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General Decay of Solutions of a Thermoelastic Bresse System with
Viscoelastic Boundary Conditions
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ABSTRACT: In this paper we consider a multidimensional thermoviscoelastic system
of Bresse type where the heat conduction is given by Green and Naghdi theories.
For a wider class of relaxation functions, We show that the dissipation produced by
the memory effect is strong enough to produce a general decay results. We establish
a general decay results, from which the usual exponential and polynomial decay
rates are only special cases.
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1. Introduction

In [21], Khemmoudj and Hamadouche taking into account the longitudinal de-
placement w, considered the generalization of multidimential Timoshenko problems
studed in [10], [22] and [34], that is they studied the stabilization for the following
multi-dimensional Bresse system

n n
ot — Au— g 35 22— (a1 +az) 32 22 + Bru -+ a(a) fi(u,v,w) =0,
i=1 i=1
in QxRT,

n
Povtt — Av+ a1 Y 59—;2 + Bav + Byw + a(z) fa(u, v, w) = 0,
i=1
in QxRT,

prt — A+ (o +az) S 2 4 B0+ By + a(e) fo(u, v, w) =0,
i=1
in QxRT,
(1.1)
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subject to the following boundary conditions

u(z,t) = v(z,t) = w(z,t) =0, on ToxRT,

¢
u(z,t) = — [hi(t — s) % +bi(z)(v+w)}ds, on I'y xRT,
0

t (1.2)
v(z,t) = — [ ha(t — s)%ds, on I'y xR,
0
t
w(z,t) = — [ hs(t — s)(% — by(z)u)ds, on Iy xR,
0

and initial conditions

{ (u(O),v(O),w(O)) = (UO,,UO,,LUO),
(\/Eut(o)’ \/E'Ut (0)’ mwt(o)) = (\/Eulﬂ \/%'Ula \/Ewl)’

where (2 is a bounded open set of R"(n > 2) with a C%-boundary I' = 9. Let Iy
and T'; be closed nonempty disjoint subsets of T' with I' = Ty UT';, Ty N T} = ¢
and meas(Ty) > 0,meas(I';) > 0. v(x) represent the exterior unit normal vector
at x € I'y. The authors have assumed that aq, ag, B, By are a sufficiently small
positive numbers, such that 8; > nas, 85 > nag, and

acC'Q), a(z)>ay>0 ae in Q,

(1.3)

where ag is a positive constant.
To state results of existence and stability, the following assumptions are made.

(i) Assumptions on the relaxation functions. The relazation functions h;,i =
1,2,3 are considered positive, non-increasing and belonging to W2(0, 4+00).

(ii) Assumptions on the nonlinear functions. For the coupling terms f;,i =
1,2,3, the authors supposed that

1. f; e CY(R3), i=1,2,3.

2. Additionally, they assumed that there exists a nonnegative function F(u,v,w)
€ C*(R3) such that

oF oF oF

fl(u,v,w)za, fg(u,v,w):%, fg(u,v,w):a—w. (1.4)

3. Further, they assumed that F' is homogeneous of order p+ 1 :
F(u, A, Aw) = NPTHE(u,v,w), for all A >0, (u,v,w) € R®. (1.5)

Since F is homogeneous, the Euler Homogeneous Function theorem yields the fol-
lowing useful identity:

wfi(u, v, w) + vfa(u,v,w) + wfsz(u,v,w) = (p+ 1)F(u,v,w).
The homogeneity of F implies that there exists a constant M > 0 such that

[P, v,w)] < M (Jul™ + o+ w1 (1.6)
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Remark 1.1. There is a large class of functions satisfying the assumptions (1.4)-
(1.6). For instance functions of the form

F(u,v,w)=a|u [P +b|v [Pt 4c|w [PT

where a , b , ¢ are positive constants, satisfy assumptions (1.4)-(1.6) with p > 3.
Indeed, a quick calculation shows that there exists ¢y > 0 such that

Fu,v,w) = co {u [P+ o [PH 4w PH
Moreover, it is easy to compute and find that
wfy (u, v, w) +vfa(u,v,w) + wfs(u,v,w) = (p+ 1)F(u,v,w).

The authors established a general decay result, from which the usual exponential
and polynomial decay rates are only special cases.

