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Holder Regularity for Degenerate Parabolic Equations with Variable Exponents

Hamid EL Bahja

ABSTRACT: In this paper, we discuss a class of degenerate parabolic equations with variable exponents. By
using the Steklov average and Young’s inequality, we establish energy and logarithmic estimates for solutions
to these equations. Then based on the intrinsic scaling method, we prove that local weak solutions are locally
continuous.
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1. Introduction

Partial differential equations with nonlinearities involving variable exponents have attracted an in-
creasing amount of attention in recent years. The development, mainly by Ruzicka [9,10], of a theory
modeling the behavior of electrorheological fluids, an important class of non-Newtonian fluids, seems to
have boosted a still far from completed effort to study and understand this type of equations. Other
important applications relate to image processing [5], elasticity [13] or flows in porous media [2,3].

We will consider the parabolic equation in divergence form

uy — divA(z, t,u, Vu) = Bz, t,u, Vu) in Qp, (1.1)

where Qr = Q x (0,7], Q is a bounded domain in RY with N > 2 and 0 < T < +oo. The functions
A:Qp x RNTT — RN and B : Qp x RVt — RY are assumed to be measurable and satisfying the
following structure conditions

Az, tu, V) < C (9la,1) + [l 071 4 |01, (1.2)
B, t,u, Va)| < Ca ((a,6) + [uf 07 4 [Gulpe0 1), (1.3)
Az, t,u, Vu)Vu > Cs|Vu[P@O~1 (1.4)

where ¢(z,t) € L>°(Qr) and C;,Cy, C5 are positive constant. Throughout this paper, we will always
suppose that p(z,t) is a continuous measurable function such that

2 <p” =inf p(x,t) < p(z,t) <sup p(a,t) =p* < +oo, (1.5)
Q

Results on the existence and uniqueness of weak solutions of (1.1), together with some localization
properties, were obtained by P. Wittbold, A. Zimmermann [12], C. Zhang, S. Zhou [14], and recently S.
Ouaro, A. Ouedraogo [8].
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Our aim here is to obtain a local regularity result for local weak solutions of (1.1). In order to achieve
this goal, and since the equation is degenerate ( in fact, the diffusion coefficient vanishes when |Vu| = 0),
the idea is to study the equation within a geometry that takes this feature into consideration.

The building blocks of Dibenedetto’s intrinsic scaling is to show that the continuity of the solution at
a point follows from measuring its oscillation in a sequence of nested and shrinking cylinders, with vertex
at that point, and showing that the oscillation converge to zero as the cylinders shrink to the point. To
fully understand the technical procedure, based on the study of an alternative argument which makes use
of energy and logarithmic estimates, one has not only to be familiar with Dibenedetto’s technique (see
[6,7,11]) but also to overcome the difficulty of having a (z,t)—dependence on the exponent p.

2. preliminary and main results
The weak solutions of problem (1.1) is understood in the following way.
Definition 2.1. A local weak solution of (1.1) is a measurable function u(z,t) defined in Qp such that
1. u e L>®(0,T, L>®(Q)) with Vu € LP&H(Qr),
2. for every subset K of Q and for every subinterval [t1,t2] of (0,T]

{/K up dm]t —|—/ / {—up, + A(z, t,u, Vu).Vo}drdt

/ / (x,t,u, Vu)pdrdt,
ty

for all locally bounded tested functions o € C*(0,T,C5° ().

We can write (ii) in an equivalent way that is technically more convenient and involves the discrete
time derivative. This can be accomplished by using the Steklov average of a function (see [6] for more
details), thereby the equivalent formulation reads

1. for every compact K C Q and every 0 <t <T —h
/ {uno + [A(z, t,u, Vu)], Vo — [B(z,t,u, Vu)], ¢}dr =0, (2.2)
Kx{t}

for all p € C§°(K).

Consider a point (zg,t9) € Qr, by translation and to simplify assume (z9,%9) = (0,0). Also, let
0 < R < 1, be sufficiently small such that the cylinder

Q(R?*,R) = Kg x (—R?,0) := {z: max lz;] < R} x (=R?,0)

is a subset of Q1 and define

ut =esssup u, p~ = essinf u and w = ess osc u = pt — p.

