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On the Numerical Solutions for Nonlinear Volterra-Fredholm Integral Equations
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abstract: In this note, we study a class of multistep collocation methods for the numerical integration of
nonlinear Volterra-Fredholm Integral Equations (V-FIEs). The derived method is characterized by a lower
triangular or diagonal coefficient matrix of the nonlinear system for the computation of the stages which, as
it is known, can be exploited to get an efficient implementation. Convergence analysis and linear stability
estimates are investigated. Finally numerical experiments are given, which confirm our theoretical results.
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1. Introduction

This paper concerns the construction of both efficient and stable numerical method for nonlinear
V-FIEs of the form

y(t) = f(t) + λ1(Vy)(t) + λ2(Fy)(t), t ∈ I := [t0, T ], (1.1)

where

(Vy)(t) =

∫ t

t0

k1(t, s, y(s))ds, (Fy)(t) =

∫ T

t0

k2(t, s, y(s))ds,

and y(t) is the unknown function to be determined, f ∈ C(I) be a given function and λi, i = 1, 2 denotes
real or complex parameters and k1 ∈ C(D × R), k2 ∈ C(I × I × R) and D = {(t, s) : t0 ≤ s ≤ t ≤ T } (
[3]).

The V-FIEs [7,14] arise from parabolic boundary value problems, from the mathematical modelling
of the spatio-temporal development of an epidemic, and from various physical and biological models.
In [1] the authors, analyze the linearization methods for V-FIEs under some verifiable conditions on
the kernels and nonlinear functions. In [2], we study a class of collocation methods to the numerical
solution of the nonlinear V-FIEs (1.1), such that for this class, we had uniform order m for any choice of
collocation parameters. In [6], we developed the Taylor’s series method for solving the Volterra-Fredholm
integro-differential equations. Some numerical methods have been proposed to solution of V-FIEs; see,
e.g., [8,9,11,12,15,16].

In this paper, we are interested in deriving higher order method with extensive stability region for
solving V-FIEs. Next sections of this paper are organized as follows: In section 2, we review basic ma-
terials of the multistep collocation method and obtain existence and uniqueness results. The collocation
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method and construction of multistep collocation method are described in section 3 and in section 4, the
convergence order of this method is determined and the paper is closed in section 5, by showing efficiency
of the method on some numerical examples.

2. Preliminaries

For convenience of the reader, we will present a review of the multistep collocation method from [5].
Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of [t0, T ], such that tn = nh, n = 0, . . . , N and

let ΩN := {0 = t0 < t1 < · · · < tN = T }, σ0 := [t0, t1], σn := (tn, tn+1] (1 ≤ n ≤ N − 1). With a given
mesh ΩN , we associate the set of its interior points, ZN := {tn : n = 1, . . . , N − 1}. For a fixed N ≥ 1

and, for given d = −1 and m ≥ 1, the piecewise polynomial space S
(−1)
m−1(ZN ) is defined by

S
(−1)
m−1(ZN ) := {u : u|σn

= uh ∈ πm−1, 0 ≤ n ≤ N − 1},

where πm−1 denotes the set of (real) polynomials of a degree not exceeding m− 1.
Consider the set of collocation parameters {cj}

m
j=1, where 0 ≤ c1 < · · · < cm ≤ 1, and define the

set XN = {tn,j = tn + cjh, n = 0, 1, . . . , N − 1, j = 1, 2, . . . ,m} of collocation points. The multistep
collocation methods are obtained by introducing in the collocation polynomial the dependence from r

previous time steps yn−k, k = 0, 1, . . . , r − 1; namely we seek for a collocation polynomial u, whose
restriction to the interval [tn, tn+1] takes the form

uh(tn + sh) =

r−1
∑

k=0

ϕk(s)yn−k +

m
∑

j=1

ψj(s)Un,j , s ∈ [0, 1], n = r, . . . , N − 1, (2.1)

where Un,j = uh(tn,j), and

ϕk(s) =

m
∏

i=1

s− ci

−k − ci
·

r−1
∏

i=0
i6=k

s+ i

−k + i
, ψj(s) =

r−1
∏

i=0

s+ i

cj + i
·

m
∏

i=1
i6=j

s− ci

cj − ci
. (2.2)

More details can be found in [5].