In this paper, the main purpose is to study the asymptotic behavior of the
solutions to the following thermoviscoelastic multi-dimentional Bresse system

ugp — Au—ay Y, 0,0 — (1 +a2) D Op,w+ Bju = 0, in QxRT,
i=1 i=1
v —Avt o Y Opu+t Bolvt+w)+as )y 0,0 = 0, in QxR
i=1 i=1
. (1.7)
wie — Aw + (1 + aa) Y. Op,u+ Boy(v +w) = 0, in QxR
i=1
ﬁtt — kA9 — 5A19t “+ a3 Z 811.1)“ = 0, in €)X R+,
i=1
subject to the following boundary conditions
u(z,t) = v(z,t) = w(z,t) =0, on Tox R,
¢
u(z,t) = — [ hi(t — s)(%% + o1(2) (v + w))ds, on Tp xRT,
0
¢
v(x,t) = — [ ha(t — s)32ds, on Ty xRt (1.8)
0
t
w(z,t) = — [ hs(t — s)(%2 — o2(x)u)ds, on T xR,
0
Ha,t) =0, on T xRt
and initial conditions
(u(0),v(0), w(0),9(0)) = (u®,v°, w’,9°), 19
(u0(0), 00(0), wi(0), 94(0)) = (u, v, w', 9"), |

where the functions ¢ = ¥(z,t) is the difference temperature. Here the relaxation
functions h; € C*(0,00), i = 1,2,3, are positive and non-increasing and the pa-
rameters J, k, az are postive constants and a1, ag, #; and §, are sufficiently small



160 A. KHEMMOUDJ

positive numbers satisfying 5; > nas, 55 > na;.

Let us mention some known results on the decay rate for the Bresse system. In
[16] a simple one dimensional Bresse model is usually considered in studying elastic
structures of the arcs type whose motion is governed by the following system of
three wave equations:

Pu 0w Ov  Ow (0w N
1 ot? Ha:cQ Kaz " Ox o r Y o
2 2
pQ%E1%+H<%+U+lw> = 0, (1.10)
Puw P (i) = 0
Prige ~ Mgz TR0, TR g TV T

where (z,t) € (0, L) x (0, 00) and the coefficients p;, p,, E and I denote respectively
the mass per unit length, the mass moment of inertia of a cross-section of the beam,
Young’s modulus and the moment of inertia of a cross-section of the beam. The
coefficient kg, k and [ are equal to F A, k GA and R™! respectively where G is the
modulus of elasticity in shear, A is the cross sectional area, K is the shear factor
and R for the radius of the curvature. We note that when R — oo, then I — 0 and
then this model reduces to the well-known Timoshenko beam equations.

The case of one frictional damping has been considered by Alabau Boussouira
et al. [1], where the authors proved that the Bresse system is exponentially stable

if and only if the velocities of waves propagations are the same. i.e. z—; = 57 and

Kk = Ko. Also, Noun and Wehbe [29] extended the results in [1] by considering only
one locally distributed damping.

In [8], the authors considered the Bresse system with indefinite damping mech-
anism acting on the equation about the shear angle displacement. Under the equal
speeds condition and only with Dirichlet-Neumann-Neumann boundary condition
type, they proved the exponential stability of the system.

Concerning the asymptotic behavior of the Bresse system with past memory
acting in the three equations we cite the work of Guesmia et al [12]. In that
paper the authors showed under suitable conditions on the initial data and the
memories, that the Bresse system converges to zero when time goes to infinity, and
they provided a connection between the decay rate of energy and the growth of
memories at infinity. In [2] Santos et al. considered the Bresse system with past
history acting only in the shear angle displacement. They showed the exponential
decay of the solution if and only if the wave speeds are the same. If not, they
showed that the Bresse system is polynomial stable with optimal decay rate.

For Bresse system in classical thermoelasticity, Liu and Rao [17] considered the
Bresse system with two different dissipative mechanism, given by two temperatures
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coupled to the system. The authors considered the problem

prpy — E(py + ¥ +1w), — kol (wa — ) + k10" = 0, in )]0, L[xR",
Py — by + K (0, + 0+ lw) + K167 = 0, in ]0,L[xR*,
prwer — ko (we — 1), + Kl (@, + 9 +lw) + k10, = 0, in ]0,L[xRT  (1.11)
ps0i — by, + k1 (e — 1) = 0, in ]0,L[xR",
P30 — bz, + K1ty = 0, in ]0,L[xRT,

They proved that the exponential decay exists only when the velocities of the
wave propagations are the same. If the wave speeds are different they showed
that the energy of the system decays polynomially to zero with the rate t=1/2 or
t=1/4, provided that the boundary conditions is of Dirichlet-Neumann-Neumann or
Dirichlet-Dirichlet-Dirichlet type, respectively.

If ' = 0 in (1.11) Fatori and Munoz Rivera [18] analyzed the exponential
stability of the obtained Bresse-Fourier system they showed that, in general, the
system is not exponentially stable but that there exists polynomial stability with
rates that depend on the wave propagations and the regularity of the initial data.
Recently, Najdi and Wehbe in [28] extended and improved the results of [18] when
the thermal dissipation is locally distributed.

