO.

Since ¢ is arbitrary, we deduce that v = 0.

The existence. We assume that g > 0, if not we write g = g7 — g~.
Given an integer k > 0, and set gi(z) = min{g(x), k}. By the monotone convergence theorem, we have
Gk 9 in L1(Q). Since g is in L?(€2), the following problem

—Avg+cvp = gr in
v, = 0 on 09 (2.6)
v > 0 in Q
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admits a unique solution vy.
The sequence (g ) is nondecreasing, then (vy) is nondecreasing sequence also. Let k& > 1 > 0 two integers
and (, the solution of

Aty = 1 in Q
{ G = 0 on 09, 2.7)
we have
/(Uk—vl)Z/(gk—gl)Co,
Q Q
hence

|/(vk—vl)|:/ |vk—vl|§0/ |9k — gi|da.
Q Q Q

Since gi — 9 in L(Q), the sequence (v;,) is a Cauchy sequence in the Banach space L!(Q) then (vy)
—00

converges in L'(Q), denote by v its limit. Passing to the limit in (2.6), we oblain (2.2). So v is a weak
solution of the equation (2.1). Finally, taking ¢ = (, in (2.2), we obtaine (2.3). O O

Lemma 2.2. Suppose that f is a function satisfies (1.3) and let u be a weak super solution of (1.4), then
there exists a weak solution u of the problem (1.4) with 0 < u <.

Proof. We use a standard monotone iteration argument. Let u; = 0 and let (u,,),, the sequences defined
by:
{ —Au, +cup, = Af(up—1) in 0

By maximum principle we have u; = 0 < us < ... < up < Upy1 < ... < w. Since the sequence u, is
nondecreasing, it converges to a limit u € L'(Q), which is clearly a weak solution of (1.4). Moreover u is
independent of the choice of the super solution . O

Next, let ¢, the positive normalized eigenfunction associated to the first eigenvalue of —A + ¢ in Q with
Dirichlet boundary condition, A1, that is

—Ap;+cp; = Mp; in Q
v, = 0 on 0Q (2.9)
llerllz = 1,

ft)

and let o = ting ) we have the following result.

>
Lemma 2.3. Let [ be a function satisfying (1.3), problem (1.4) has no solution for any A > i—; but has
solution provided X is positive and small enough.

Proof. Let £ € C2?(Q) satisfying —A& 4+ ¢ = 1in Q and € = 0 on 9. For A < m, £ is a super
solution of (1.4), so from Lemma 2, equation (1.4) has a weak solution u such that 0 < u < &. Also u is
regular then classical solution of (1.4) and from the maximum principle, we have v > 0 in €.

Now, if (1.4) has a solution u for some A\ > 0, take ¢, a test function, we have

[ ae+eeu=x [ e

[ aeu=n [ s,

Q Q
/Alapluzro)\/ VLU
Q Q

since ¢; > 0 and u > 0 we have A < AL this complete the proof. O

To
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We define now

A={A>0 such that problem (Pr.) has a solution},

and
A =supA.
From Lemma 2.3 we know that \* < co and we have the following result.

Lemma 2.4. Let f a reaction term satisfying (1.3), if the problem (P .) has a solution for some X.
Then

(1) There exists a minimal solution denoted by uy for (Px.c).
(ii) For any X' € (0,\), the problem (Py ) has a solution.

Proof. (i) Let v be a solution of (Pj ), by lemma 2 and since v is regular solution, there exist a solution
u such that 0 < w < v and by construction u is independent of the choice of v (see the proof of
Lemma 2 ). We denote by uy this solution. uy is a minimal solution.

(ii) For any A" € (0,\), uy is a super solution of (Py .). By Lemma 2, (Py ) has a weak solution
such that 0 < wuy < uy and so uy is a regular solution for (Py ).
a

3. Proof of Theorem 1.4

(i) By lemma 2.3 and lemma 2.4, A is an interval. Then, by definition of \*, if A € (0, \*), the problem
(1.4) has a minimal solution uy and the map A — wy is increasing.
To prove that uy is stable, we suppose that the first eigenvalue 17, = 1, (c, A, uy) of the operator —A +
¢ — Af'(uy) is negative. We define v € Hi(Q) a positive eigenfunction associate to n; with Dirichlet
boundary condition.

Consider u® =uy — ey, € > 0, so

—Auf + cu® = Af(u®) = —enyp — A[f(un —eb) = f(un) +ef(ur)y]
— —etpl—m, + (1))

Since n; < 0, then —Au® 4 cu® — A\f(u®) > 0 in Q for € small enough, and by Hopf’s Lemma, u¢ > 0, so
u® is a super solution of (1.4) for & small enough, then from Lemma 2 we can get a solution u of (1.4)
such that v < u® in Q. So we have 0 < u < u® < uy and this contradicts the minimality of u) and hence
M 2 0.