Q(R2,R) Q(R?,R) Q(R?,R)

LN

Define the positive real number ag = (QA)pr_ for some A > 1 to be chosen later, and construct the

cylinder . .
Q(GQRP ,R) = Kpr x (—CL()RP ,0)

Assuming that
27p+

Riv < =

< ox (2.3)

consequently the inclusion Q(aORP+,R) C Q(R?, R) holds, and so that

ess osc u < w.
Q(aoRP ,R)



HOLDER REGULARITY FOR DEGENERATE PARABOLIC EQUATIONS 3

Remark 2.2. if (2.3) does not hold, then the essential oscillation w goes to zero when the radius R goes
to zero, and then there is nothing to prove.

In order to begin our approach, inside Q(CLORP+ , R) consider subcylinders of small size constructed as
follows

(0,£) + QORP" . R), 6 = (%)H_

These are contained inside Q(aoRP+,R) if

(2P7 2 — T2y L S <t* <.
wb™

Now, given v € (0, 1), to be determined in terms of the data, either
+ _w +
H(x,t) € (0,t) + QR R): u(z,t) < p +§H < I/()‘Q(@Rp ,R)‘ (2.4)

or, nothing that pt — % =pu= 4+ ¢

L
H(m,t) € (0,t) + QORY ,R) : u(z,t) > ut — %H

. (2.5)
< (1-v0) |QUOR™, R)
The analysis of this alternative leads to the following result.
Proposition 2.1. There exist positive constants vo, o € (0,1) depending on the data, such that
ess osc  u < ow. (2.6)

QUO(E)PT,E)
An immediate consequence we state the main result of this work.

Theorem 2.3. Under assumptions (1.2)-(1.5), any local bounded weak solution of (1.1) is locally Hélder
continuous.

3. Local energy and logarithmic estimates

Let 7 and p be so small that Q(7, p) C Qr. Let & denote a piecewise smooth cutoff function in Q(7, p)
such that
£€10,1], V& < oo and &(z,t) = 0 for x outside K.

Proposition 3.1. Let u be a local weak solution of (1.1) in Q. There exist positive constants C' and C’
such that, for every cylinder Q(7,p) C Qr and for every k € R

sup / (u—k)% e xtdx—i—C/ / k)+|P € dwdt
—7<t<0 K, -rJK,

g/ (u— k)% & (2, —7)dx + C’ U /K (u— k)2 € 71, dadt

/_/ w—k |vg|P +er )dxdt
+/T/pr((u—k;)i>0)da:dt}

Proof. In the weak formulation (2.2) take the testing function ¢ = +(up — k)i§p+, where

(3.1)

(up, — k) = (k — up)4+ = max{k — u,0}.
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Integrate over (—7,t), t € (—7,0), estimating the various terms separately, we have first

t t
/ / Up, 1P dxdt:/ / Upt (:l:(uh—k)ifp+) dxdt
-7 Kp -7 Kp
p+ K 2 p+71
hjo Y /_T /K,, (u— k)if (z,t)§, dedt

(3.2)
1 2 +
+ —/ (u—Fk)L & (x,t)dx
2 /i,
-1 / (u— k)% (2, —7)da.
For the remaining terms, let h — 0 and then use the structure conditions (1.2) — (1.5), then
t +
_ p
« [ T /K At T,V ((un — k)6 ) drdt —
¢
/ / Az, t,u, Vu) [:l:V(u - k)i§p+ +pT(u— k)iprLlVf} dxdt
> c(/ / )4 [PCD e duat
T (3.3)
-p" [/ G, 1) (u— k)& "' VeE|dudt
-7 JK,
/ / p(@t) ep® 1|V£|dmdtD
DT -1

By Young’s inequality and using the fact that 0 < & < 1 and pw(i)t)l > pf - imply that g pleme <

£p+,we get
/ / B)2 P07 1 — k) 167 VE | dadt

t
<e / / IV (u— k)2 [P0 2" drdt (3.4)
-7 JK,

/ / k)R |We P dzdt,
-7 JK,

/t /K b, t)(u— k)£ 1 |VE|dadt

_ pt

<¢ /77/1( u |V§| dxdt (3.5)
/ 7},5:1 pt _
8)/7T /Kp |o(x, t)] E x((u—Fk)x > 0)dzdt
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and