In the above system, the heat flux is given by Fourier’s law. As a result,
this theory predicts an infinite speed of heat propagation. That is any thermal
disturbance at one point has an instantaneous effect elsewhere in the body. To
overcome this physical paradox, different models, have been introduced such as
Cattaneo’s law [5], Green and Naghdi’s type-III theory, [13], [14] and others.
The type-IIT Green and Naghdi’s model of thermoelasticity includes temperature
gradient and thermal displacement gradient among the constitutive variables and
proposed a heat conduction law as

q(z,t) = — [kVO(z,t) + " Vo(x,1)], (1.12)

where v; = 6 and v is the thermal displacement gradient, x and k* are two positive
constants. Equation (1.12) together with the energy balance law

p3b: + odivg = 0, (1.13)

lead to the equation
PO — ok AOy — ok AO =0 (1.14)

which permits propagation of thermal waves at finite speed.

The coupling of equation (1.14) with some equations of elasticity has been an
active area of research in the last two decades. See in this connection [30], [37]
and the coupling in one-dimensional space with Bresse system, we refer the reader
to Said-Houari and Hamadouche [32].

Recently, in thermoelasticity of type III, several authors (see [24], [26], [27]
and the references therein) have studied the asymptotic behavior of solutions as-
sociated to the dynamic problem with memory boundary conditions. See [3], [306]
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for the study of Timoshenko system and Kirchhoff plates equations in classical
thermoelasticity.

Models of viscoelastic problems without thermal effect where the memory term
acting in the boundary were proposed in [6], [23], [33] for the study of wave
propagation, in [22], [25], [34] for Timoshenko system, in [31], [35] for the von
Karman plate system and in [4], [19] in the context of Kirchhoff equations.

The boundary condition of memory type for Timoshenko system, has been stud-
ied by Santos [34]. By considering k; to be the resolvent kernels of (—h//h;(0)) for
i = 1,2, he showed that the energy of the solution decays exponentially (polyno-
mially) when k; and —kf, i = 1,2, decay exponentially (polynomially). The same
result has been established by Messaoudi and Soufyane [22] without assuming the
exponential (polynomial) decay of k; and k2 but only that their norms are small
enough. In [25] the general decay for the same system has been proved.

Models with boundary conditions including a memory term which produces
damping were proposed in [7], [6], [23] and [33] for the study of wave propagation,
in [31] and [35] for the von Karman plate system and in [15], [11] and [36] in the
context of Kirchhoff equations.

Motivated by their results, we investigated the asymptotic behavior of the sys-
tem (1.7)- (1.9) for resolvent kernels of general-type decay and obtain a more
general and explicit energy decay formula, from which the usual exponential and
polynomial decay rates are only special cases. The proof is mainly based on the
use of a multiplier method coupled with some technical lemmas and some technical
ideas and the introduction of a suitable Lyapounov functional.

The paper is organized as follows. In section 2 we establish the existence and
uniqueness for regular and weak solutions of system (1.7)-(1.9). In section 3 we
state and prove the general decay of the solutions of our studied system.

2. Preliminaries

In this section, we present some materials needed in the proof of our main result
and we prove the existence and regularity of solutions for problem (1.7)-(1.9).

We first consider the following hypothesis

(A1) There exists a fixed point 2° € R™ such that, for m(z) = z — z

IFo={zel:m(z)r <0}, Ti={xel:m(z)r >0}
Also we consider two functions o;(z) € W1>°(T'1), given by
oi(z) = a <Z Vk(z)> . i=1,2. (2.1)
k=1

In order to exhibit the dissipative nature of system (1.7) we introduce, as in
[37], the new variable

0(z,t) = /19(30, s)ds + x(x) (2.2)
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where y € H{ () solves

kAY =11 — 6A0) + gy Or,v1. (2.3)

i=1

Then, it is easy to see that problem (1.7) becomes

wp — Au— a1 > 0p,v — (1 +a2) Y. Op,w+ Bju = 0, in QxRT
i=1 i=1
v — Avt a1 Y. O u+ Bo(v+w) +az D, 0,0 = 0, in QxRT,
i=1 i=1
N (2.4)
Wy — Aw + (a1 + az) Y, Op,u + By(v + w) = 0, in QxR
i=1
Gtt — kAO — (SAGt + a3 Z &Civt = 0, in €)X RJr,
i=1
with the initial conditions
(u, v, w, 0, up, v, wy, 0;)(x,0) = ( 0 0% w?,0° ul, vt wh, 0h) (2.5)

Next, we will use the second, the third and the fourth equations in (1.8) to

estimate the terms 2% 2¢ and 2w,
ov’ ov ov

Defining the convolution product operator by

t

(h+ 9)(t) = / h(t — 8)(s)ds, (2.6)

0

and differentiating the second, the third and the fourth equations in (1.8), we arrive
to the following Volterra equations:

o t@)+w) + mEht < {G + @ +w)} = —ggu,

v 1 v = Y

o —|— h2(0)hl2 ES o - _h2(0)vta (27)
5 — o2(@)u+ gyl x { Gy —oa(@)u} = o

Applying the Volterra’s inverse operator, we get

%+01(x)(v+w) = fﬁ(o){uthkl * Uyt
gu =~y v+ k2 x v}, (2.8)
v — oo(z)u = _—hgl(o) {wy + k3 x w, .

