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An Ideal-based Cozero-divisor Graph of a Commutative Ring

H. Ansari-Toroghy, F. Farshadifar, and F. Mahboobi-Abkenar

ABSTRACT: Let R be a commutative ring and let I be an ideal of R. In this article, we introduce the
cozero-divisor graph I'7(R) of R and explore some of its basic properties. This graph can be regarded as a
dual notion of an ideal-based zero-divisor graph.
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1. Introduction

Throughout this paper R denotes a commutative ring with a non-zero identity. Also we denote the
set of all maximal ideals and the Jacobson radical of R by Maz(R) and J(R), respectively.

Let Z(R) be the set of all zero-divisors of R. Anderson and Livingston, in [5], introduced the zero-
divisor graph of R, denoted by I'(R), as the (undirected) graph with vertices Z*(R) = Z(R)\{0} and for
two distinct elements z and y in Z*(R), the vertices = and y are adjacent if and only if zy = 0.

In [16], Redmond introduced the definition of the zero-divisor graph with respect to an ideal. Let I
be an ideal of R. The zero-divisor graph of R with respect to I, denoted by I';(R), is the graph whose
vertices are the set {x € R\ I|zy € I for somey € R\ I} with distinct vertices x and y are adjacent if
and only if zy € I. Thus if I = 0, then I';(R) = I'(R), and I is a non-zero prime ideal of R if and only if
I'1(R)=0.

In [1], Afkhami and Khashayarmanesh introduced and studied the cozero-divisor graph F(R) of R, in
which the vertices are precisely the nonzero, non-unit elements of R, denoted by W*(R), and two distinct
vertices x and y are adjacent if and only if x € yR and y € xR.

Let I be an ideal of R. In this article, we introduce and study the cozero-divisor graph I, (R) of R
with vertices {x € R\ Anng(I) | 2l # I} and two distinct vertices x and y are adjacent if and only if
x &yl and y & xI. This can be regarded as a dual notion of ideal-based zero-divisor graph introduced
by S.P. Redmond in [16]. Also this is a generalization of cozero-divisor graph introduced in [1] when
I =R, ie., we have I'g(R) = I'(R).

There is considerable researches concerning the ideal-based zero-divisor graph and this notion has
attracted attention by a number of authors (for example, see [2], [3], [4], [6], [11], [14], and [15]). Tt is
natural to ask the following question: To what extent does the dual of these results hold for ideal-based
cozero-divisor graph? The main purpose of this paper is to provide some useful information in this case.

We will include some basic definitions from graph theory as needed. In a graph G, the distance
between two distinct vertices a and b, denoted by d(a, b) is the length of the shortest path connecting a
and b. If there is not a path between a and b, d(a,b) = oco. The diameter of a graph G is diam(G) =
sup{d(a,b) : a and b are distinct vertices of G}. The girth of G, is the length of the shortest cycle in G
and it is denoted by ¢g(G). If G has no cycle, we define the girth of G to be infinite. An r-partite graph
is one whose vertex set can be partitioned into r subsets such that no edge has both ends in any one
subset. A complete r-partite graph is one each vertex is jointed to every vertex that is not in the same
subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by K, .
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2. On the generalization of the cozero-divisor graph

Definition 2.1. Let I be an ideal of R. We define the ideal-based cozero-divisor graph I'/(R) of R with
vertices {x € R\ Anng(I) |zl # I}. The distinct vertices x and y are adjacent if and only if x & yI and
y & xl. Clearly, when I = R we have I'1(R) = I'(R).

Example 2.2. Let R =712 and I = (3). Then T[(R) =10. Also, in the following figures we can see the
difference between the graphs I'(R), I'r(R), and T'(R).

() I'7(R).
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Let I be an ideal of R. Then I is said to be a second ideal if I # 0 and for every element r of R we
have either r/ =0 or I = I.

Lemma 2.3. [ is a second ideal of R if and only if f‘I(R) = .

Proof. Straightforward. O

Theorem 2.4. Let I be a proper ideal of R. Then we have the following.
(a) The graph T1(R)\ J(R) is connected.
(b) If R is a non-local ring, then diam (U;(R)\ J(R)) < 2.