¢
[ [ =m0 wedsar
-7 JK,
<5”/ / |V§|p(z b dadt
e”) / / k)R e dudt,
-7 JK,

where yp denotes the characteristic function of the set F and e, & and &” are positive constants.

combining this in (3.3) we arrive at

t
/ A(z,t,u, Vu) {iV(u — k)€ £ pt(u—k)o€ T'VE| dadt
-7 JK,

>0 </_T/ k) [P0 e e
—/_/ (= k)2 [VEP” dodt
K ) / R (19D ¢ ) dedt

—/T/Kplqﬁ(x,t)hf—l5”+x((u—k)i >0)dxdt>,

By the same method, the last term of (2.2) becomes

¢
/ / B(z,t,u, Vu)(u — k)i§p+ dxdt

<02(// k) o [P0 gp” dxdt—i—/ / u— k)2 e dudt
-TJK, -7 JK,

/ / k)20 er” dudt
Ik,
P+ +
pt—1 £P o
+/_T /K,, [o(z, O)[P7 & x ((u—Fk)x > 0) dxdt),

where 0 < Cy < (.
Using Young’s inequality once again we obtain

t
/ / (u — k)R (|V§|PW> + §p+) dzdt
-7 JK,

<c(/T/K w—k |V§|” e )dazdt

~/77-/K 1+ )i>0)dxdt)
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/tT /K IV(u—k)s|P € dudt
< C(/_T/ k) [P0 et drat (3.10)
/—7/ k)x >0)¢&P dmdt)

Hence, by recalling that ¢ € L*°(Q2r) and putting (3.7), (3.8), (3.9) and (3.10) into (2.2), we get the
desired result. O

and

Now, introduce the logarithmic function

0 =0 2000 = ()

where Hif = ess sup |(u — k)+| and 0 < ¢ < Hif. To avoid the value zero of %)* we will take our estimates
Q(7:p)

in a smaller sets in K'r where wi is a positive function ( see sets Sy in the proof of Lemma 4.2 and S in

the proof of Lemma 4.7). In the cylinder Q(7, p), we take a cutoff function satisfying & € [0, 1], |[V¢| < 0o

and ¢ is independent of ¢ € (—7,0).

Proposition 3.2. Let u be local weak solution of (1.1) in Qp. There exists a positive constant C such
that for every cylinder Q(7,p) € Qr and for every level k € R,

€55 sup / [wi (w)] ? £p+ dz
K/’

—7<t<0
< W) e d
~/K,)><{—-r} [ (U)} !

e (/_OT /K,, ¥= () [(0F) ()] € dudt

-+/ﬁ1 @ [ @] (Ve 1) deds
+/_OT/K o) (IVal”™ + 1+ ¢ ) daat

* /, OT /K Jul”" () [(@bi)’(u)]%”*dxdt).

Proof. In (2.2) we take the testing function ¢ = 2¢= (uy,) [(F) (u)] 7" By direct computation we get

(v w)" = {@w*w)'} .

Therefore by integrating in time over (—7,t) for t € (—7,0), estimate the various terms separately. The
first term gives

(3.11)

/:/ “’“t wi(“h) (%) (un)] §p+}dxdt

/77/K ), & dudt (3.12)

W) e de - | [0 ()] & da.

hﬂ@ K,x{t} K,x{-7}
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For the remaining term, when h — 0, we obtain
/ t /K Al 1, V).V (20 () [(6%) ()] €0 dvd
t 2
C p(z,t) + +\/ p+d d
zo( [ [ muren i) () ) s
t
-/ [ ot ) (05 )] ¢ (eldoat (3.13)
= [ areouE ) [0 ) ¢ v

t
[ et w [ ] € veldede ).
-7 JK,
Therefore, by the same method we used in Proposition 3.1 and the fact that ¢ € L°(Q2r) we obtain that
t
| At .9 (26% ) [0%) )] ) dode
-TJK,
t
>Cy (/ / IVulP@D (14 ¢F (u)) ((wi)’ (u))2£p+dxdt
-TJK,
t
[ ] @[y ) e dade
—7JK
R (3.14)
=[] Wt [y @) e dear