where the resolvent kernels satisfy

1 1
b+ —— Ry = ———
* o hi(0)

h =1,2,3. 2.
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Denoting by 71 = #(0)’ Ty = #(0) and 73 = #(0)’ the normal derivatives of wu,v
and w can be written as
% = —r{us + b (O)u — ky (t)uo + K, #u} — o1 (2) (v +w),  (2.10)
% = —7o{vy + k2(0)v — ko(t)vo + kb * v}, (2.11)
g—zj = —73{w + k3(0)w — ks (t)wo + k5 * w} + o2(z)u. (2.12)

Reciprocally, taking initial data such that u% = v° = w® = 0 on I'y, the identities

(2.10), (2.11) and (2.12) imply the second, the third and the fourth equations in
(1.8) respectively.

Since we are interested in relaxation functions of more general decay and the
boundary conditions (2.10), (2.11) and (2.12) involve the resolvent kernels k;, i =
1,2,3, we want to know if k; has the same decay properties. The following lemma
answers this question.

Let h be a relaxation function and k its resolvent kernel, that is,

k(t) — (k% h)(t) = h(t). (2.13)

Lemma 2.1. (See Lemma 2.1, [6]) If h is a positive continuous function, then
k is also positive and continuous. Suppose that

t
= [v(Qd¢
h(t) < cpe 0 7

where v : [0, +00) — RY, is a nonincreasing function satisfying, for some positive
constant € < 1,

—+o0 s
/ = [(1=e)7v(O)d¢ 1
c1 = e 0 < —.

Co
0

Then k satisfies
—e [~(Q)d¢
k() < —0 ¢ T8 T
1— CoC1

According to the Lemma 2.1, in what follows, we are going to use the boundary
relation (2.10), (2.11) and (2.12) instead of the second, the third and the fourth
equations in (1.8) respectively.

Let us define

(hop)(t) = /h(t = 5)l(p(t) — w(s))Pds (2.14)
0

and

()0 = [ bt = 9)e®) - o(s))ds. (2.15)
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Using Holder’s inequality, we have

(ho ) / as)lds | (910 9)). (2.16)

The following lemma gives an important property for the convolution product.

Lemma 2.2. (See Lemma 2.2, [6]) For real functions h, p € C*(RT), we have
t

LYV L /h(s)ds 2|, @17

1

h = ——|p(t)]?

(hx@)p, 2|<P( )l +3 5 7
0

We use the standard Lebesgue and Sobolev spaces with their usual scalar prod-
ucts and norms. Define the following space:

V={veH (Q);v=0 on Iy}. (2.18)
The well-posedness of system (1.7) - (1.9) is given by the following theorem.

Theorem 2.3. Let ki € W2L(RY) n WELo(RT).  Assume that (u®,0°,w°) €
(H?NV)3, (ut, vl wh) € V3 and 0g € H?(Q) N HY(Q), 01 € HY(Q) with

%—f—i—TlUO—l—O’l(’UO—F’wO) = 0, on Iy,
%—”VO + 7-21)0 = 0 on F1, (2'19)
ag‘,; + 730 — opu® = 0 on TI'y,

then there exists only one strong solution (u,v,w,0) of the system (1.7)-(1.9) sat-
isfying
u,v,w € L™ ([0,00); H*(Q)NV), 6 € L>([0,00); H*(Q) N HO (Q)),
Uy, Vg, wy, € L™ ([O 00) Q)),
0 € L=(]0, oo) H0 2)),
Utt, Vit, Wi, O € L([0, L*(92)).
The Theorem 2.3 can be proved, using the Galerkin method and following
exactly the procedure of [9,33,34].
3. Asymptotic behavior of solutions

In this section we study the asymptotic behavior of the solutions of system
(1.7)-(1.9) when the resolvent kernels k;, i = 1,2, 3, satisfy the following

(A2) ki(0)>0, ki(t)>0, Kki(t)<0, k;(t)>vt)(=k®), i=1,2,3

3
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. where 7, : RT — R* is a function satisfying the following conditions

—+o0
v:(#) >0, ~i(t) <0, and / v;(t)dt = +o0, i=1,2,3.
0

Multiplying the first equation in (2.4) by wus, the second by v, the third by w; and
the fourth by 6, integrating over (2, using a integration by parts, the boundary
conditions, and (2.10)-(2.12), one can easily find that the first order energy of
system (2.4) is given by

1
BO) = 1 [ (oul +pled? + oyl + pf00f) o
Q
1
45 [ (8 = naz)lul + (8, = nar)(o] + [ul)?) da

Q
1 1-— 1-—
+§/|Vv|2dx+%/|Vu|2dz+%/|Vw|2d:c
Q Q Q

k 2 (051 "
+§/|V9| d:CJr?Z/
Q i=1g
o — ow
gy
z:lﬂ

2

ou de

axi

+ v+ w

2
dx

— —Uu
8:@-

+5 [ (@lul? = K o wydry
I

J% (ks (t)|v]? — kb o v)dDy
I

+% (ks () [w]|? — K, 0 w)dT;.