3. Collocation and multistep collocation methods

3.1. Collocation method

We recall construction of the collocation method for V-FIEs from [2].
In order to approximate solution of (1.1) in [tn, tn+1], we rewrite equation (1.1) in the form

uh(tn,j) = f(tn,j) + λ1h
n−1
∑

i=0

∫ 1

0

k1(tn,j , ti + sh, uh(ti + sh))ds

+λ1h

∫ cj

0

k1(tn,j , tn + sh, uh(tn + sh))ds

λ2h
N−1
∑

i=0

∫ 1

0

k2(tn,j , ti + sh, uh(ti + sh))ds.

(3.1)

Where, we remember that the fixed collocation parameters are 0 ≤ c1 < · · · < cm ≤ 1 and collocation
points are tn,j = tn + cjh, j = 1, . . . ,m, the collocation polynomials restricted to subinterval [tn, tn+1]
are defined by

uh(tn + sh) =
m
∑

j=1

Lj(s)Un,j , s ∈ [0, 1], n = 0, 1, ..., N − 1, (3.2)

where Un,j := uh(tn,j) and Lj(s) is the j-th Lagrange polynomial at the collocation points.
The following theorem states the convergence order of collocation method.
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Theorem 3.1. Let ε(t) = y(t)−uh(t) be error of the exact collocation method and assume that the given
functions in

y(t) = f(t) + λ1

∫ t

0

k1(t, s)y(s)ds + λ2

∫ T

0

k2(t, s)y(s)ds, t ∈ I := [0, T ], (3.3)

satisfy f ∈ Cm, k1 ∈ Cm(D), k2 ∈ Cm(I × I). Then for all sufficiently small h = T
N

the constrained

mesh collocation solution uh ∈ S
(−1)
m−1(ZN ) to (3.3), for all n = 0, 1, . . . , N − 1, satisfies

‖ε(t)‖∞ = O(hm).

Proof: For proof see [2]. ✷

3.2. Multistep collocation method

In this subsection, we describe construction of the multistep collocation method. Such methods
compute the approximated solution of (1.1) in [tn, tn+1] by using the approximated values of the solution
in the r previous steps yn−k, k = 0, 1, . . . , r − 1 and m collocation points in the subinterval [tn, tn+1].

Let uh = u|σn
, u ∈ S

(−1)
m−1(ZN ), for all t ∈ σn, we have

uh(tn + sh) =
r−1
∑

k=0

ϕk(s)yn−k +
m
∑

j=1

ψj(s)Un,j , s ∈ [0, 1], n = r, r + 1, . . . , N − 1, (3.4)

where Un,j = uh(tn,j).

The collocation solution uh ∈ S
(−1)
m−1(ZN ) will be determined by imposing the condition that uh satisfies

the integral equation (1.1) on the finite set XN

uh(t) = f(t) + λ1

∫ t

0

k1(t, s, uh(s))ds + λ2

∫ T

0

k2(t, s, uh(s))ds. (3.5)

After some computations, the exact multistep collocation method is obtained by collocating both
sides of (3.5) at the points t = tn,i for i = 1, 2, ...,m and computing yn+1 = uh(tn+1):











Un,i = Fn,i +Φn,i, i = 1, 2, . . . ,m,

yn+1 =

r−1
∑

k=0

ϕk(1)yn−k +

m
∑

j=1

ψj(1)Un,j , n = r, r + 1, . . . , N − 1,
(3.6)

where the lag-term Fn,i and increment-term Φn,i are given by

Fn,i = f(tn,i) + λ1h
n−1
∑

q=0

∫ 1

0

k1(tn,i, tq + sh, uh(tq + sh))ds

+λ2h
n−1
∑

q=0

∫ 1

0

k2(tn,i, tq + sh, uh(tq + sh))ds,

Φn,i = λ1h

∫ ci

0

k1(tn,i, tn + sh, uh(tn + sh))ds

+λ2h
N−1
∑

q=n

∫ 1

0

k2(tn,i, tq + sh, uh(tq + sh))ds.