) [ (@) (|vg|p+ n 1) dadt

—/tT/K W (w) (|V£|”++1) dxdt),

P

|

—

—
<

and
/ / ’B(x,t,u,Vu) (2¢i(uh) [(0F) (u)] 5?*) ’ dudt
-7 JK,
t Pla) gt NN
<c2</_T/Kp|vu| v (u) [(¢ ) (u)} ¢ dudt
[ v [0 ) ¢ dade (3.15)
t
o[ ) [0 @) ¢ daar
' + v 12D pt ! . 4
S e @ e s [ e dor).
-TJK, -rJK,
where 0 < Cy < C. Hence, putting (3.14) and (3.15) into (2.2) we get the desired result. O

4. continuity of the weak solutions

In this section we analyze the alternative and prove proposition 2.1. By assuming that (2.4) is verified,
the following Lemma determine the number vy and guarantee that the solution u is above a smaller level
within a smaller cylinder.
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Lemma 4.1. There exists vy € (0,1) depending on the data, such that if (2.4) holds true then

u(z,t) > p~ + % a.e. in (0,t")+Q <t9 (g) ,g) . (4.1)

Proof. Up to translation we may assume that (0,¢*) = (0,0). Define two decreasing sequences of positive
numbers

R
kn + 2y 2

w
Ry = on-+1’ =pn 4 on+2’

N[

+ n=20,1,..,

construct the family of nested and shrinking cylinders Q(@Rﬁ+,Rn), and let 0 < £, (z,t) < 1 be a
piecewise smooth functions in Q(GRff , Ry) such that

{f =1in QORY,,, Ryt1), £, =0 on 9,QORE", Ry,),

n+1 pt(nt1)
V€, < 250, 0< ()0 < 2

Now, by using the energy inequality (3.1) for the functions (u — k,,)_ we get

sup / (u—kn)? 55: (x,t)dx
—0Ry" <t<0”/ Knrn
/ / (u—kn)_|P~ € dudt
oR:" KR,L
< C{/ / (u— fp “e,)e dedt
or:y" JKg,

/ / ((w—kp)— > 0)dxdt
ory JKg,

(4.2)
u—k V¢, a +¢& dxdt}
/9}3’7+ ‘/I<Rn (l | )
C2p+(n+1) V2 dad
<(—[| = _
- Rr* (9 /_é)Ri‘,i+ /KRn (= kn)— dodt
0 +
+ / / (u— k)" dudt
ory JKn,
/ / ((u—Fkp)— >0) dxdt)
oR%" KRn
Using the fact that (v —k,)_ =0 or
w w w
_ — (4 — z < Z )
(ko) = =)+ S 5 <Y, (4.3

we get

(u—Fkp)2 >0(u— k)" . (4.4)
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Then the above estimates read

sup / (u— kn)’i_ 55; (x,t)dx
—9RY <t<0” Krn

+, / . / k)|~ €2" dudt

C2P+("+1) 0) dxd
<C—sF—— = — t
B 9Rp+ { }</0Rﬁ+ /KR (u - >0)do )

C — / / (u—"Fyp)— >0 dmdt)
HRN ( oR%" KRn )

Here we used Young’s inequality for the right terms.
Let us now consider the change of variables £ = 5 and define the functions

(., 1) = u(,t), &,(,1) =&,(,1).

/ . / (T — kpn)— > 0) dadt,
Ry JKg,

sup / (a— kn)’i_ £np+ (z,t)dz
KRn

—RY <t<0
pt +
w\P
p-
I N e (7) 4
RY, KRr,

Next, by using Holder’s inequality, Proposition 3.1 of Chapter I in [6] and (4.6), we get

0 4 B
/ . / (@ —kn)? &, dadt
_Rn KRn
P~ (N+p—) N4p—

0 ] N B P
/ / {(u— kn)_¢&, ‘] dxdt AP
—Rr" K,

Then, for

the inequality (4.5) becomes

]

p

_ N+p—
<C [ sup / (@ — kn)? fnp+(x,f)dx]
—RE <i<0’/ Kry
0 R B
X U / V(@ — k)P &) dadt
R JKnp,
0 _ N
B - Ntp~ P
+ / (@ — kn)~ |V§n| dxdt} AR
R JKnp,