N1
Theorem 3.1. Given
((u®,ul), (07, 01), (W, w'), (80, 01)) € (V x L2(2))* x (Hp(Q) x L*(Q2)).
Assume that (A1) and (A2) hold with
lim k;(t) =0, i=1,2,3. (3.1)

t—o00
Then for some tg large enough, we have, Yt > t.
If (ug, vo, wo) = (0,0,0) on T'y, then

—w f v(s)ds
0 .

E(t) < cE(0)e (3.2)
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Otherwise, If (ug, v, wp) # (0,0,0) on 'y then

/ w f y(Q)d¢ —wf'y(s)ds

E(t) <c E(O)+/k0(s)[1+e to lds pe © (3.3)
0

where
Y(t) = min{yy (t), v2(t), v3(t)}

:k2(t)/|u0|2df‘1 —|—k:§(t)/|v0|2df‘1 +kz§(t)/|w0|2df‘1
Iy Iy I

w 1s a fized positive constant and c is a generic positive constant.

and

Lemma 3.2. Under the assumptions of Theorem 3.1, the energy E(t) given by
(3.1), satisfies

dE
< = \V4 2

+ 20 [ {hwl? + B0 — k] 0w} ary

2
Iy
T2 2 2 02 i
+ 22 [ { ol + BORO ~ iy 0 v} Ty
Iy
+%/{f|wt|2+k§(t)|w0|2—k:{ow} dr;. (3.4)

Proof: Multiplying the first equation in (2.4) by u; and integrating the result by
parts over €2, we obtain

1d
§d— (prluwel® + [Vul? + By [uf?)dz
—al/z utdz (a1 + ao /Z utd:c
(9u
= [ 5, mdl (3.5)
Iy

Using Gauss’s Theorem, we have

al/z xzutdzfal/vut ZVZ dFl—al/
=1 Q L

ry v

3ut
al'i

vdz (3.6)

n
=1
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168
and
« iawudz a/wu iy dr a/iautwd:c (3.7)
1 D, 10T = 1 t{, i)dl ey s . .
1=1 T 1=1 =1
Plugging the estimates (3.6) and (3.7) into (3.5), we find that
1d
§d_ (p1|wel® + [Vul? + B, [uf*)dz
8ut i
+oq Z —vd:c + oy Z —wdx — (g Z utd:c
Q =1
= /—utdfl Jroel/vut ZVZ )dl'y +a1/wut(z v;)dly. (3.8)
i=1 ) i=1

I'y

Next, by multiplying the second equation in (2.4) by v; and integrating by parts

over (), we obtain

1d
2dt
Q

~ 0
+a1/z; a;ivtdszﬂQ/wvtd:chag/§$:vtdx
Q = Q

Q

ov
= [ 5, wdls. (3.9)

(palvel* + [Vol* + By v]*)d

IS}

Similarly, multiplying the third equation in (2.4) by w; and integrating by parts

over ) we obtain

1d
335 [ (sl + 1Vl + ByJup)da
Q
+(a1 + a2) /Za dx—l—BQ/thdac
Q =1 Q
w (3.10)

'y
Again, using Gauss’s Theorem, we get

Oég/z xzwtdxfag/uwt ;yi)dfl 042/; 5,73:
i= Q =

'y

(3.11)
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Substituting the equation (3.11) in (3.10), we obtain

1d
335 [ (slurl? + 19w + gyfuf)ds
Q
"L Ou
+o¢1/za—iwtdz
Q 1=1
- awt
—Qg Z oz, udr + B4 | vwidz
Q =1 Q
= a—ww ' — « /uw (iu')dl" (3.12)
— 81/ t 1 2 t at 7 1 .
Iy Iy =

Finally, multiplying the fourth equation in (2.4) by 6; and integrating by parts over
), we obtain

pg/ﬁttﬂtdz—k/Aﬁﬂtdzf5/A9t9td:c+o¢3/gvt thx:() (313)
Li
Q Q Q Q

Summing up the equations (3.8), (3.9), (3.12) and (3.13), using (2.10), (2.11), (2.12)
and Lemma 2.2, we deduce the desired result. O

Let us define the following functionals:

F(t) = /(2m -Vu+ (n —eg)u)pyude,
Q
F(t) = /(2m - Vv + (n — g0)v)pyvide,
Q
Fs5(t) = /(2m -Vw + (n —eg)w)pwde,
Q
= 0(p30 00,
F(t) = [(n—e0)f(ps t+03;axi) x,
Q =

where ¢ is a small positive constant, and then, we consider the following functional
F(ﬁ) ZFl(t)—l—Fg(t)+F3(t)+F4(t). (314)

