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Note on the Fractional Mittag-Leffler Functions by Applying the Modified
Riemann-Liouville Derivatives

Adem Kiligman and Wedad Saleh

ABSTRACT: In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivative
is employed for constructing some results related to Mittag-Leffler functions and established a number of
important relationships between the Mittag-Leffler functions and the Wright function.
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1. Introduction

It is well known that with the classical Riemann-Liouville definition of fractional derivative [2,5,15],
the fractional derivative of a constant is not zero. The most useful alternative which has been proposed
to cope with this feature is known Caputo derivative [6], but in this derivative fractional derivative would
be defined for differentiable functions only. A modification of the Riemann-Liouville has been defined to
deal with non-differentiable functions [3,4,9,21,16,23] and it is given as:

Definition 1.1. Let f : R — R,  — f(x) denote a continuous function. The modified Riemann-
Liowville derivative of order « is defined by the expression

ﬁ Ji @ =) f(n)dn ja <0,
DU =\ e @ ) ~ f@ldy 0<a <1,
(f(afm)(x))(m) m<a<m-—+1.

Some important properties for this kind of derivatives were given in [20] as follows:

(e +1)
Mu+1-a)

2. D (f(x)g(x)) = (D f(x)) g(x) + f(x) (D*g(x)),
3. Df(u(x)) = D*f(u) (D(u))",

4. D*(m) = 0 where m is constant function.

1. D%%#H = zhm >0,

There are some special functions which are studied their fractional derivative by several researchers
( Agarwal [1], Erdelyi [7] and Miller [18]). In this article, we deal with some of these functions such as
Mittag-Leffler and Wright functions.
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The Mittag-Leffler function [7,8] of one parameter is denoted by E,(z) and defined by:

C . 1.1
kZ:OFozk—i—l aeC,a>0 (1.1)

This function plays a crucial role in classical calculus for a« = 1, for @« = 1 it becomes the exponential
function, that is e* = E;(x)

o0

= e

The other important function which is a generalization of series is represented by:

0 k

x
anﬁ(fﬁ) :kgom, a,ﬁe@,a>0. (12)

The functions (1.1) and (1.2) play important role in fractional calculus, also we note that when 8 =1 in
(1.2), then (1.1) is obtained which mean that E, i(x) = Eqy(z).

Another form which is generalization of (1.1) and (1.2) was introduced by Prabhakar [22] such as:

o
1.
,;:()Fak"‘ﬁ , a,B8,0 e C,a >0, (1.3)

where (§)g, the Pochhammer symbol, is defined by
)k =00+1)...(60+k—1),6 e C,keN,
while
(0)o=1,0#0.

There are some special cases of (1.3) such as:

1. B}, (z) = Ea(x),

2. E;B(a:) = E, 5(x).
The second functions will be discussed is Wright function, which is defined as

k

= T
Wiei0 D) =2 Sk o

This function plays an important role in the solution of a linear partial differential equation. Furthermore,
there is an interesting link between the Wright function and the Mittag-Leffler function. Hence, some
useful relationships between those functions have been obtained in this work.

2. Main Result

Now, we point out some formulas which do not hold for the classical Riemann-Liouville definition,
but apply with the modified Riemann-Liouville definition.

Theorem 2.1. Assume that o > 0,8 > 0 for A € R, then the following formula holds
B—a—1

B-1pd ()] —
P ] = p )

+ AP ES g(Aa®) (2.1)
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Proof.

i I'(ak + B)k!
—D" Hfzg + %xaw* + 11(2(;5()73_)\;)2!1:2”5*1 n 11(3(2)%1)‘;)3!1,3&4%71 n ]
:mmﬁﬂrl + (lfz—;;\xﬁfl + %xaw*l " F(Q(Z)ij_)\;)g!JEQH_1 L
:mxﬁ_a_l Fat H%l) * (c(ffg)zlxa + p(g(i)f;)?)! 4 ]
a1
:ré Bl}: ;if (2% 0, 9).