A O

0 - - _ _
/ / (@ — ko) €7 dodf > / / k)P dwd
R JKnp, - Kr

n n41

On the other hand

Y

|kn - kn+1| n+1

1 w\P"
) (E) An-
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Combining (4.7) and (4.8), we get that

+

4P 14 L

An+1 S CFAn Ntp . (49)

An direct computation leads to
Ry Ra)| T .
n o itn p_(pT+N)
- <P HNR N (4.10)
‘Q(warla Rn+1)‘
Next, define the numbers
X, = An
" QR LR,

dividing (4.9) by Q(Rf:H, Ry +1) and using (4.10), we obtain the following recursive relation

P

1+ =
Xn+1 < C4np+Xn BRI

Therefore, Lemma 4.1 of Chapter I in [6] implies that if

_N+4p~ _p+(p_+1\7)2
X() < C r- 4 P = 1, (411)
then
X, — 0. (4.12)
However, (4.11) is nothing but the assumption (2.4). Hence, the result easily follows from (4.12). m

N +
Now consider the time level —f = t* — 6 (£)” . From the conclusion of Lemma 4.1, we have
R . w .
u(z, —t) > u —I—Za.e. nzeKg,

we will use this time level as an initial condition to bring the information up to ¢ = 0, and therefore to
obtain an analogous inequality in a smaller cylinder. A first step in this direction is given by the following
result.

Lemma 4.2. For every vy € (0,1), there exists a positive integer s depending on the data, such that

Yl < vi|Ka|, ¥t € (—1,0). (4.13)

z€ Kz, u(x,t)<;f—|—2s1 <

Proof. Consider the cylinder Q(%, %) and write the logarithmic estimate (3.11) over this cylinder for the
function (u — k)_ with

_ w
k=u +Z and ¢ = gtz
where n is to be chosen later. Defining
k—u<H, =esssup (u—;ﬁ—g) }<E (4.14)
Q. &) 47174

Assuming H,~ < ¢ (if not the result is trivial). Then the logarithmic function ¢~ is well defined and
satisfies the inequalities

¥~ <nln(2), since

H- w
k <4 =9n (4.15)
C

H +u—k+c™
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and for u # —k + ¢,

1 1
0<(yp V< ————< = 4.16
7(w)7Hk,_+u—k+c*c ( )
and
2—p~ - p—2
‘(¢7)/(u)‘ =(H, +u-— k+c)” ’< (%) . (4.17)
For t = —t, by virtue of Lemma 4.1 we have u(z, —t) > k, and therefore

[0~ (w)] (#,—1) =0 for z € Kg.
Now, choose a cutoff function 0 < £(z) < 1, defined on K z such that

. 8
leng and |V§|§E.

From Definition 2.1, we know that if u is a weak solution of (1.1), then there exists a positive constant
M such that

esssup u < M. (4.18)
Qr

Gathering these estimates, and using the fact that
wN\ZP 4
i< (%) R, (4.19)
we arrive at

ess sup/K o [w_(u)fgiﬁdx
R X1t

—t<t<0

0 2 p+
gc(/_f KRw (w) [(67) ()] " dedt

/ /R o) @) (IVal” + 14+ €7 ) dadt

2

/ |Vu|p +1+¢° )dxdt
E

2

o /K ) [0 )] € ot @)

s (55) *(5) ]

Now, by virtue of Remark 2.2, we can estimate that

-2 _ _
(2:12) w2? RP <land w? P RP <1
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Consequently, we obtain

(4.21)

ess sup/ [¢7(u)]2 §p+ dx < Cn2XP —2) ‘KE .
—i<t<0 /K g x{t} !

The left hand side of (4.20) is estimated from below considering integration over the smaller set
w

Slz{xEK%, u(x,t)<,u_+2n+2

}CK@, te (—Z?,O)

On such a set

I ) Lk £ R C] .

Putting this into (4.21) gives that for all t € (—£,0)

- w n Ap~—2
{oe Ky, u@n <p +2n+2}}gc(n_ ;207D Ky .
The proof is complete once we choose s; = n + 2 with n > 1 4+ 2£2M P~ —2), O

v
The conclusion of Lemma 4.2 will be employed to deduce that, within the cylinder @ (f, %), the set
where v is away from its infimum is arbitrarily small.