The following lemma plays an important role for the construction of the Lya-
punov functional.
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Lemma 3.3. Under the assumptions of Theorem 3.1, the time derivative of the
functional F(t), satisfies

d

GEO < [maplul + pslol + pr )iy - [ malvupdr,

2

der/%(Qm.VunL (n —eg)u)dl’y

(910 dac

—(1—eo /(|Vu|2 + [Vol* + |[Vw|?)
Q

0
+ / a—Z(Qm.VU + (n —eo)v)dl'y + / E(Qm.Vw + (n —ep)w)dl'y

—/m.u|VU|2dF1 —/m.y|Vw|2d1"1

—o [(orlual + pofusl + oy s )
Q

+(Cg 4+ p3(n — 50)04 + 0(51)5) / |V9t|2d:6

—(n—so)(k—ésl)/|V9|2d:c. (3.15)

Proof: A multiplication of the first equation in (2.4) by 2m.Vu + (n — g¢)u gives

d
7 (2m - Vu+ (n —eo)u)purde

Q

= /2p1m.Vututdx+(nf€0)/p1|ut|2d:c
Q Q

+/2m.VuAudac + (n —eop) /uAudm
Q Q

+alz/ (2m.Vu + (n — eo)u )g;)dac
= 19 v

ow

+(1 + a2 Z/QmVu—i— (n—eo)u )a dx
1=1

Xq

- / Brul2m.Vu + (n — o)uldz.
Q
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Integrating by parts and using the relation divm = n, we get

d
(2m - Vu+ (n — eo)u)pyude

dt

Q
/m.l/p1|ut|2dF1 750/p1|ut|2d:c

Q
ou 9

+/(2m.Vu +(n— so)u)adl"l — /m.y|Vu| dry

Iy IR

—(1—¢&p) /|Vu| dx—i—alZ/ (2m.Vu + (n — eo)u )0 dx

=1 O

+(a1 + a2) Z/QmVu-i- (n—eo)u )g;udx
—1 1

+ﬂlso/|u|2dx—ﬂl/m.l/|u|2dF1.
Q I

Similarly, multiplying the second equation in (2.4) by (2m.Vv + (n — eo)v), inte-
grating over {2 and using integration by parts, we arrive at

7 (2m - Vv + (n — gg)v) pyuide
o)

/m vpa|ve*dly —50/p2|Ut|

Q

v
+/(2m.Vv + (n— 50>U)$drl — /m.V|Vv|2dF1

Ty Iy

—(1- 50)/|Vv|2dac +6250/|v|2da@ +ﬁ250/vwdac

Q

—mZ/QmV?H- (n—ep)v )aa dx

119

—BQ/m.V|v|2dl"1 —ﬁQ/m.uvwdFl
Fl F1

- 90
+a Z /(2m Vv + (n—ego)v) 8zt- dx.
i=1g ¢

Also, we multiply the third equation in (2.4) by (2m.Vw+ (n—ep)w) and integrate
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over €), using integration by parts, to arrive at

% (2m - Vw + (n — go)w)pywidx

Q
/m.yp1|wt|2dfl fso/p1|wt|2d:c
T Q
—/m.u|Vw|2d1"1 + /(Qm.Vw + (n— Eo)w)g—wdl—‘l

Iy I Y
+ﬁ250/vwdx —(1- 50)/|Vw|2dx +6250/|w|2dx

Q Q Q
—(o1 + a2) Z/ 2m.Vw + (n — gg)w )8ud
o0x;

i=1 Q
fﬂg/m.y|w|2dfl fﬂQ/m.vadFl.
Ty I'y
Finally, we multiply the fourth equation in (2.4) by (n — &0)f and integrate over
Q, using integration by parts, to arrive at

a
it J

(n— 20)0(p3bs + a Z

wz

= p3(n—eo /|9t| dz — k(n —eg /|V9| dx

—d(n — o) /V@V@tdx+a3 n—eo /9,5

=1

ov

Summing the above four inequalities, we easily deduce that

d

GEO = [matouf + palu + prluwiP)irs = B [ (ol + uf)dr
Fl F1
)
- /m.l/(|Vu|2 + Vo2 + [Vw|2dTy + / G—Z(Qm.Vu + (n — eo)u)dl’y
I'y
~ o [l + ol + gy )
Q

— (1 —¢p) /(|Vu|2 + |Vo? + |Vw|?)dz + / %(2m.Vu + (n —eo)v)dl’y
Q I
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+alz/2mVu+ (n—eo)u )g;)dac