(3.7)

Generally, the integrals in lag-term Fn,i and increment-term Φn,i cannot be evaluated analytically,
but have to be approximate by suitable quadrature formulae.
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4. Convergence

In this section, we will analyze the order of convergence of the multistep collocation method (3.6).
In our convergence analysis, we examine the linear test equation

y(t) = f(t) + λ1

∫ t

0

k1(t, s)y(s)ds + λ2

∫ T

0

k2(t, s)y(s)ds, t ∈ I := [0, T ], (4.1)

with y ∈ R, k1 ∈ C(m+r)(D), k2 ∈ C(m+r)(I × I), f ∈ C(m+r)(I). We assume that, λ−1
2 is not in the

spectrum σ(F) of the Fredholm integral operator F and for any choice of distinct collocation abscissac
0 < c1 < · · · < cm ≤ 1, the exact solution y(t) of the V-FIEs (4.1) satisfies

y(tn + sh) =

r−1
∑

k=0

ϕk(s)y(tn−k) +

m
∑

j=1

ψj(s)y(tn,j) + hm+rRm,r,n(s), s ∈ [0, 1], (4.2)

where, the functions ϕk(s) and ψj(s) are given by (2.2) and

Rm,r,n(s) :=

∫ 1

1−r

Km,r(s, z)y
(m+r)(tn + zh)dz, (4.3)

and

Km,r(s, z) =
1

(m+r−1)!

{

(s− z)m+r−1
+ −

r−1
∑

k=0

ϕk(s)(−k − z)m+r−1
+

−

m
∑

j=1

ψj(s)(cj − z)m+r−1
+







, z ∈ [0, 1].

(4.4)

Theorem 4.1. Let ε(t) = y(t)− uh(t) be the error of exact multistep collocation method and p = m+ r.
Suppose that

1. the given function in (4.1) satisfy f ∈ Cp(I), k1 ∈ Cp(D), k2 ∈ Cp(I × I),

2. the starting errors are ||ε||∞,[0,tr] = O(hp),

3. ρ(A) < 1, for

A =

[

0(r−1)×1 Ir−1

ϕr−1(1) ϕr−2(1), . . . , ϕ0(1)

]

, (4.5)

where ρ denotes the spectral radius.

Then
||ε||∞ = O(hp).

Proof: By subtracting (3.4) from (4.2), the error of exact multistep collocation method, ε(t), takes the
local representation

ε(tn + sh) =
r−1
∑

k=0

ϕk(s)εn−k +
m
∑

j=1

ψj(s)εn,j + hm+rRm,r,n(s), s ∈ [0, 1], (4.6)

with n ≥ r, εn−k = ε(tn−k), εn,j = ε(tn,j).
On the other hand, by evaluating (3.5) and (4.1) for t = tn,i, we have

y(tn,i) = f(tn,i) + λ1h
n−1
∑

l=0

∫ 1

0

k1(tn,i, tl + sh)y(tl + sh)ds

+λ1h

∫ ci

0

k1(tn,i, tn + sh)y(tn + sh)ds

+λ2h
n−1
∑

l=0

∫ 1

0

k2(tn,i, tl + sh)y(tl + sh)ds

+λ2h
N−1
∑

l=n

∫ 1

0

k2(tn,i, tl + sh)y(tl + sh)ds,

(4.7)
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uh(tn,i) = f(tn,i) + λ1h
n−1
∑

l=0

∫ 1

0

k1(tn,i, tl + sh)uh(tl + sh)ds

+λ1h

∫ ci

0

k1(tn,i, tn + sh)uh(tn + sh)ds

+λ2h
n−1
∑

l=0

∫ 1

0

k2(tn,i, tl + sh)uh(tl + sh)ds

+λ2h
N−1
∑

l=n

∫ 1

0

k2(tn,i, tl + sh)uh(tl + sh)ds.

(4.8)

By subtracting (4.8) from (4.7), we obtain

εn,i = λ1h
n−1
∑

l=0

∫ 1

0

k1(tn,i, tl + sh)ε(tl + sh)ds

+λ1h

∫ ci

0

k1(tn,i, tn + sh)ε(tn + sh)ds

+λ2h
n−1
∑

l=0

∫ 1

0

k2(tn,i, tl + sh)ε(tl + sh)ds

+λ2h
N−1
∑

l=n

∫ 1

0

k2(tn,i, tl + sh)ε(tl + sh)ds.

