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Construction Of Inverse Curves Of General Helices In The Sol Space Sol®
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ABSTRACT: In this paper, we study inverse curves of general helices in the Gol®. Finally, we find out explicit
parametric equations of inverse curves in the Gol3.
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1. Introduction
An inversion with respect to the sphere S¢ () with the center C' € Sol® is given by

7,.2

C+——=(P-0C),

1P —=C
where 1 is radious, P € Sol®. The inversion is a conformal mapping and also is differentiable and a
transformation defining between open subsets of Sol®, [1,2,7].

A curve of constant slope or general helix is defined by the property that the tangent makes a constant
angle with a fixed straight line (the axis of the helix). A classical result stated by M. A. Lancret in 1802,
(4].

In this paper, we study inverse curves of general helices in the Sol®. Finally, we find out explicit
parametric equations of inverse curves in the Sol®.

2. Preliminaries

Sol space, one of Thurston’s eight 3-dimensional geometries, can be viewed as R3 provided with
Riemannian metric
2z 2 —2z 2 2
Jeorr = e-7dx” + e “*dy” + dz7, (2.1)

where (z,y, z) are the standard coordinates in R3.
Note that the Sol metric can also be written as:

3
o = Zwi®wi, (2.2)
i=1
where

wl =e*dr, w?=e"dy, w?=dz, (2.3)

and the orthonormal basis dual to the 1-forms is

0 0 0

_ 2z Y — p? - 2.4
(S5 ax ) €2 & ay ) €3 52 ( )
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Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant
metric gso3, defined above the following is true:

where the (i, j)-element in the table above equals Ve,e; for our basis
{ek; k= 17 2) 3} = {ela €9, 63}'

3. Inverse Curves of General Helices in Sol Space Sol®

Assume that {T,N, B} be the Frenet frame field along ~, [3,5,6,8]. Then, the Frenet frame satisfies
the following Frenet—Serret equations:

VTT = HN,
VeN = —xT+7B, (3.1)
VB = —7N,

where £ is the curvature of 7 and 7 its torsion and

9&013 (TaT) = ]-v 9&013 (NvN) = ]-7 9&013 (BaB) = 1a (32)
9o (T, N) gsois (T, B) = ggo3 (N, B) = 0.

With respect to the orthonormal basis {e1, e,, €5}, we can write

T Tveqr + Treg + Tses,
N = Nje; + Noes + N3es, (33)
B = T xN = Bje; + Byes + Bses.

Theorem 3.1. Let v : I — Sol® be a unit speed non-geodesic general heliz. Then, the parametric
equations of v are

sin mef cosPs—C3

[—cosPcos [€15 + €] + €y sin [C15 + E]] + €y,

€2 + cos? P
0 = B e cosltus + €] + cosPin €13 + €] + € @4
= — 553 sin .
ys € + cos2 P 1€ 18 2] T COSPS 18 2 5,
z(s) = cosPs+ €3,

where €1, €y, €3, €y, €5 are constants of integration, [8].

We can use Mathematica in Theorem 3.1, yields
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Figure 1: Parametric equation for v : I — Gol®

An inversion with respect to the sphere S¢ () with the center C' € Sol® is given by

7,2

C+——(P-0C).
[Fxel

Let C' € Gol® and r € Rt. We denote that (Sol®)” = Gol® — {C}. Then, an inversion of Gol® with
the center C' € Gol® and the radius r is the map

O [C,r]: (Gol?)" — (&Gol®)”

given by
"2

RET——)
1P =Cl
Definition 3.2. Let ® [C, 7] be an inversion with the center C' and the radius r. Then, the tangent
map of & at P € (60[3)* is the map

Dupy =Ty ((80F)") — Tagy ((S0r")")

®[C,r](P)=C (P-C). (3.5)

given by
v, B 2r2 (P - C) ,vp)

P el

(I)*P (UP) (P - C) )

where v, € T ,, (((‘50[3)*), [1].

Theorem 3.3. Let v : I — Sol®  be a unit speed non-geodesic general heliz. Then, the equation
inverse curve of vy is

N . r? sin P
F(s) = J|ae®+ ) [QI% n COSQY,B[_ cos P cos [€15 + €3]
+C;sin [€1 s + &) + C ecosPstls _ ae)le;
2 .
Flbe™C + — SIWB ¢ cos[€1s + €] (3.6)

11 (s) [Q:% + cos? P

+ cos Psin [€15 + ]| + Cse T — pe e,
2

IT(s)

+le+ [[cos Ps + €3] — ]]es,
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where €1, &y, €3, €y, &5 are constants of integration and

sin ‘P
11 = T |- ; cosPs+€3 ]2
(s) [Qj% o &B[ cosPcos[€1s + &3] + € sin [€1 5 + &3] + Cye ae’
45111‘3 5 —cosPs—C3 —c]2
+[¢2 T cos? P [—€ cos €18 + C3] + cosPsin [€1s + E]] + Ese — be™]
1

+]cos Ps + €3 — ]

Proof. Suppose that v be a unit speed non-geodesic general helix.

Setting

C = (a,b,),

where a, b, c € R.
Using above equation and (2.1), we have (3.6) as desired. This completes the proof.

Theorem 3.4. Let 7y : I — Sol® be a unit speed non-geodesic general heliz. Then, the parametric
equations of v are

2 2 i
_ —[e+ 7=y [[cos Ps+C3]—c c T Slnm . .
r = e letamll sl=ellgec + T [Q% +c052‘13[_ cosPcos [€1s + €,
4+ sin [€15 + o] + C4eFHE _ e (3.7)
r2 . 2 31
y = eltmlieosPsttsl—dlp,—c T sin e [~ cos [€15 + €3]

II(s) [Qf% + cos? P
+cosPsin [€1 5 + Co]] + Eze OFTE] — b,

7,2

II(s)

z = [e+ [[cosPs + €3] — ],

where €1, E, €3, €4, &5 are constants of integration and

II(s) = [%[— cosPcos [€15 + €] + € sin [€5 + Co]] + C e Pt _ )2
1
sin 3 . — cosPs—Cs —c12
—l—[m[—& cos €15 + €3] + cosPsin [€15 + 3] + Cse —be™
1

+]cos Ps + €3 — ]

Proof. Using orthonormal basis in Theorem 3.3, we easily have above system.

Finally, the obtained parametric equations for Eqs. (3.4) and (3.7) is illustrated in Fig.2:
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Figure 2: Parametric equations for Egs. (3.4) and (3.7)
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