11(2

+ / %(Qm.Vw + (n —eo)w)dl'y — 4 /m.u|u|2d1"1

+ (a1 + s Z/ (2m.Vu+ (n —eo)u )gx 262/muvwd1"1

i=1 Q

0
—qu/ (2m.Vv + (n —eo)v )ade+ﬁ150/|u|2dx

11(2

0
+ﬁ250/(|v|2+|’w| )dm—(al + ag) Z/ 2m Vw—l—(n—so) )a;idl'

Q i=lg

+2ﬁ250/vwdx+agz/2m va dx + ps(n — &g /|9t| dx

Q i=lg

—k(n —eo) / |VO|2dx — 5(n — &g) / VoV dz.
Q Q

We use the fact that there exists a positive constant c3 such that

ou ow ou
aq Z/ (83@1 oz, 8mlm NVu+ axlm.Vw) dx
(9u - 89t
+O‘QZ/<8$1 ' ox; >d$+a32/2m.vvaxid:€
=a

< czmax{ag, a2, as} / (|Vu|2 + Vo2 + |Vw|? + |V9t|2) dx

and using Poincaré inequality, taking ¢ small enough, we get

% g/m.y(p1|ut|2 + polve]* + py [wi[*)dly
Iy
—&o /(P1|ut|2 + polve* + pywe]*)dz
Q
ou 2
+ / a(gm,vqu (n—eg)u)dly — /m.l/|Vu| dry
'y

—(1—¢p) /(|Vu|2 + | Vol? 4 |Vw|?)dz
Q
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dx—i—/a (2m.Vv + (n — go)v)dly

—/m.u|Vv|2dF1 _CQZ/’{) —u
‘ Xy
ry =

+ / Z—Z}(Qm.Vw + (n —go)w)dl’'y — /m.V|Vw|2dF1

Iy

+ (c3 + p3(n —eo)eq + C(€)9) / NCARE
Q

— (n —g0)(k — d¢) / |VO|2da.

The proof of Lemma 3.3 is completed. O
Now, we introduce the Lyapunov functional. So, for NV > 0 large enough, let
L(t) = NE(t) + F(t). (3.16)

Applying Young’s inequality and Poincaré inequality to the boundary integrals we
have, for £ > 0,

/gy(2m Vu+ (n—ep)u)dl'y < ¢ /|Vu|2dz+/m v|Vu|?dl'y
I'y
i 2
v 2 2
aV(Qm Vuo+(n—ego)v)dl'y < ¢ |Vol|*dx + | m.v|Vou|=dT
T Q
v |?
L
'y
and
ow 5 5
ey —(2m.Vw + (n —ego)w)dl'y < ¢ |[Vw|“dx + m.V|Vw| dry
I'y
“ /y
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By rewriting the boundary conditions (2.10), (2.11) and (2.12) as

? = —71{us +ki(t)u — ki (t)ug — k] ©u}, on Ty xRT,
v
? = —7mo{vs + ka(t)v — ka(t)vo — kb © v}, on Ty xRT,
v
ow , I
5% = —73{w + ks(t)w — ks(t)wo — k3 @w}, on Ty xRT,
v

and combining all above relations, we obtain

dL N N
R /|ut| ary+ 2 [ B,
I
N 1"
- (1—5)/m.1/|Vu|2dF1 — 27—1 /kl o udl’y
IS
—(1—eg—e—C-ki(t)) / |Vu|*dz
Nt Nt
7(th m.vp, /|vt| dr'y + 22/k2( )[v°|2dI,
IS

N
—(1 —5)/m.u|Vv|2d1"1 - ;2 /k:2 ovdly

I

— (1 —gg—e—C.E2()) /|Vv|2dac

Nt Nt
— (T?’ —C. —m.vp, /|wt|2dF1 + _3/k§(t)|w0|2d1“1

N
(1-¢ /m v|Vw|*dl'y — ;3 /ks o wdl

S (- ey — CLR(D)) / IVl da
Q

dx

—<o [ (pubud? + plunl + pufur?)

Q
n
7622/
=16

ow

2
—u| dx
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— (N6 —c3— ps(n—ep)eqa — C(e1)9) / AR
Q
— (n—eo)(k — deq) / |VO|*da
Q

+C€/|k’1®u|2dF1+C€/|k§®v|2dF1+C€/|kg®w|2drl

Ty I'y I

+C€kf(t)/|u0|2dF1+C’5k§(t)/|vo|2dl“1 +C€k§(t)/|w0|2dl“1.
Iy I'y I

Now, we take

1k
g =E£p <m1n{§,g} (317)

Once ¢ is fixed, we pick N large enough so that

Nty > 2(C: 4 max |m.vp|),
N7o > 2(C.+ max|m.vps|),
Nt3 > 2(C: 4 max |m.vp|),
N6 > c3+p3(n—eo)ea + C(e)d.