Proof. (a) If R has only one maximal ideal, then V(I';(R)) \ J(R) is the empty set; which is connected.
So we may assume that [Maz(R)| > 1. Let a,b € V(I';(R)) \ J(R) be two distinct elements. Without
loss of generality, we may assume that a € bI. Since a ¢ J(R), there exists a maximal ideal m such that
a ¢ m. We claim that m ¢ J(R)UbI. Otherwise, m C J(R)UbI. This implies that m C J(R) or m C blI.
But m # J(R). Hence we have m C bl ¢ R, so m = bl. This implies that a € m, a contradiction.
Choose the element ¢ € m \ J(R) UbI. It is easy to check that a — ¢ — b.

(b) This follows from part (a). O

Remark 2.5. Figure (B) in Example 2.2 shows that J(R) cannot be omitted in Theorem 2./.

Theorem 2.6. Let R be a non-local ring and I a proper ideal of R such that for every element a € J(R),
there exists m € Max(R) and b € m\ J(R) with a & bR. Then T'j(R) is connected and diam(T';(R)) < 3.

Proof. Use the technique of [1, Theorem 2.5]. O

Theorem 2.7. Let R be a non-local ring and I be a proper ideal of R. Then g(T1(R)\ J(R)) <5 or
9(T'1(R)\ J(R)) = oc.

Proof. Use the technique of [1, Theorem 2.8] along with Theorem 2.4. O
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Theorem 2.8. Let I be a non-zero ideal of R. If V(I'(R)) = V(I'1(R)), then Anng(I) =0 or I = R.
The converse holds if I is finitely generated.

Proof. Let W*(R) = V(I'(R)) = V(I';(R)) and Anng(I) # 0. Then W*(R) = R\ Anng(I). Thus
W(R) N Anng(I) = {0}. Now suppose contrary that I # R. Let 0 # x € Anng(I) and y € W(R).
Then axy € W(R) N Anng(I) = {0} and = ¢ W(R). It follows that y = 0 and hence W(R) = {0}.
Therefore R is a field, a contradiction. Conversely, if I = R the result is clear. Now suppose that I # R
is a finitely generated ideal of R such that Anng(I) = 0 and 2 € V(I'(R)). Then zI # 0. If zI = I,
then since I is finitely generated, there exists ¢ € R such that (1 + tz)I = 0 by [13, Theoram 75]. Thus
1+tz € Anng(I) = 0. This implies that Rz = R, which is a contradiction. Hence 2 € V(I';(R)).
Therefore V(I'(R)) € V(I';(R)). The inverse inclusion is clear. O

We will use the following lemma frequently in the sequel.

Lemma 2.9. Let I # R be a finitely generated ideal of R with Anng(I) =0. Then I'(R) is a subgraph
Of F[ (R)

Proof. By Theorem 2.8, we have V([ (R)) = V(I(R)). Now let z,y € V(I(R)) = V(I'/(R)) and x is
adjacent to y in I'(R). Then clearly, they are adjacent in I';(R). Otherwise, we may assume that = € yI.
This implies that « € yR, which is a contradiction. Hence I'(R) is a subgraph of I';(R). O

The following example shows that the inclusion relation between I';(R) and I'(R) in Lemma 2.9 may
be a restrict inclusion.

Example 2.10. Let R :=Z and I :=5Z. Then V(I';/(R)) = V(I'(R)) = Z\ {-1,0,1}. Now by Lemma
2.9, I'(R) is subgraph of I't(R). However, the elements 2 and 6 are adjacent in I'r(R) but they are not
adjacent in T'(R).

Theorem 2.11. Let I # R be a finitely generated ideal of R with Anng(I) = 0. Suppose that |Max(R)| >
3. Then g(I'r(R)) = 3.

Proof. Use the technique of [1, Theorem 2.9]. O

As we mentioned before, V(I';/(R)) = {x € R\ I|zy € I for somey € R\ I}. We will show this set
by Zi(R). Clearly, for I =0, Z;(R) = Z*(R).

Lemma 2.12. Let I # R be a finitely generated ideal of R with Anng(I) =0. Then Z;(R) C V(I'1(R)).