Lemma 4.3. There exists 1 < so € N, depending on the data, such that
_ w - R
u(z,t) > p~ + eyl (x,t) € Q (t, §> . (4.23)
Proof. Define two decreasing sequences of positive numbers

R R w w

Fn = g + on+1’ kn = p” + 92s2+1 + 9s2+1+4n’ n

=0,1,...

Construct the family of nested and shrinking cylinders Q(RP", R,,), and let 0 < £, (z) < 1 be a piecewise

smooth function in K, that equals one on Kp, ,, and |V¢, | < %. Lemma 4.2 implies that

n41

(u —ky)_(z,—t) =0 in Kg, .

Now, since (u — k,)- < 5%, using (4.19) and letting so > A + pftz we get
(u—kn)2 > ! (= kn)?
EECE
2
t
Therefore, with these choices and by dividing the local energy estimates (3.1) for (u — ky,)_ by o
7)
we get
sup / (u— kn)zf ff:dm
—i<t<0J Kpg, x{t}
G -
+2T// V(= ) [P € dudt
A (4.24)
onp 0 + 0
<2 (/ / (= ke )? dxdt—i—/ / (k) > O)dxdt)
t _f KRn —f KRn

o™y NPt 0
< C— — — kn)— > 0)dxdt.
<o () [, xte-r) 0w
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+
R\P
Introducing the change of variables ¢ = ¢ (2 g and defining the new function w(z,t) = u(z,t). Accord-
ingly, by using the same argument we used in the proof of Lemma 4.1, we get
1 w\P" onp’ w\P" 1+ ——
- - - - n—+p
77 () Ann <O (5" (=) A4 (425)
2
where 0
A, = / / X ((@ — kyp)— > 0) dadt.
~(4)"" JKn,
Next, define the numbers
An
X, =

pt

Q((%) |

Ra)
+
dividing (4.25) by Q ((%)p ,Rn+1), we obtain the following recursive relation

p—

1+
Xppq < CA™7 X, N

Therefore, Lemma 4.1 of Chapter I in [6] implies that if

_N+p~ _p+(p_+1\7)2
X() < C r- 4 P =, (426)
then
X, — 0. (4.27)
By applying Lemma 4.2 with s1 := so we get easily (4.26). Hence, the result follows from (4.27). O

As an immediate consequence we get the reduction of the oscillation of wu.

Corollary 4.4. There exists a constant oo € (0,1) depending only on the data, such that if (2.4) holds
then

ess osc  u < op w. (4.28)
o(o(2)" 2
+ -
Proof. The proof follows since @ (9 (%)p , %) cQ (t, %), where we have og = 1 — 232% O

Assume that (2.4) does not hold. Then, (2.5) is in force. Even in this case, we are able to deduce a
result analogous to Corollary 4.4.

Lemma 4.5. Assume that (2.5) holds true. there exists a time level

to € [t* — Rt — %oRﬂ (4.29)
such that )
erKR, u(x,t0)>u+—%}‘§ (1_Z2>|KR|. (4.30)
T2
Proof. In fact, if (4.30) does not hold, then also (2.5) does not hold. O

This lemma shows that at the time level tg, the portion of the cube Kr where u(x) is close to its
supremum is small. The next lemma claims that this indeed occurs for all time levels near the top of the

cylinder (0,t*) + Q(OR?", R)
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Lemma 4.6. There exists 1 < s3 € N depending on the data such that, for all t € [t* — ”7°0Rp+,t*

Hx € Kr, u(z,t) > pt — 21}\ < (1 - (%)2> |Kn. (4.31)

Proof. Consider the cylinder Kg x (to,t*) and the level k = p* — £. Define

w
(w—p* + 5

u—kgH,j: ess sup 5

Krx(to,t*)

)| < > (4.32)

Assuming that H ,j > ¢ (otherwise there will be nothing to prove). Select n € N big enough so that

w
_ +
0<c-2nJr1 < H;.

Then the logarithmic function ¢ is well defined and satisfies the followings.