(4.9)

Now, by the hypothesis on the starting errors, it follows that

ε(tl + sh) = hpql(s), l = 0, 1, . . . , r − 1, (4.10)

with ||ql||∞ ≤ C1 independent of h.
Now, by substituting (4.6) and (4.10) in (4.9), we have

εn,i = λ1h
p+1

n
∑

l=0

(ρ
(l)
1n)i + λ2h

p+1
N−1
∑

l=0

(ρ
(l)
2n)i + λ1h

n
∑

l=r

(
r−1
∑

k=0

εl−k(B
(l)
1n)ik)

+λ2h
N−1
∑

l=r

(
r−1
∑

k=0

εl−k(B
(l)
2n)ik) + λ1h

n−1
∑

l=r

(
m
∑

j=1

εl,j(D
(l)
1n)ij)

+λ1h
m
∑

j=1

εn,j(D1n)ij + λ2h
N−1
∑

l=r

(
m
∑

j=1

εl,j(D
(l)
2n)ij),

(4.11)

where the vectorsρ
(l)
1n ∈ R

m, ρ
(l)
2n ∈ R

m, and the matrices B
(l)
1n ∈ R

m×r, B
(l)
2n ∈ R

m×r, D
(l)
1n ∈

R
m×m, D

(l)
1n ∈ R

m×m and D1n ∈ R
m×m are defined as

(ρρρ
(l)
1n)i =































































∫ 1

0

k1(tn,i, tl + sh)ql(s)ds, l = 0, ..., r − 1,

∫ 1

0

k1(tn,i, tl + sh)Rm,r,l(s)ds, l = r, ..., n− 1,

∫ ci

0

k1(tn,i, tn + sh)Rm,r,n(s)ds, l = n,

0, l = n+ 1, ..., N − 1,

(4.12)

(ρρρ
(l)
2n)i =























∫ 1

0

k2(tn,i, tl + sh)ql(s)ds, l = 0, . . . , r − 1,

∫ 1

0

k2(tn,i, tl + sh)Rm,r,l(s)ds, l = r, . . . , N − 1,

(4.13)
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(B
(l)
1n)ik =























∫ 1

0

k1(tn,i, tl + sh)ϕk(s)ds, l = r, . . . , n− 1,

∫ ci

0

k1(tn,i, tn + sh)ϕk(s)ds, l = n,

(4.14)

(B
(l)
2n)ik =

∫ 1

0

k2(tn,i, tl + sh)ϕk(s)ds, l = r, . . . , N − 1, (4.15)

(D
(l)
1n)ij =

∫ 1

0

k1(tn,i, tl + sh)ψj(s)ds, l = r, ..., n− 1, (4.16)

(D
(l)
2n)ij =

∫ 1

0

k2(tn,i, tl + sh)ψj(s)ds, l = r, ..., N − 1, (4.17)

(D1n)ij =

∫ ci

0

k1(tn,i, tn + sh)ψj(s)ds, (4.18)

From (4.11), we obtain

ε
(2)
n = λ1h

p+1
n
∑

l=0

ρρρ
(l)
1n + λ2h

p+1
N−1
∑

l=0

ρρρ
(l)
2n + λ1h

n
∑

l=r

B
(l)
1nε

(1)
l

+λ2h
N−1
∑

l=r

B
(l)
2nε

(1)
l + λ1h

n−1
∑

l=r

D
(l)
1nε

(2)
l + λ1hD1nε

(2)
n

+λ2h
N−1
∑

l=r

D
(l)
2nε

(2)
l ,

(4.19)

where
ε
(1)
l = [εl−r+1, . . . , εl]

T , (4.20)

ε
(2)
l = [εl,1, . . . , εl,m]T . (4.21)

From this equation and after some computations, we have

HnXn,N−1 = hp+1
N−1
∑

l=0

ρρρ∗(l)n + 2hSr,n−1Xr,n−1, (4.22)

where ρρρ
∗(l)
n and the matrices Hn, Sr,n−1,Xi,j are defined as

ρρρ∗(l)n =











λ1ρρρ
(l)
1n + λ2ρρρ

(l)
2n l = 0, 1, . . . , n,

λ2ρρρ
(l)
2n l = n+ 1, . . . , N − 1,

(4.23)

Hn =

[

H1
n H2

n

E1
n E2

n

]

, (4.24)

H1
n =

[

I− 2λ1hB
(n)
1n 0 . . . 0

]

, (4.25)