Then we obtain the following relation

ﬁ a—1 /\
D B—lEé Az®)] = Az B—1 k+1
Also, the following formula is given
D* [xﬁ71E5 (Az®)] = ﬁ + \PTLES (A
ARG nee
O
Remark 2.2. 1. Since
p—1 a+pB—1
B 1E (Ax )= x Az ’
) I(a+p)
then
B—a—1 )\Z‘ﬁ_l
Do P ET L (da)| = = _
AN S e T T
= "B 5 (M) = AP TED p(Aa®).
2. When 6 =1 in formula (2.1), then we obtain
xﬁfafl
D* [z B, g(A2*)] = ) + 2P B, s(Ma®). (2.2)

3. When d =1 and 8 =1 in formula (2.1) and 1 — o — 07, then we have the following intersting
formula

YEo(Ax®) = AEL(Ax®). (2.3)
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Also, we can show this formula by another method such as

e~ )\kxak

D°En(\z®) = D*Y ————
p 0F(ak+1)
)\k ak—a

- Zr k—1)+1)

Ak‘+1xa(k+1)—oz

= I'ak+1)
o) k k
)\ (e
—_=>> A
= I'ak+1)
= AE,(Ax®).
The following figures show some modified Riemann-Liouville derivative of order closed to zero for
E,(x%).
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Figure 1: D%1Eq(2%1). Figure 2: DY4Eq 4(2%%).
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Figure 3: D% 7Eq 7(2%7). Figure 4: D*8Ej g(x0%).

Corollary 2.3. Let a > 0,6 > 0 and for A € R, then the following formula holds
D®E, (\x) = \a %z'"“E, (\x). (2.4)

Proof. We can write
D°E., (\z) = D“E, ((A%xé)a) :
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Let u = A=z% and by applying the fractional derivative properties, we get

o (M) = E,(u®) [/\éoflxéfl]a
= o “z' " ?E,(\x).

O

In the following figures there are some modified Riemann-Liouville derivative of order closed to zero

for E,(z).

Figure 5: DY1Eq (). Figure 6: DY*Eq 4(x).
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Figure 7: D%"Eq 7(x).

Figure 8: DY8Ej g(x).

Theorem 2.4. Assume that o > 0,8 > 0 for A € R, then the following formula holds

DY [2P71E] s(Aa)] = -

+ A TPTNED L (M), (2.5)

Proof.

D [xﬁflE;i, (/\mo‘)]

@ ak+ﬁ—1
=D kZF(ak:—&—B
D ! 1/\ _O)A  avs1 (9)22? g2oHh=1 (9)3A° -
T@) " T(a+5) T(2a + B)2! T(3a + B)3!

oo k

LB—1 0)rA ak
E —ac .
k:OF ak + 8 —)k!
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Hence, the relation with the Wright function is

DY [mﬁ_lE(‘iﬁ(x\xo‘)} =Pt 2(5)k)\kw($a; a,B—7).

k=0
Also,
B—vy—1
D' [oPES J0a%)] = =
S
R )i AP
A a+pB—y—1 ( ak
A kZ:oP krD)+8-NE+D"
xﬁ—'y—l feY e
T TEoy M I, gy (A2®).

Remark 2.5. 1. If we set v = « in formula (2.5), then the formula (2.1) is obtained.

2. Let 6 =1 in (2.5), then

B=1=

DY [P Eq g(Aa®)] = TG

AT, s ()

Also, if B=1 and 1 — v — 0T then
DYE, (Azx®) = Az Y Eq q—yt1(Az%).

This formula is also true when o >0 and 0 < v <1 for A € R by the following method:

> kozk

DVE,(\x®) = Z

= D(ak+1)

)\k ak—ry
[(ak —y+1)

Il
|M8

o )\k-i-l ak+a—y
- Z I(ak+a—v+1)

/\k ak
2o ’yz
MNak+a—v+1)
= )\xa*VEa,a,VH()\x ).