Proof. If T = 0, then the claim is clear. So we assume that I # 0. Now let € Z;(R) then x # 0 and
there exists y € R\ I such that zy € I. Clearly, I # 0. Further 21 # I. Otherwise, I = I. Since
I is finitely generated, there exists ¢ € R such that (1 + tx)I = 0 by [13, Theorem 75]. This implies
that 1 +tx = 0. So z is a unit element of R and hence y € I, which is a contradiction. Therefore
z e V(I1(R)). 0

The next example shows that the inclusion in Lemma 2.12 is not strict in general.

Example 2.13. Let I be a finitely generated ideal of R with Anng(I) = 0. Further we assume that R
is an Artinian ring with Z(R) NI = 0. Then we have V(I';(R)) = Z;(R). To see this, it is enough to
prove that V(I'1(R)) C Z;(R) by Lemma 2.12. Let & € V(L (R). Then we have z # 0 and oI # I. This
implies that xR # R and hence x is a non-unit element of R. Since R is Artinian, the set of non-unit
elements of R is the same as the set of zero-divisors of R. So x € Z(R). This shows that x ¢ I and there
exists 0 #y € R\ I such that xy =0 € I. Clearly, x,y € Z(R). Therefore, V(I'1(R)) C Z1(R).

Theorem 2.14. Let I be a finitely generated ideal of R with VI =1 and Anng(I) = 0. Suppose that
Z1(R) =V (T'1(R)). If T;(R) is complete, then T';(R) is also a complete graph.
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Proof. Assume on the contrary that I';(R) is not complete. So there exist a,b € V(I';(R)) such that
a € bl or b € al. Without loss of generality, we may assume that a € bI. So, there exists i € I such
that a = bi. We claim that i is a unit element. Otherwise, i € V(I'(R). Thus we have i € V(I';(R)) by
Lemma 2.9. Hence i € Z;(R) by assumption, which is a contradiction. Now ab = b%i € I. So there exist
i1 € I such that b% = i;. Then b2 =i~ 1i; € I. Therefore, b € /I = I, a contradiction. O

Proposition 2.15. Let I be a proper ideal of R and fI(R) a complete bipartite graph with parts V,
1 =1,2. Then every cyclic ideal a, b CV;, for some i = 1,2, are totally ordered.

Proof. Assume on the contrary that there exist ideals aR and bR in V; such that aR ¢ bR and bR ¢ aR.
It follows that b ¢ aR and a ¢ bR. Hence b ¢ al and a ¢ bl. This means a is adjacent to b, a
contradiction. O

Proposition 2.16. Let I % R be a finitely generated ideal of R with Anng(I) = 0. If the graph
I';(R)\ J(R) is n-partite for some positive integer n, then |Maxz(R)| < n.

Proof. Assume contrary that |[Maz(R)| > n. Since I'7(R) \ J(R) is a n-partite graph and V(I';(R)) =
V(T'(R)) by Lemma 2.9, there exist m,rh € Max(R) and a € m \ 11,b € 17\ m such that a, b belong to a
same part. Clearly, a ¢ bl and b ¢ al, which is a contradiction. O

For a graph G, let x(G) denote the chromatic number of the graph G, i.e., the minimal number of
colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have
different colors. A clique of a graph G is a complete subgraph of G and the number of vertices in the
largest clique of G, denoted by clique(G), is called the clique number of G.

Theorem 2.17.

(1) Let I # R be a finitely generated ideal of R with Anng(l) = 0. Then if R has infinite member of
mazximal ideal, then clique I'1(R) is also infinite; otherwise clique (I't(R)) > |Maz(R)|.

(2) If x(L'1(R)) < oo, then |Maz(R)| < cc.

Proof. (1) This follows from Lemma 2.9 and [1, Theorem 2.14].
(2) Use part (1) along with [1, Theorem 2.14]. O

Theorem 2.18. Let R = S1 + So, where S1 and Sy are s/econd ideals of R. If P, = Anng(S1) and
Py = Anng(S2), then V(I'(R)) = (Py \ P2) U (P> \ P1) and T'(R) is a complete bipartite graph.