Using the fact that lim; o k;(t) = 0 for i = 1,2, 3, and (2.16) , we arrive at

dL
E(t) < -CiE(?)

+C / {71 Ok O] + 72 (k3 (E)[°* + 75 (8)k3 (8)[w®|*} dTy
'

—C3/{kziou+k;§ov+kzéow}dl"1, Yt > to (318)

I

for some o large enough and some positive constants C1, Co and Cs.
If () = min {~;(t),vo(t), v3(t)} for t > to, we multiply both sides of (3.18) by
1 (t) to get

YL @) < - e e

dt
+ G / {1 O O’ + 75Ok (010 + 75 (6)k5 (1)[w°[* } dTy

Iy

—'y(t)Cg/{kiou+k§ov+kéow}df1
I
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< — Cr(DE()
e / (1L OB OWOP + 75 (ORI +15(£)k2 (1) w2} Ty

I
e / (11 () (~k1)’ 01 + 4 (8) (—kp) 00 + 75 (t)(—k}) 0 w} dT',
I

Vit > to.
Using (A2) and the fact that v,(¢) is nonincreasing, we obtain

W% < —cnnEe

+Cs / {1 O O + 5 (R O)1° + 5 (k5 (1)[w”[*} dIy

Iy
+03/{71<t)k1' o+ Yy(t)ky 0 vd + Y5 (k5 0w} dly, Ve > to.
Iy

Next, by using (3.4), we easily see that

W% < —ennEe

e / (R0 + K3(0)[o° + K3 (1) w2} dT,
I
dFE

—C—, Vt>t
dta = L0,

which yields

W50+ 0% < —CrE®)

e / [R2(0)[u®2 + K201 + K2(8)[w® 2} dTy,
I'y

= (Y(OL(t) + CE(t) — ' (1) L(t)

< —Ciry(H)E(t) + 04/ [k (O)]u®? + k3 (6)[°* + k3(8)|w”[?] dTs. (3.19)
'y

Again using the fact that v, (¢) is noninceasing and setting

Li(t) = v(t)L(t) + CE(t) ~ E(t), (3.20)
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estimate (3.19) gives

—Li(t) < —wy(t)La(t)
+c/k§(t>|u0|2dr1

+c/k§(t)|v0|2dr1

I'y

+f/@@mWﬂm vt > to

I'y
(i) if u® = 0% = w® = 0 on I'y, then (3.21) reduces to

%Ll(t) S —wv(t)Ll(t), Vit Z to.

A integration over (to,t) yields

7wft'y(s)ds
E(t) < cE(tp)e ' , VEt>to
So we get
—w f (s)ds
B <cBO)e 1T sty

(ii) if (u®, 0%, w®) # (0,0,0) on 'y, then (3.21) gives

d
dt

where

Cl == C/|UO|2dF1, 02 == C/|UO|2dF1, Cg = c/|w0|2dF1.
Iy Iy I

— L1 (t) < —wy(t) L1 (t) + C1E3(t) + Cok3(t) + Csk3(t) Vt > to,

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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In this case, we introduce

La(t) = L1(t)

—w fos)ds w | (0
—Chie 1o /k

7wft'y(s)ds !

—Che "0 /k%(s)e to ds

o fads po e fade
—(Cze 1o / d

to

Differentiating Lo(t) and using (3.21), we find that

%M@g—wmﬂﬂm Vit > to. (3.27)

Again, integrating over (to,t), we obtain

—w [ v(s)ds
Lg(t) < Lg(to)e o , VYt > to, (328)
which implies
¢
—w [ y(s)ds
Ll(t) < Ll(to)e to
el [ s
+ Cl/kzl(s)e fo ds|e to
to
P el n0d e [ (s
+ C’g/kg(s)e to ds|e ‘o
to
t

3

W AOd \ —w [ A(s)ds
+C3 /kg(s)e to dse ‘o vt > to.

to

Using (3.20) and (3.4), then we obtain for some positive constant C

to t
w (s8)ds —w [~(s)ds
B@) <cB@) 17"

t
T1 w [ v(¢)d¢ w bfov(s)ds

t t
—w [y(s)ds
+C Cl/kf(s) — e o ds pe 0!
0

€
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t r H to t
w [ v(Q)d¢ w (s)ds —w (s)ds
+C Cg/k%(s) ;Jre to ds pe i e ™
c
0 L
/ [ f (€)d¢ tfo (s)d f (s)d
w ] w s)ds —w s)ds
+C Cg/k%(s) ;Jret“ ' dsbe 0 e b .
c
0 L

This completes the proof of Theorem 3.1

Remark 3.4. As in [21], here our result gives more general decay rates for which

the

exponential and polynomial decay estimates are just particular cases of (3.2)

and (3.3). In fact, we obtain exponential decay for ~,;(t) = ¢ and polynomial decay

for

v;(t) = c(1+1)71, i =1,2,3, where c is a positive constant.
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