In the following figures show DY Eq(z%*), A = 1.
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B

Figure 9: DY5E, (z%) Figure 10: D*?5E, (z®)
a =0.5,0.25,0.75. a =0.5,0.25,0.75.

0 1 2 3 4 5

Figure 11: D% E, (z%)
o =0.5,0.25,0.75.

B—v—1
x
Moreover, we note that ———— — 0 when 8 —~v — 0%, then

L'(B—7)

DP [2P Eq 5 (Az)] = Aa® ' Eq 0 (A2®).
3. Asume that a =, B=1,8=1and 1 —~v — 0% in (2.5), then the formula (2.3) is given.
Corollary 2.6. We can write
DPE, (\z) = DPE, ((A%xi) ) .

Letu= \*.zs and by applying the fractional derivative properties, we get

B
DPE,(Mx) = u* PEua_pi(u®) [)\écflxé*l]

= )\cfﬁxlfﬁEa,a,BH (A\z).

Then
DPE, (\x) = Aa P2 PE, o pi1(A\x)

Let B = « in the above formula, then

DE, (A\z) = Xa %z'"“E,(\z).

In the following figures show D°E,(z),\ = 1.



8 A. KiLIGMAN AND W. SALEH

1.5% 10% 7
10°°
6.%10*
1.x10% 5.%10%
410
¥ ¥
3.x10%
5% 10%
10%%
Lx10%®
-10 -3 3 5 10 -10 -3 0 5 10
Figure 12: D5E, () Figure 13: DY*E, ()
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Figure 14: D'E,(x)
a = 0.5,0.25,0.75.

Theorem 2.7. Assume that o > 0,8 > 0 for A € R, then the following formula holds

DPES s(Aa™) = (=1)° Xz~ PE), ,(Az™%)

Proof.
< (G
DPELp(ha™%) = Z ak+6 e
_ i (= 1 k+1)\ —ak—a—p

—T(a )(k+1)! '
Then

2 (8) g AT g—o8 -

DPE? s(\a™®) = IBZ@ T W(z™%a, ).

Moreover,

When 6 = 1, then
DBEaﬁ()\m_o‘) = (-1)Az7PE, o (M2™%)

1

Corollary 2.8. Let u = \= =, then by using formula (2.9) we have

DBEg“B(/\x*l):( )'Bx\aofo‘ —a—%p 270‘()@71).

(2.10)
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Here when § = 1, then

DPEqp(a™) = (~1)P A a0 S By o (A7),

Theorem 2.9. Assume that a > 0,5 > 0 and X\ € R, then the following formula holds
D"E, (Az®) = \"E, (Az%)
wheren =1,2,3,---

Proof.

0 )\kxak
D E,(\z%) = D" _
(Az*) kz:% T(ak +1)

oo )\kxoz(k—n)

= 2 T(a(k —n)+1)

k=n

0 )
)\k-H’ank

— T(ak +1)

. ol )\kxak
= ];)F(ak—i—l)

= N'E.(A\z%).

Note that, if n = 1, then we obtain formula (2.3).
Corollary 2.10. Assume that o> 0,5 > 0 and A € R, then the following formula holds
DB, (\z) = Nla~ " z(=9)" B ()
wheren =1,2,3,---
Proof. Let
D°"E, (Az) = D“"E, ((Aéxé)“)
and put u = )\éxi, then by applying the fractional derivative properties, we get
DB, (A\t) = Ea(u®) [A%aflxéflrn
= Na ("B (Ax).

Let n = 1, then formula (2.4) is obtained .