To prove that wuy is the unique stable solution of (1.4), we suppose that there exists another stable
solution v # u) and we denote ¢ = v — uy.
We get from the stability properties

A/Qf'(v)sazé—/QwAsaﬂLC/ﬂﬁ
S/Q(—Aap—kcgo)go (3.1)
< [ 2@ = 1

So
/Q [F(@) = Flun) = F/(0) (0 — un)lp > 0. (3.2)

We know that ¢ > 0 by maximum principle and by convexity of f, we have

F0) = f(ur) = f'(w)(v —ux) <0. (3.3)
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From (3.2) and (3.3), we have
f) = fluxn) = f(v)(v —un)

this means that f is affine over [ux(z),v(x)] thus f(x) = ax + b in [0, maxq v] and we get two solutions
uy and v of

—Aw+cw= MNaw+b) in Q
w = 0 on 0f.

This implies

0= /(UAAU —vAuy)dr = /\b/ (v —wuy)de = )\b/ p(z)dz, (3.4)

Q Q Q
which implies b = f(0) = 0, this is impossible since f(0) > 0. So u, is the unique stable solution of
(P)\’c). O

(ii) We denote by u* the limit u* = Alim}\ uy and in this step We use a technical proceeding inspired
— s \*
from [3].

For any \ € [)‘7, %), taking ¢, defined by (2.9) as a test function, we obtain

Al/ uxpy = /(—A% + cpr)ua
Q Q
iy P
Q
= [ fue,
Q
A*
2 7/ fur)er
Q
Since f is super linear, there exists ¢; > 0 such that A\t < %*f(t) + ¢1 in Ry, Using (3.5), we get
)\* A*
5 [etude = [ o p)is
Q Q
)\*
< >\1/ prurdr — —/ o urde (3.6)
Q 4 Ja

g/clgoldxgcl.
Q

So (3.6) yields
/Qf(m)soldx < ca. (3.7)

Where ¢z > 0 is a constant. Let ¢, the function given by (2.7), we have
/ uxdr = / uy.ldx = / ux(—ACy + Cy)dx
Q Q Q
= / (—Auy + cuy)(ydx
Q
:)\/ flux)Cyde.
Q

Using the Hopf’s Lemma we deduce that ¢, < ¢3¢, and (3.7) implies

/ urdr < 63/ o1 f(un) < eq. (3.8)
Q Q
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By (3.7) and (3.8), we deduce by passing to the limit that u* € L1(Q) and f(u*) € L*(Q2) and u* satisfy
(Px+.c) and hence u* is a weak solution of (Py« ).

Now to prove the uniqueness of u*, we can use the following result due to Martel [7] and the proof is
not changed in our case, so we omit it.

Proposition 3.1. [7] Let v € LY(Q) be a weak super solution of equation (P« .),
then v = u*.

4. Proof of Theorem 1.5

Recall that the extremal solution u* is the increasing limit of classical stable solutions u) and we have

/\/f’(u)\)thde/ |V<p|2dx—|—c/<p2dx, Yo € C3(Q)
Q Q Q

and so by passing to the limit, we obtain
)\/ I (u)?de < / |Vo|?dx + c/ Ordx, Yo € Ci(Q).
Q Q Q

Conversely, if we have a singular solution v satisfying (1.9) for some A > 0 and we shoud prove that
A = X" and this solution is the extremal one u*. We argue by contradiction, suppose that A < \*. We
take o = v — uy as test function in (1.9) where uy is the minimal solution. Exploiting the boundary
conditions, we get

A / (0 — un)(F(0) — fluy))de = / (0= un)(=A — 13) + (v — uy))da

:/:|V(v—u,\)|2+/ﬂc(v—m)2
> /\/Qf’(v)(v—u,\)de.

Then, by convexity of the function f, we have v = u). But u) is regular, and this contradicts the fact
that v is singular. So A = A* and by uniqueness of the solutions of problem (Py- ), v = u*. O

5. Proof of Theorem 1.6
For every A € (0, \"), we know that the minimal solution u) satisfies the equation
/VuAVde—i—c/ uyvde = )\/ flux)vde = )\/ e" vdx; (5.1)
Q Q Q Q

for all v € H'(Q).
Also u) satisfies the stability condition

/|Vw|2dx+c/ w?dx > /\/ f’(u)\)dexz)\/ ebw?dr, (5.2)
Q Q Q Q

for all w € C}(9).
To prove the regularity of u* for n <9, we generalise the idea of [2].

In (5.1) we take v = e(@"1)"x as a test function and w = e%lu*, where ¢ > 1, we obtain

(g — 1)/ el | Ty |2da + c/ ela= 1 gy = /\/ e dx (5.3)
Q Q Q

and

—1)2
((] ) /|V'u,)\|2e(q71)u’\d$+0/ e(Q*l)u,\dsz/ U o (54)
4 Q Q Q
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By multiplying (5.4) with -2 and putting together these inequalities, we obtain

4
qg—1

4 4
¢ / ela=Dua gy — c/ ureldVurgy > AM——— 1)/ et dzx
qg—1Jg Q qg—1 Q

Now assume that 1 < g < 5, so that q%l > 1. As A — X", the left hand side cannot blow-up since the

leading term is u e~ 1" and the right hand side remains bounded, this means that e** is uniformly
bounded in L7(2), since uy solves the equation, by elliptic regularity this means that uy is uniformly
bounded in W24(Q) for all 1 < ¢ < 5. Since n < 9, by Sobolev embedding, uy is uniformly bounded in
L>(9) so that u* € L>(Q). O
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