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1. Introduction

In the theory of hypergeometric and generalized hypergeometric series, classical
summation theorems such as those of Gauss, Gauss second, Kummer and Bailey
for the series 2F1; Watson, Dixon, Whipple and Saalschütz play a key role. Appli-
cations of the above mentioned theorems are well known now. For very interesting
applications of these theorems, we refer a paper by Bailey [1].

Here we shall mention the following summation theorems that will be required
in our present investigation.

Gauss summation theorem: [2,3,4]

2F1

[

a, b

c
; 1

]

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (1.1)

provided Re(c− a− b) > 0.
A known result: [4]

2F1

[

−k, a+ k

1 + a− c
; 1

]

=
(−1)k(c)k
(1 + a− c)k

, (1.2)

which can be obtained by (1.1).
Kummer summation theorem: [2,3,4]

2F1

[

a, b

1 + a− b
;−1

]

=
Γ(1 + 1

2a)Γ(1 + a− b)

Γ(1 + a)Γ(1 + 1
2a− b)

. (1.3)
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The aim of this note is to provide a new proof of the following classical Dixon’s
summation theorem [2] for the series 3F2 viz.

3F2

[

a, b, c

1 + a− b, 1 + a− c
; 1

]

(1.4)

=
Γ(1 + 1

2a)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + 1
2a− b− c)

Γ(1 + a)Γ(1 + 1
2a− b)Γ(1 + 1

2a− c)Γ(1 + a− b− c)
,

provided Re(a− 2b− 2c) > −2.

2. A new proof of Dixon’s summation theorem (1.4)

Consider the following integral valid for Re(b) > 0

I =

∫ ∞

0

e−t tb−1
2F2

[

a, c

1 + a− b, 1 + a− c
; t

]

dt.

Expressing the generalized hypergeometric function 2F2 in series, we have

I =

∫ ∞

0

e−t tb−1
∞
∑

k=0

(a)k (c)k tk

(1 + a− b)k (1 + a− c)k k!
dt.

Changing the order of integration and summation, which is easily seen to be
justified due to the uniform convergence of the series, we have

I =

∞
∑

k=0

(a)k (c)k
(1 + a− b)k (1 + a− c)k k!

∫ ∞

0

e−t tb+k−1dt.

Evaluating the gamma integral and using the result

(a)k =
Γ(a+ k)

Γ(a)
,

we have

I = Γ(b)

∞
∑

k=0

(a)k (b)k (c)k
(1 + a− b)k (1 + a− c)k k!

. (2.1)

Finally, summing up the series, we get

I = Γ(b) 3F2

[

a, b, c

1 + a− b, 1 + a− c
; 1

]

. (2.2)

On the other hand, writing (2.1) in the form

I = Γ(b)
∞
∑

k=0

(−1)k (a)k (b)k
(1 + a− b)k k!

{

(−1)k (c)k
(1 + a− c)k

}

.
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Using (1.2), this becomes

I = Γ(b)

∞
∑

k=0

(−1)k (a)k (b)k
(1 + a− b)k k!

2F1

[

−k, a+ k

1 + a− c
; 1

]

.

Expressing 2F1 as a series, we have after some simplification

I = Γ(b)
∞
∑

k=0

k
∑

m=0

(−1)k (a)k (b)k (−k)m (a+ k)m
(1 + a− b)k (1 + a− c)m k! m!

.

Using the identities

(a)k(a+ k)m = (a)k+m and (−k)m =
(−1)m k!

(k −m)!
,

we have, after some calculation

I = Γ(b)

∞
∑

k=0

k
∑

m=0

(−1)k+m (a)k+m (b)k
(1 + a− b)k (1 + a− c)m m! (k −m)!

.

Now, using a known result [4, p.57, Equ.(2)]

∞
∑

n=0

n
∑

k=0

B(k, n) =

∞
∑

n=0

∞
∑

k=0

B(k, n+ k),

we have

I = Γ(b)
∞
∑

k=0

∞
∑

m=0

(−1)k (a)k+2m (b)k+m

(1 + a− b)k+m (1 + a− c)m m! k!
.

Using the identities

(a)k+2m = (a)2m(a+ 2m)k and (b)k+m = (b)m(b+m)k,

we have, after some simplification

I = Γ(b)
∞
∑

m=0

(a)2m (b)m
(1 + a− b)m (1 + a− c)m m!

×

∞
∑

k=0

(−1)k(a+ 2m)k (b+m)k
(1 + a− b+m)k k!

.

Summing up the inner series, we have

I = Γ(b)

∞
∑

m=0

(a)2m (b)m
(1 + a− b)m (1 + a− c)mm!

× 2F1

[

a+ 2m, b +m

1 + a− b+m
;−1

]

.

Now using Kummer’s summation theorem (1.3) and then applying the identity

(a)2m = 22m
(

1

2
a

)

m

(

1

2
a+

1

2

)

m

,



76 S. Jun, I. Kim* and A. Rathie

we get after some simplification

I =
Γ(b)Γ(1 + 1

2a)Γ(1 + a− b)

Γ(1 + a)Γ(1 + 1
2a− b)

∞
∑

m=0

(12a)m (b)m

(1 + a− c)m m!
.

Summing up the series, we get

I =
Γ(b)Γ(1 + 1

2a)Γ(1 + a− b)

Γ(1 + a)Γ(1 + 1
2a− b)

2F1

[

1
2a, b

1 + a− c
; 1

]

.

Applying Gauss summation theorem (1.1), we finally have

I =
Γ(b)Γ(1 + 1

2a)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + 1
2a− b − c)

Γ(1 + a)Γ(1 + 1
2a− b)Γ(1 + 1

2a− c)Γ(1 + a− b − c)
. (2.3)

Therefore, equating (2.2) and (2.3), we get the desired Dixon’s summation
theorem (1.4).

This completes our new proof of Dixon’s summation theorem for the series

3F2(1).
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