H+ w
+ : k 4 _ on
w S nln(2) simce m =~ z =2 s (433)
and, for u # k + ¢,
1 1
0<(@W")y < — < = 4.34
7(¢)7H,j—u+k+cfc ( )
and,
2-p~ ) w\P —2
‘(W)’(u)} —(Hf —u+k+0)” < (5) . (4.35)

In the logarithmic inequality (3.11) applied to the function (u — k)4, let  — &(x) be a smooth cutoff
function defined in Kz such that for some m € (0,1)

0<é<1in Ki, £=0on K(lfﬂ)Ra
V¢ < (rR)~L.

Gathering these estimates, using Lemma 4.5 and the fact that
t* —t<ORV", (4.36)

we arrive at

ess sup/K “ [w+(u)]2 §p+ dx

to<t<t*
1-— Vo w -2 +
< n?(In2)? <1 — ”—20) |KRr|+ C{nln2 (W) ORP
o+ (4.37)
nln?2 1 +
- p
+ s +n1n2<ﬂ_R) OR

-2
+MP nIn?2 (%) 9RP+} |Kg|

Now, by virtue of Remark 2.2, we can estimate

-2
(502) 0@ <tandom” <1

Consequently, we get

+ 1-
ess sup/KRX{t} [¢+(u)]25p dzx < {n2(1n2)2 (1 - 2) + Cﬂ%] |KR|. (4.38)

to<t<t*
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The left hand side is estimated below by integrating over the smaller set

ng{meK(l,w)R: u(x, t) > pt — }CKR.

w
2n+1
On such a set, ¢ = 1 and ¥ > (n — 1)In 2, because

" w w
Hf —u+k+c™ $—utk+55 ~ =

since one has —u + p* < 2. Therefore for all t € (to,t*)

2’”
n 2 1—1/0 C
< Kg|.
'SQ"{<n—1) (1_%)+W+}' ;

Therefore, for all ¢ € (to,t*)

Hx € Kp, u(z,t) > pt — }\ < |Ss| + N7| K|

» (139)
2 4.39
“{(55) (158) v i
The proof is complete once we choose m so small that N7 < %1/(2), then n so large that
C+ < §1/(2) and (L>2 <(1- @)(1 +vg) > 1,
nmP 8 n—1 2
and finally take s3 =n + 1. O

Recalling that ¢y € [t* — 9Rp+,t* — %HR’#} and choosing A such that 23=1D®"=2) > 2 the previous
lemma immediately implies the following lemma.

Lemma 4.7. There exists 1 < s3 € N depending on the data, such that for all t € (—%RP+,O),

Vo

2
HmEKR, u(m,t)>,u+—2%}‘§ (1—(7) >|KR|. (4.40)
From Lemma 4.7 we deduce that within the cylinder Q(aOR”+,R), the set where u is close to its

supremum is arbitrarily small.

Lemma 4.8. For every vy € (0,1), there exists s3 < A € N depending on the data, such that

H(m,t) eqQ (%RP+,R) ,u(x,t) > pt — ;_AH <1 ‘Q (%RP+,R)’. (4.41)

Proof. Consider the cylinder Q(aORer ,2R) and the levels k = ™ — £, for s3 < s < X. Next, consider the
local energy estimates (3.1) for the functions (v — k)4, where 0 < {(x,t) <1 is a smooth cutoff function
defined in Q(aoRp+,2R) and satisfying

¢€=1in Q(2R" | R), ¢ =0on d,Q(agR?" ,2R),
Vel < § 0<& < 2
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Neglecting the first term on the left hand side of (3.1), and using the indicated choices, we obtain

// V(uw—Fk) P € dmdt<C( T // (u— k)2 dudt

(% ret R Q(aoRPT 2R)
1
+ F / / (u— k)Y dedt
Q(aoRPT 2R)
/ / k)y >0) dxdt)
(4.42)
CL()RP

& C(GO% (%)2 e (5) +2 ) o ()
() TG )
oN+1 +

L2 (2)(2)7 R ) fe(er ).

here, we used the fact that s < A\. Now, by virtue of Remark 2.2 we can estimate

- _pt ot
(i)p "R <1and (i) TRt <
28 28
Consequently, we get
N
s £ 2 ol )
// |Vu| ¢ dxdthp+( ) e (SR R)|. (4.43)
‘10 Rp+
Now, we consider the levels k; = p* — 55, k2 = — 5u51, k2 — k1 = 557, and define, for t € (—%RP+,O)
w 0
A0 = {z e Kn, ule.t) > pt — 2} and 4, = / 1A,(8)] dt.
25 — 20 ppt