H2
n =

[

I− 2λ1hD1n 0 . . . 0
]

, (4.26)

E1
n =

[

I+ 2λ2hB
(n)
2n 2λ2hB

(n+1)
2n . . . 2λ2hB

(N−1)
2n

]

, (4.27)

E2
n =

[

I− 2λ2hD
(n)
2n −2λ2hD

(n+1)
2n . . . −2λ2hD

(N−1)
2n

]

, (4.28)

Xi,j =
[

ε
(1)
i ε

(1)
i+1 . . . ε

(1)
j−1 ε

(2)
i ε

(2)
i+1 . . . ε

(2)
j−1

]T

, (4.29)
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Sr,n−1 =

[

T
(r)
Bn T

(r+1)
Bn . . . T

(n−1)
Bn 0

0 T
(r)
Dn T

(r+1)
Dn . . . T

(n−1)
Dn

]

, (4.30)

T
(l)
Bn = λ1B

(l)
1n + λ2B

(l)
2n,

T
(l)
Dn = λ1D

(l)
1n + λ2D

(l)
2n.

(4.31)

Since the kernel ki are continuous on their domains, the elements of the matrixes B
(l)
1n, l = r, r +

1, . . . , N − 1, are all bounded. By using the Neumann Lemma the inverse of the matrix H1
n exists

whenever h|λ1| ‖ B
(l)
1n ‖< 1

2 , for some matrix norm. This clearly holds whenever h is sufficiently small.
In other words, there is an h̄ > 0 so that for any mesh ΩN with h < h̄, each matrix Hn has a uniformly
bounded inverse. Note that, from this assumptions, there exists a constant P0 <∞ so that for all mesh
diameters h ∈ (0, h̄), the uniform bound ‖ H−1

n ‖1≤ R1, holds.
Now, by setting

||B
(l)
1n||1 ≤ P0, ||B

(l)
2n||1 ≤ P1, ||D

(l)
1n||1 ≤ Q0, ||D

(l)
2n||1 ≤ Q1, (4.32)

||T
(l)
Bn||1 = ||λ1B

(l)
1n + λ2B

(l)
2n||1 ≤ |λ1|P0 + |λ2|P1 ≤ P2,

||T
(l)
Dn||1 = ||λ1D

(l)
1n + λ2D

(l)
2n||1 ≤ |λ1|Q0 + |λ2|Q1 ≤ Q2,

(4.33)

||ρρρ∗(l)n ||1 ≤ R0 =























|λ1|γ
1 + |λ2|γ

2 l = 0, 1, . . . , r − 1,

|λ1|α
1
m,r + |λ2|α

2
m,r l = r, r + 1, . . . , n,

|λ2|α
2
m,r l = n+ 1, . . . , N − 1,

(4.34)

||Sr,n−1||1 ≤ max{P2, Q2} ≤ P3, ‖ y(m+r) ‖1≤Mm,r, (4.35)

Km,r = max
s∈[0,1]

1
∫

1−r

|Km,r(s, t)|dt, K̄i = max
t∈I

t
∫

0

|ki(t, s)|ds, i = 1, 2, (4.36)

‖ ρρρ
(l)
1n ‖1≤























γ1 = mK̄1C1, l = 0, 1, . . . , r − 1,

α1
m,r = mK̄1Km,rMm,r, l = r, . . . , n,

0, l = n+ 1, . . . , N − 1,

(4.37)

‖ ρρρ
(l)
2n ‖1≤







γ2 = mK̄2C1, l = 0, 1, . . . , r − 1,

α2
m,r = mK̄2Km,rMm,r, l = r, . . . , N − 1.

(4.38)

Then, from (4.22), we have

||Xn,N−1||1 ≤ hpG1 + hG2||Xr,n−1||1, (4.39)

with G1 = 2R0R1T, G2 = 2R1P3. The above generalized discrete Gronwall inequality leads to the
estimate

||Xn,N−1||1 ≤ Chp, (4.40)

with C = G1 exp(hG2). From (4.6) and (4.10), this is equivalent to the estimate ‖ ε ‖∞= O(hp). ✷
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5. Presentation of results

In this section, two examples will be investigated to show the reliability and efficiency of the proposed
numerical method. We choose c1 = 0.7 and c2 = 1 as collocation parameters. The observed orders
of convergence are computed from the maximum errors at the grid points. The starting values have
been obtained from the known exact solutions. All computations are performed by the Mathematicar

software.