Theorem 2.11. Assume that o > 0,6 > 0 and A\ € R, then the following formula holds
DPE, (\z®) = A"z "A"E, 0 gni1 (Az®)

wheren =1,2,3,---

(2.11)

(2.12)

(2.13)
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Proof.
2 gk
D"E,(A\z%) = D"y ——————
() kz T(ak +1)
o0 )\k ak—pBn
B =T (ak —nfB+1)
0 )\kJrnxozk—i-om,—ﬁn
B Pt ok +an—pn+1)
e )\kmak
—  \gon Bn
* gF(ak—l—an—ﬁn—Fl)
= N2 PE anpne1(Az®).
Here, when n = 1, then formula (2.7) is obtained. O

Corollary 2.12. Assume that a > 0,6 > 0 and A € R, then the following formula holds
DP'E, (\x) = N"a Pra(=PnE, g () (2.14)
wheren =1,2,3,---
Proof. Assume that
DP"E, (\z) = D"E, ((A%xé)a)

and let u = )\éaz%, then by applying the fractional derivative properties, we get

Bn
D'BnEa (ua) _ uaniﬁnEa,om—ﬁn+l( ) {)\aafl 771:|

= )\"a_B"x(l_B)"Ea,(m,ﬁnH (A\x).

Also, when n = 1, then formula (2.8) is obtained.

Kiryakova introduced and studied the multi-index Mittag-Leffler function as their typical represen-
tatives, including many interesting special cases that have already proven their usefulness in FC and its
applications [12].

Definition 2.13. Assume thatn > 1 is an integer, ny,...,n,, > 0 and B4, ..., B,, are arbitrary real numbers.
The multi-idex Mittag-Leffler function is given as
0 k

E1),)() :E((Z—li»(m(x) > ( +51) - (LJFB )
=t B

k=0 I’
The same function was given by Lunchko [17], called by him Mittag-Leffler function of vector index.

Futhermore, the Wright generalized hypergeometric function ,, W, is defined as

T (a‘laAl
W { (b, By)?

iralkJrAl D(amk + Ay,) 2F
C(bik+b1)---T(bok + B,) k!

=0
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The ,, W,, function is special case of the Fox H-function
LA™
HP | o (ai, A; v } )
’ { ‘ (bj, B;);
In particlar, when A; = B; = 1,Vi, j, then Meijer’s G-function is obtained

(aivl)iz ] — @qpr4 {x

HPq |
e [ (bja 1)i

For more detils see [10,11,13,14].

11

There are some interested properties related to multi- Mittag-Leffler function which were proven in

[12]:
L Eo=1 W [ o) |7 }
2 Bap =1 Wl[((clv:;)) ’ }
3. B2y gy =1 Wo [ (,,i(il,,ﬁli))? ’ }
1 By =y IWI{{;:% ‘x}

In the same paper, the author showed Wright function as a case of multi- Mittag-Leffler function with

n=2:

W (z; o, B)

> T(ak + B)K!

k=0

N °W1[<

d

a,f)
@)
Elan).8.1)(®)-

Indeed, the multi-idex Mittaag-Lefller function when 8, = 1,Vi can be written as

Then

i1 n;
. k 1
r (777 + uB + 1) K

(2.15)
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Here, if we set o = ni and n = 1, then we obtain formula (2.3), A = 1.

o T +L 41 1,1
i (o=t ot 32 LU T ) )

— = 1 Wa| (1 1 "
i T(E+1) [(E’nﬁ“)l

The above formula can be obtained by putting u = (x”)# and then applying formula (2.15). Especially,
if a = ni and n = 1, formula (2.16) yields to the formula (2.4) when A = 1.

x ] : (2.16)

Theorem 2.14. Assume that n; > 0 are arbitrary real numbers and 0 < ~v < 1, then the following
formula holds

o P(E+l41) (1,1)
D’YE(L) (xﬂ_li) :x%ivz un i 1Wn [ 1 (,C"_lt ‘| . (217)
k:of(nﬁi-F%—ﬁ-i-l) (71_1’17_1—'— )
Proof.
00 &
M4
Dm( ) (m*) — sznx—
i1 n;
00 LI
S PG o+ JRESHERI,
. - E o1 '
’“—OF(%+%—7+1)HF(;+;+1>
i=1 i i
which is the result. O

