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abstract: Various extensions of the Struve function have been presented and
investigated. Here we aim to introduce an extended Struve function involving the
k-gamma function. Then, by using a known differential operator, we introduce a
sequence of functions associated with the above introduced extended Struve function
and investigate its properties such as generating relations and a finite summation
formula. The results presented here, being very general, are also pointed out to
yield a number of relatively simple identities.
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1. Introduction and preliminaries

Due mainly to their significant importance and applications in various research
fields, for example, engineering, mathematics and physics, diverse operational tech-
niques and their extensions have been investigated (see, e.g., [11,12], [13], [14], [16],
[17], [19,20,21], [29], [35], [37], [38]). A remarkably large number of sequence of
functions involving a variety of special functions have been developed (see, e.g.,
[38]; see also [1,2,3,4,5,10,36]).

Here we aim to recall and investigate a new sequence of functions involving the
generalized extended Struve function W

α,µ
k,l,b,c,ξ(z) (1.8) by using operational tech-

niques. In particular, some generating relations and a finite summation formula
associated with the newly introduced sequence (2.5) are presented. The results pre-
sented here, being very general, are also pointed out to yield a number of relatively
simple identities.
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For our purpose, we begin by recalling the Struve function and its generaliza-
tions. The Struve function is defined by (see, e.g., [9, p. 675])

Hl(x) =

∞
∑

n=0

(−1)n
(

x
2

)2n+l+1

Γ(n+ l + 3
2 )Γ(n+ 3

2 )
(l ∈ C) . (1.1)

Here and in the following, let C, R+ and N be the sets of complex numbers,
positive real numbers, and positive integers, respectively, and let N0 := N ∪ {0}.
The Struve function in (1.1) has been extended by many authors (see, e.g., [6],
[7,8], [18], [22,26], [30], [31], [32], [33], [34])). Bhowmick [7] extended the Struve
function in (1.1) as follows:

Hλ
l (x) =

∞
∑

n=0

(−1)n
(

x
2

)2n+l+1

Γ(λn+ l + 3
2 )Γ(n+ 3

2 )

(

l ∈ C; λ ∈ R
+
)

. (1.2)

Kanth [18] generalized the extended Struve function in (1.2)

Hλ,α
l (x) =

∞
∑

n=0

(−1)n
(

x
2

)2n+l+1

Γ(λn+ l+ 3
2 )Γ(αn+ 3

2 )

(

l ∈ C; α, λ ∈ R
+
)

. (1.3)

Singh [30] presented another extension of (1.2)

Hλ
l,ξ(x) =

∞
∑

n=0

(−1)n
(

x
2

)2n+l+1

Γ(λn+ l
ξ + 3

2 )Γ(n+ 3
2 )

(

l ∈ C; λ, ξ ∈ R
+
)

. (1.4)

Singh [31] gave the following extension (see also [22])

Hλ,α
l,µ (x) =

∞
∑

n=0

(−1)n

Γ(αn+ µ)Γ(λn+ l+ 3
2 )

(x

2

)2n+l+1
(

l, µ ∈ C; α, λ ∈ R
+
)

. (1.5)

Orhan and Yagmur [27,28] presented the following extension

Hl,b,c(z) =
∞
∑

n=0

(−c)n

Γ(n+ 3/2)Γ(n+ l + b
2 + 1)

(z

2

)2n+l+1

(l, b, c ∈ C) . (1.6)

Nisar et al. [23] gave the following generalization

aW
α,µ
l,b,c,ξ(z) =

∞
∑

n=0

(−c)n

Γ(αn+ µ)Γ(an+ l
ξ + b+2

2 )

(z

2

)2n+l+1

(1.7)

(

µ, l, b, c ∈ C; α, ξ ∈ R
+; a ∈ N

)

.

We recall the following extended Struve function (see [25]; see also [24])

W
α,µ
k,l,b,c,ξ(z) :=

∞
∑

n=0

(−c)αn

Γk(αn+ µ)Γk

(

αn+ l
ξ + b+2

2

)

(z

2

)2αn+l+1

(1.8)



Sequence of Functions Involving an Extended Struve Function 131

(

c, z ∈ C; k, α, ξ ∈ R
+; ℜ(µ) > 0, ℜ(l/ξ + b/2 + 1) > 0

)

, (1.9)

where Γk denotes the k-gamma function defined by (see [15])

Γk(x) :=

∫ ∞

0

tx−1
e
− tk

k dt
(

ℜ(x) > 0; k ∈ R
+
)

. (1.10)

Then, by using operational techniques, we introduce a sequence of operators (2.5)
involving the extended Struve function (1.8) and investigate its generating relations
and finite summation formulas. We further present some graphical interpretations
for the sequence.