Using Lemma 2.2 and Remarks 2.2 and 2.3 of [6,p.5] applied to the function wu(.,t) for all times ¢ €
(—%RP ,0), we get

RN+1
A, < d
(25+1)| 11 C|KR_ |/aoRp+/ . |Vu| i

RN+1
/ / [Vuldz (4.44)
|KR| PR JA A

S T

P
DA = A (B)] o7
here, we used Lemma 4.7, Holder’s inequality and (4.43). According to the previous energy estimates we
get, for s =s3, ss+1,..,A—1

P —2p— +_
|A-s+1|p__1 SC(VO)p__l ? ' |AS_AS+1|7

o)

and we then add these inequalities for s = s3, s3+1,...,A— 1. Since u* — 555 < p* —
Agy1 > Ay, we combine this fact to obtain

5%, the quantities

.
Z A§+1_1 > (A=s3)A;

s=s3
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A—1
Note, also that Z |As — Asi1] < ’Q (%RP+,R)’ . Collecting results, we arrive at
§=83
C
Mg ————= )2 |Q(FR . R),
(/\ — 83) P
and the proof is complete once we choose s3 < A € N sufficiently large so that
C _
— (o) <.
(A—s3) 7~
O
Lemma 4.9. The number vy € (0,1) can be chosen (and consequently, so \), such that
w ap +
u(w,t) < pt — a1 &€ (x,t) €Q (7RP ,R) . (4.45)

Proof. Define two decreasing sequences of positive numbers

R R i w w
Rn:5+2n+1’knzu —W—W,nzo,l,....

Now, consider the local energy estimates (3.1) for the functions (u — k)4 over the constructed family of
nested and shrinking cylinders @ (%Rff,Rn), where 0 < ¢, (z,t) < 1 are smooth functions defined in

Q (% Ry R,) such that

fnzlinQ(%‘)Rﬁ:l, n+1),£ —00n6Q( +Rn),
ont1 op" (n+1)

IVEn| < 5=, 0< (&) < m R

Once again, performing the same calculation used in the proof of Lemma 4.1, we get

€8s sup / (u— Ifn)’j_+ &' da
K, x{t}

—%0 Rt <t<0
/ / )4 P €8 dudt -
4.46

(0 R?,Rn)
2"P+
SCCLQRP+ // kyn), > 0) dadt.
(O R R,)

- t
Introducing the change of variables ¢ = -~ and defining
2

ﬂ(xvf) = U’(xvt) and gn(xaf) = gn(xvt)'

Therefore, the previous estimates implies

1 w\P" o \PT 14
ot (n+2) (2_)\) Anta fCRp+ (QA) A, Y (4-47)

// ), > 0) dadi.

QR

where, A, is defined as
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Next, defining X,, = , we arrive at

Ay
QR R,)

p—

1+ =
Xn+1 < C4np+Xn BRI

Therefore, using Lemma 4.1 of Chapter I in [6], the result is proved if we can assume that

N+p

— 2
Xo<C g () 2 V1. (4.48)

For this value of v;, Lemma 4.8 implies that Xy < v;. Hence, we can conclude that X,, — 0 where
n — +oo and the result follows. O

As an immediate consequence we get the reduction of the oscillation of u in the second case

Corollary 4.10. There exists a constant o1 € (0,1) depending only on the data, such that if (2.5) holds
then

ess 0sc u< o w. (4.49)
a, P+
o) %)

Proof. The proof follows by choosing o1 =1 — ﬁ o

Now, we are able to prove Proposition 2.1, recalling the conclusions of Corollaries 4.4 and 4.10 and

since 6 (%)p+ < “70 (g)p+, we get that

€8s 0sc u <o w,

where o = max{cg, 01 }.

The proof of Theorem 2.3 follows from a slight modification of the arguments in Proposition 9 in [7].
From (2.6) one defines recursively a sequence @, of nested and shrinking cylinders and a sequence wy,
converging to zero, such that

ess osc u < Wy,.
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