As expected when a = ni and n = 1,the last formula turns to be the formula (2.7) when A = 1.

i

Since DVE( n

M4

) () can be written as DWE(L

M4

) ((x”)"%) and by appling (2.17), the following formula
is given: ( )
+L+1 - (1,1)
D'E ) =njztY 1’ W, [
(1)@ ?%r(m_i_m) Wl (k1)

We would like to mention that if o = ni and n =1 in formula (2.18), then (2.8) is obtained.

i

x ] . (2.18)

Corollary 2.15. For arbitrary n > 2, let Vn, = co and V3; =1,i=1,--- ,n. Then

d

Now, we study modified Riemann-Liouville derivitive of fractional Sine and Cosine function.
Since

(n) N - -
DYE,... 0),1,-)(@) =2 szr(]“rl) o { (1,1 —7)
=0

cose (1Y) = % [Ea(it™) + Eqo(—it™)],
then
D% cosa (1) = % (i) — iBo(—it™)]
= —sing(t%).

Hence, we get a very useful relation

D cos (%) = —sing (t%).
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By using the same technique we can write
D sing (%) = cosq (t%).

Moreover, since cosqa(t) = 3 [Ea(it) + Eq(—it)], then

1
DY COSa(t) — 5 [Z'O{*OttlfaEa (Zt) _ Z-afatlfaEa(_it)}

= —a Ot sing ().

The following figures show D cos, () when « = 0.3,0.5 and 0.75:

oy

05 0.5

06 06

08 55

08

Figure 15: D3 cosg 3(7) Figure 16: D5 cosg 5(7)

Figure 17: D%75 cosg.75(x)

Also, we can write

D%sing(t) = a~ %t~ cos, (t).

The next figures show D sin, () when o = 0.3,0.5 and 0.75:

13
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Figure 18: D%3sing 3(x) Figure 19: D% sing 5(x)

Figure 20: D% sing 75(z)
The next step we study D? cos, (t*) and D? cos,(t).

1
DP cosa(t) = 5[z’t“*BEa,a,BH(it“)—it“*f@Ea,a,ﬁH(—z’t‘*)}

— —taiB Sina,a—B—H (ta),

where
to tSa t5on

Siaa—6+1(0) = T =350 T Ta g5 (TGa—B+D

Similarly we can show that

DPsing (%) = t*7P cosg.a—pr1(t?),

where
COSer.ar— = - —
w=ptl I'(3) I'Ba—-B—+1) TIGa-B+1)
1
D? cose(t) = 5 [z’aiﬂtlfﬂEma,BH(it) — ia*ﬁtlfﬁEa,a,lgH(—itﬂ
= —a_ﬂtl_ﬂsina,a_gﬂ(t).
Similarly

DPsing (t) = a 1178 cospa—pr1(t).
Theorem 2.16. The fractional derivative of hyperbolic function of order m is given as
Do _ et vtm—a—1 my . _
[y (2, m)] = m—i—x Emvtm—a(@™),v=1,2,---

when v — o — 01, then
D [hy(x,m)] = a:mflEmm(xm).
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Proof. Since hyperbolic function of order m is defined as

St karv 1 L
=" Enw m’ =1,2,---,
ZO (mk+v T 5 (x ) v

then by using formula (2.6) we get the result. O

Theorem 2.17. The fractional derivative of Mellin- Ross function,

k k (a41)

)=z Z}r 1+a)k+1)

= xaEa+1,a+1(5$a+1)a

s gwen by

D% [2%Bot1,041(B2°H)] = Az® Egq1 041 (z2)
The proof is directed by using formula (2.2).

3. Conclusion

In this note, some useful formulas have been established by using modified Riemann-Liouville def-

inition of fractional derivative. These formulas can be used to solve some linear fractional differential
equations which are useful in several physical problems.
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