Proof. Let z € V(I'(R)), so we have 2R # 0 and R # R. Since 2R # 0, 251 # 0 or 255 # 0. First
we show that V(I(R)) = (PL\ P) U (P, \ P1). If 251 # 0, then = & P;. So #S; = S1. We claim that
xS9 = 0. Otherwise, xS2 # 0 so that x € P5. It means that xS, = S3. Thus xR = R, a contradiction.
So we have x € P hence x € (P, \ P1)U (P> \ P1). We have similar arguments for reverse inclusion. Now
let x € P\ P, and y € P»\ Pi. We show that z ¢ yR and y ¢ zR. Otherwise, x € yR or y € zR.
Without loss of generality, © € yR. Then there exists t € R such that z = ty. But = ¢ P, implies that
ty & Anng(S2) so that tySs # 0 , a contradiction. Thus, x is adjacent to y. Now we show that = and y
can not lie in Py \ P, or Py \ P>. To see this let x,y € Py \ P, and assume that they are adjacent. Then
we have z € yR and y € xR. Now by using our assumptions, we conclude that x € xR, a contradiction.
O

Theorem 2.19. Let I # R be a finitely generated ideal of R with Anng(I) = 0. Assume that |Max(R)| >
5. Then T'r(R) is not planar.

Proof. This follows from Lemma 2.9 and [1, Theorem 3.9]. O

Proposition 2.20. Let I be a proper ideal. Then the following hold.
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(@) V(T ann(ry(R)) € V(T1(R)).
(b) If R be a reduced ring, then I g1y (R) is a subgraph of I'7(R).

Proof. (a) Let € V(I 4pn(r)(R)). Then there exists y € R\ Anng(I) such that xy € Anng(I). We
claim that x/ # I. Otherwise, zI = I. Then xyl = yI so that y/ = 0. This implies that y € Anng(I), a
contradiction. Therefore, V(T 4,n(r)(R)) € V(I'1(R)).

(b) By part (a), V(I gnn(r)(R)) C V(f‘I(R)). Now we suppose that x is adjacent to y in I' 1) (R).
We show that x is adjacent to y in I 1(R). Otherwise, without loss of generality, we assume that z € yI.
So that 2% € xyl. Thus 2 = 0. This implies that € Anng(I), a contradiction. (]

Proposition 2.21. Let I be a finitely generated non-zero ideal of R. Suppose that x,y € R\ Anng(I).
(a) x € V((T1(R)) if and only if z + Anng(I) € V(I'(R/Anng(I)).
(b) If 2 + Anng(I) is adjacent to y+ Anng(I) in T'(R/Anng(I)), then x is adjacent to y in '7(R).

Proof. a) Let 2 € V(I';(R)) and € V((I'(R/Anng(I)). Then there exists y + Anng(I) such that
xy+ Anng(I) =1+ Anng(I). Thus (xy — 1) € Anng(I). Since I is a finite generated ideal, there exists
r € R such that (r(zy — 1)+ 1)I =0 and so r(zy — 1) + 1 € Anng(I). Thus 1 € Anng(I) which implies
that I = 0, a contradiction.

b) This is straightforward. O

An R-module M is said to be a comultiplication module if for every submodule N of M there exists
an ideal I of R such that N = Anny(I), equivalently, for each submodule N of M, we have N =
Annpr(Anng(N)) [7]. R is said to be a comultiplication ring if R is a comultiplication R-module.

Theorem 2.22. Let I be a proper ideal of R. Then V(I'1(R)) = V(T ann(r)(R)) if one of the following
conditions hold.

(a) R is a comultiplication ring.
(b) R/Annr(I) = Z(R/Anng(I)) UU(R/Anng(I)).
Proof. Clearly V(T gnn(r)(R)) € V(fI(R)).
(a) Let & € V(I';(R)). Then 21 # 0 and &I # I. Since R is a comultiplication ring, this implies that
Anng(zl) # Anng(I). Thus there exists y € Anng(xl) \ Anng(I). Therefore, x € V(T g4ppn(r)(R)).
(b) Let z € V(I';(R)). Then xI # 0 and 21 # I. By assumption, & + Anng(I) € Z(R/Anng(I)) or
x4+ Anng(I) € UR/Anng(I)). If © + Anng(I) € Z(R/Anng(I)), then there exists y € R\ Anng(I)
such that xy € Anng(I). Therefore, x € V(I apn)(R)). If x4+ Anng(I) € U(R/Anng(I)), then there

exists z + Anngr(l) € R/Anng(I) such that xz + Annr(l) = 1 4+ Anng(I). Thus 1 = zz + a for some
a € Anng(I). Now we have I =11 = (zz+ a)l = xzI C zI, a contradiction. O

Theorem 2.23. Let I C J be non-zero ideals of R. Then we have the following.