2. Certain formulas involving diverse differential operators

Here we recall some differential operators and introduce a sequence of operators
involving the extended Struve function (1.8). Here and in the following, pr(x)
denotes a polynomial in x of degree r ∈ N0. We recall the following differential
operators

D :=
d

dx
, Ts := x (s+ xD) , T a,s

x := xa (s+ xD) , (2.1)

where a, s ∈ C are constants and x is a variable.
Mittal [19] gave the Rodrigues type formula for the generalized Lagurre poly-

nomials

T (α)
rn (x) :=

1

n!
x−α exp (pr (x))D

n
[

xα+n exp (−pr (x))
]

. (2.2)

Mittal [20] also proved the following relation for (2.2)

T (α+s−1)
rn (x) =

1

n!
x−α−n exp (pr (x)) (Ts)

n [xα exp (−pr (x))] . (2.3)

Srivastava and Singh [38] introduced and investigated a sequence of operators

V
(α)
n (x; a, r, s) defined by

V (α)
n (x; a, r, s) :=

x−α

n!
exp {pr (x)} (T

a,s
x )

n
[xα exp {−pr (x)}] . (2.4)

By modifying the sequence in (2.4), we introduce a sequence of operators in-
volving the extended Struve function (1.8)

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s) :=

x−α

n!
W

λ,µ
k,l,b,c,ξ [pr(x)] (T

a,s
x )

n

×
{

xα
W

λ,µ
k,l,b,c,ξ [−pr(x)]

}

, (2.5)

where notations and conditions are found and modified from (1.9), (2.1) and (2.4).
We collect some results involving operators T a,s

x (see, e.g., [21,29,38]) in the
following lemma. Here and in the following, (λ)n denotes the Pochhammer symbol
(see, e.g., [36, p. 4]).
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Lemma 2.1. Let β, s ∈ C and a ∈ C \ {0}. Then each of the following identities

holds.

(T a,s
x )n

(

xβ
)

= (a xa)n
(

s+ β

a

)

n

xβ (n ∈ N0) . (2.6)

∞
∑

n=0

tn

n!
(T a,s

x )n
(

xβpr (x)
)

= xβ (1− axat)−
β+s
a pr

(

x (1− axat)−1/a
)

, (2.7)

or, equivalently,

exp (tT a,s
x )

(

xβpr (x)
)

= xβ (1− axat)
−

β+s
a pr

(

x (1− axat)
−1/a

)

. (2.8)

∞
∑

n=0

tn

n!
(T a,s

x )
n (

xα−anpr (x)
)

= xα (1 + at)
−1+α+s

a pr

(

x (1 + at)
1/a

)

, (2.9)

or, equivalently,

exp (tT a,s
x )

(

xα−anpr (x)
)

= xα (1 + at)
−1+α+s

a pr

(

x (1 + at)
1/a

)

. (2.10)

(T a,s
x )n (xuv) = x

∞
∑

m=0

(

n

m

)

(T a,s
x )n−m (v)

(

T a,1
x

)m
(u) . (2.11)

Proof: We find

(T a,s
x )

n (
xβ

)

= (s+ β)(s+ β + a)(s+ β + 2a) · · · {s+ β + (n− 1)a} xna+β

= an
s+ β

a

(

s+ β

a
+ 1

) (

s+ β

a
+ 2

)

· · ·

{

s+ β

a
+ (n− 1)

}

xna+β ,

which is the right sided expression of (2.6). By using (2.6), (2.7) and (2.9) can be
proved. We omit the details.

✷

3. Generating relations

Here we establish two generating relations for the sequence in (2.5) in the fol-
lowing theorem.

Theorem 3.1. Each of the following generating relations holds.

∞
∑

n=0

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s)x−antn

= (1− at)
−α+s

a W
λ,µ
k,l,b,c,ξ [pr(x)]W

λ,µ
k,l,b,c,ξ

[

−pr

(

x (1− at)
−1/a

)]

(3.1)
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and

∞
∑

n=0

V (λ,µ;k,l,b,c,ξ;α−an)
n (x; a, r, s)x−antn

= (1 + at)−1+α+s
a W

λ,µ
k,l,b,c,ξ [pr(x)]W

λ,µ
k,l,b,c,ξ

[

−pr

(

x (1 + at)1/a
)]

,

(3.2)

where notations and conditions are found and modified from (1.9) and (2.5).