Example 5.1. Consider the nonlinear V-FIEs as:

y(t) = f(t) +

∫ t

0

2 cos(t− s)y2(s)ds+

∫ 1

0

2 sin(t− s)y2(s)ds, t ∈ [0, 1],

where f(t) such that the exact solution is y(t) = et.

Table 1: Maximum errors ‖y − uh‖∞ for r = 2, 3 and m = 2 in Example 5.1.

||y − uh||∞ ||y − uh||∞ ||y − uh||∞
N r=1 m=2 r=2 m=2 r=3 m=2

4 3.38× 10−4 2.58× 10−5 3.17× 10−6

8 3.30× 10−5 1.24× 10−6 6.71× 10−8

16 3.52× 10−6 6.77× 10−8 1.86× 10−9

32 4.08× 10−7 3.94× 10−9 5.47× 10−11

64 4.90× 10−8 2.38× 10−10 1.66× 10−12
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Figure 1: Orders of convergence of uh for r = 2, 3 and m = 2 in Example 5.1.

The maximum errors have been shown for different values of r and N at the grid points in the Table
1. The orders of convergence of the multistep collocation method for r = 2, 3 and m = 2 are shown in
Figure 1. which they confirm the theoretical results of the Theorem 4.1.
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Example 5.2. Consider the nonlinear V-FIEs as:

y(t) = f(t) +

∫ t

0

(s+ t+ 2)y2(s)ds+

∫ 1

0

(s+ t3 + 1)y3(s)ds, t ∈ [0, 1],

where f(t) such that the exact solution is y(t) = sin t.

Table 2: Maximum errors ‖y − uh‖∞ for r = 2, 3 and m = 2 in Example 5.2

||y − u||∞ ||y − u||∞ ||y − u||∞
N r=1 m=2 r=2 m=2 r=3 m=2

4 2.43× 10−4 1.22× 10−5 1.75× 10−6

8 2.90× 10−5 7.06× 10−7 6.26× 10−8

16 3.60× 10−6 4.36× 10−8 1.99× 10−9

32 4.49× 10−7 2.72× 10−9 6.20× 10−11

64 5.62× 10−8 1.70× 10−10 1.93× 10−12
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Figure 2: Orders of convergence of uh for r = 2, 3 and m = 2 in Example 5.2.

The maximum errors have been shown for different values of r and N at the grid points in the Table
1. The orders of convergence of the multistep collocation method for r = 2, 3 and m = 2 are shown in
Figure 2. which they confirm the theoretical results of the Theorem 4.1 (The order of convergence is
p = m+ r).

Example 5.3. Consider the linear V-FIEs as:

y(t) = f(t) +

∫ t

0

(t2 + s+ 2)y(s)ds+

∫ 1

0

(t2 + s2 + 1)y(s)ds, t ∈ [0, 1],

where f(t) such that the exact solution is y(t) = arctan t.
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Table 3: Maximum errors ‖y − uh‖∞ for r = 2, 3 and m = 2 in Example 5.3

||y − uh||∞ ||y − uh||∞ ||y − uh||∞
N r=1 m=2 r=2 m=2 r=3 m=2

4 4.24× 10−4 6.96× 10−5 9.75× 10−6

8 4.61× 10−5 4.72× 10−6 1.84× 10−7

16 5.35× 10−6 2.95× 10−7 4.36× 10−9

32 6.43× 10−7 1.82× 10−8 2.62× 10−10

64 7.88× 10−8 1.13× 10−9 1.10× 10−11
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Figure 3: Orders of convergence of u for r = 2, 3 and m = 2 in Example 5.3.

The maximum errors have been shown for different values of r and N at the grid points in the Table
3. Also Figure 3. shows the orders of convergence of the numerical method for r = 2, 3 and m = 2. From
this Figure, we can see that the numerical results are consistent with our theoretical analysis.

6. Conclusion

We have shown that the multistep collocation method yields an efficient and very accurate numerical
method for the approximation of solutions to nonlinear V-FIEs. Numerical results show that this method
is effective for nonlinear V-FIEs. Furthermore, the convergence, and stability properties of the multistep
collocation method, it is more accurate than collocation method.
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