(a) If R/Anng(J) = Z(R/Anng(J)) UU(R/Anng(J])), then V(I'1(R)) € V(Ls(R)).

(b) If dim(R) = 0, then V(I';(R)) C V(L s(R)). In particular, this holds if R is a finite ring.
Proof. (a) This follows from Theorem 2.22 (b) and [6, Theorem 2.8].

(b) dim(R) = 0 implies that dim(R/J) = 0. It follows that
R/Anng(J) = Z(R/Anng(J)) U U(R/Annr(J)).

Now the result follows from part (a). O
Prop(()s;tion 2.24. Let I be a non-zero ideal R with R = Z(R)UU(R) and V(I';(R)) = V(I'(R)). Then
Anng(I) =0.

Proof. Suppose that V(I';(R)) = V(I'(R)). Since V(I';(R)) C R\ Anng(I), we have V(I'(R)) C R\
Anng(I). Thus Anng(I) € R\ V(I(R)) = {0} UU(R) by hypothesis. Therefore, Anng(I) = 0. O
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3. Secondal ideals

In this section, we will study the ideal-based cozero-divisor graph with respect to secondal ideals.

The element a € R is called prime to an ideal I of R if ra € I (where r € R) implies that r € I. The
set of elements of R which are not prime to I is denoted by S(I). A proper ideal I of R is said to be
primal if S(I) is an ideal of R [12].

A non-zero submodule N of an R-module M is said to be secondal if Wr(N) ={a € R : aN # N}
is an ideal of R [8]. A secondal ideal is defined similarly when N = I is an ideal of R. In this case, we
say I is P-secondal, where P = W (I) is a prime ideal of R.

Lemma 3.1. Let I be a non-zero ideal of R. Then the following hold.
(a) Anng(I) € W(I).
(b) Zr(R/Anng(I)) € W(I).
(¢c) V(L1(R)) = W(I)\ Anng(I). In particular, V(I'1(R)) U Anng(I) = W(I).
(@) If Anng(I) is a radical ideal of R, then Upepsin(annp(yy P S W)

Proof. (a) Let r € Anng(I). Then I =0 # I. Thus r € W(I).

(b) Let x € Zr(R/Anng(I)) and & ¢ W (I). Then there exists y € R\ Anng(I) such that xyl = 0.
Hence xI = I implies that yI = 0, a contradiction.

(¢) Let € V(I';(R)). Then r € R\ Anng(I) and I # I; hence r € W(I)\ Anng(I). Thus
V(I';(R)) C W(I)\ Anng(I). Conversely, we assume that @ € W(I)\ Anng(I). So 2l # I and xI # 0.
Then z € V(I';(R)), so we have equality.

(d) By [13, Exer 13, page 63], Zr(R/I) = Upecpsin(r P> Where I is a radical ideal of R. Thus

Zr(R/Anng(1)) = UPeMm(AnnR(z)) P. Hence UPeMm(AnnR(I))P C W(I) by part (b). U

Remark 3.2. Let R = Z, I = 2Z. Then Zr(R/Anng(I)) = Zr(R) = 0 and W(I) = Z\ {-1,1}.
Therefore the converse of part (b) of the above lemma is not true in general.

Proposition 3.3. Let I and P be ideals of R with Anng(I) C P. Then I is a P-secondal ideal of R if
only if V(I'1(R)) = P\ Anng(I).

Proof. Straightforward. O

Theorem 3.4. Let I be an ideal of R. Then I is a secondal ideal of R if and only if V(I';(R))U Anng(I)
is an (prime) ideal of R.