Proof: We prove (3.1). From (2.5), we have

∞
∑

n=0

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s) tn

= x−α
W

λ,µ
k,l,b,c,ξ [pr(x)] exp (tT

a,s
x )

{

xα
W

λ,µ
k,l,b,c,ξ [−pr(x)]

}

.

(3.3)

Applying (2.8) to the right side of (3.3), we obtain

∞
∑

n=0

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s) tn

= (1− axat)
−α+s

a W
λ,µ
k,l,b,c,ξ [pr(x)]W

λ,µ
k,l,b,c,ξ

[

−pr

(

x(1 − axat)−1/a
)]

,

(3.4)

which, upon replacing t by x−at, yields (3.1).
We first replace α by α− an. Then, similarly as in the proof of (3.1) with the

aid of (2.10), we obtain (3.2).
✷

4. Finite Summation Formulas

Here we present two summation formulas for the sequence in (2.5) in the fol-
lowing theorem.

Theorem 4.1. Let n ∈ N0 and α, β ∈ C. Then each of the following summation

formulas holds.

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s)

=
n
∑

m=0

(axa)m

m!

(

α− β

a

)

m

V
(λ,µ;k,l,b,c,ξ;β)
n−m (x; a, r, s) ,

(4.1)

and

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s) =

n
∑

m=0

(axa)
m

m!

(α

a

)

m
V

(λ,µ;k,l,b,c,ξ;0)
n−m (x; a, r, s) , (4.2)

where notations and conditions are found and modified from (1.9) and (2.5).
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Proof: Let

L :=
∞
∑

n=0

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s) tn.

Using the generalized binomial theorem, we have

(1− axat)
−α+s

a = L, (1− axat)
−

α−β
a

= (1− axat)
− β+s

a

∞
∑

m=0

(

α− β

a

)

m

(axat)
m

m!
.

(4.3)

Applying (4.3) to the right side of (3.4), we get

L =(1− axat)
−

β+s
a W

λ,µ
k,l,b,c,ξ [pr(x)]

∞
∑

m=0

(

α− β

a

)

m

(axat)
m

m!

×W
λ,µ
k,l,b,c,ξ

[

−pr

(

x(1− axat)−1/a
)]

.

(4.4)

Using (2.8) in (4.4), we obtain

L =x−β
W

λ,µ
k,l,b,c,ξ [pr(x)]

∞
∑

m=0

(

α− β

a

)

m

(axat)
m

m!

× exp (t T a,s
x )

{

xβ
W

λ,µ
k,l,b,c,ξ [−pr(x)]

}

.

Then we have

L =x−β
W

λ,µ
k,l,b,c,ξ [pr(x)]

×

∞
∑

n=0

∞
∑

m=0

(

α− β

a

)

m

(axat)
m

m!n!
(T a,s

x )
n
{

xβ
W

λ,µ
k,l,b,c,ξ [−pr(x)]

}

tm+n

=x−β
W

λ,µ
k,l,b,c,ξ [pr(x)]

×

∞
∑

n=0

n
∑

m=0

(

α− β

a

)

m

(axat)m

m!(n−m)!
(T a,s

x )
n−m

{

xβ
W

λ,µ
k,l,b,c,ξ [−pr(x)]

}

tn.

(4.5)
In view of (2.5), we find

x−β
W

λ,µ
k,l,b,c,ξ [pr(x)] (T

a,s
x )

n−m
{

xβ
W

λ,µ
k,l,b,c,ξ [−pr(x)]

}

= (n−m)!V
(λ,µ;k,l,b,c,ξ;β)
n−m (x; a, r, s) .

(4.6)

Applying (4.6) to the second identity of (4.5), we get

∞
∑

n=0

V (λ,µ;k,l,b,c,ξ;α)
n (x; a, r, s) tn

=
∞
∑

n=0

n
∑

m=0

(axa)
m

m!

(

α− β

a

)

m

V
(λ,µ;k,l,b,c,ξ;β)
n−m (x; a, r, s) tn,
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which, upon equating the coefficients of tn, yields the desired identity (4.1).
The identity (4.2) is a special case of (4.1) when β = 0. The identity (4.2) can

be proved by using (2.11). ✷

5. Concluding remarks

The results presented here, being very general, can yield a number of identities
involving relatively simple sequences reduced from the sequence (2.5). For example,
the results in Theorems 3.1 and 4.1 when k = 1 give the corresponding identities
involving the familiar gamma function.
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