Proof. Let I be asecondal ideal. Then W (I) is a prime ideal and by Lemma 3.1(c), V(I';(R))UAnng (1) =
W (I). Thus V(I';(R)) U Anng(I) is an ideal of R. Conversely, suppose that V(I';(R)) U Anng(I) is
a (prime) ideal. Then by Lemma 3.1(c) , V(I';(R)) U Anng(I) = W(I) is a prime ideal. Hence I is a
secondal ideal. (]

Theorem 3.5. Let I and J be P-secondal ideals of R. Then V(I';(R)) = V(L s(R)) if and only if
Anng(I) = Anng(J).

Proof. By Lemma 3.1 (a), Anng(I) € P and Anng(J) C P. It then follows from Proposition 3.3

that V(I'7(R)) = V(I';(R)) if and only if P\ Anng(I) = P\ Anng(J); and this holds if and only if
Anng(I) = Anng(J). O

Lemma 3.6. Let N be a secondary submodule of an R-module M. Then /Anng(N) = W(N).

Proof. Let x € W(N). Then N # N. Since N is a secondary R-module, there exists a positive integer
n such that 2" N = 0. Thus z € \/Annr(N). Hence W(N) C /Anngr(N). To see the reverse inclusion,
let z € \/Annr(N) and x € W(N). Then 2N = 0 for some positive integer n and N = N. Therefore
N =0, a contradiction. O
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Theorem 3.7. Let I be an ideal of R. Then I is secondary ideal if and only if V(P 1(R)) = \/Anng(I) \
Anng(I).

Proof. 1f I is secondary, then y/Anng(I) = W(I) by Lemma 3.6. Hence [ is a \/Anng(I)-secondal ideal
of R. Then Proposition 3.3 implies that V(I';(R)) = /Anng(I) \ Anng(I). Conversely, suppose that
€ Ryxl # I, and = ¢ \/Anng(I). Then € W(I) and = ¢ Anng(I). Thus z € V(I';(R)) and so
x € \/Anngr(I)\ Anng(I) by assumption, a contradiction. O

Definition 3.8. Let I be an ideal of R. We say that an ideal J of R is second to I if [J = 1.

Proposition 3.9. Let I be an ideal of R. If I is not secondal, then there exist x,y € V(f‘I(R)) such that
< x,y > 1is second to I.

Proof. Suppose that I is an ideal of R such that it is not secondal. Then by Lemma 3.1 (c), V/(I';(R)) U
Anng(I) = W(I) is not an ideal of R, so there exist x,y € W(I) with 2 —y ¢ W(I) and so (z —y)I = I.
Hence < z,y > I = I. Now we claim that z,y ¢ Anng([). Otherwise, we have x € Anng(I) or
y € Anng(I). If z,y € Anng(I), then x —y € Anngr(I) € W(I), a contradiction. If x € Anng(I) and
y & Anng(I), then I = (z —y)I C ol +yI = 0+ yl, a contradiction. Similarly, we get a contradiction
when z € Anng(I) and y € Anng(I). Thus we have x,y & Anng(I). O

Proposition 3.10. Let I be an ideal of R. Then the following hold.

(a) Let x,y be distinct elements of \/Anng(I)\ Anng(I) with xy & Anng(I). Then the ideal < z,y >
is not second to I.

(b) If I is a secondary ideal, then the diam (T apn ) (R)) < 2.

Proof. (a) Let ideal < z,y > be second to I. Since z,y € \/Anngr(I) \ Anng(I), there exists the least
positive integer n such that 2"y € Ann(I). As xy ¢ Anng(I), we have n > 2. Let m be the least
positive such that 2"~ 1y™ € Anng(I). Now clearly m > 2 because 2" 'y ¢ Anng(I). This yields that
the contradiction

0=a""ty"™ Yaz,y)l =" Ly™ 1T #£0.

(b) If I is secondary, then W(I) = y/Anngr(I) by Lemma 3.6. Choose two distinct vertices z,y in
L ann(n)(R). If 2y € Anng(l), then d(z,y) = 1. So we assume that zy ¢ Anng([). Then by Proposition

2.20 (a) and Lemma 3.1, z,y € W(I)\ Anng(I). Also we have x,y € \/Annr(I)\ Anngr(I) by Theorem

3.7. As in the proof of (a), we have the path 2 — 2" 1y™~! —y from x to y in T a,,r)(R). Hence
d(x,y) = 2. Therefore, diam (T onn(r)(R)) < 2. O
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