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abstract: In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivative
is employed for constructing some results related to Mittag-Leffler functions and established a number of
important relationships between the Mittag-Leffler functions and the Wright function.
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1. Introduction

It is well known that with the classical Riemann-Liouville definition of fractional derivative [2,5,15],
the fractional derivative of a constant is not zero. The most useful alternative which has been proposed
to cope with this feature is known Caputo derivative [6], but in this derivative fractional derivative would
be defined for differentiable functions only. A modification of the Riemann-Liouville has been defined to
deal with non-differentiable functions [3,4,9,21,16,23] and it is given as:

Definition 1.1. Let f : R −→ R, x −→ f(x) denote a continuous function. The modified Riemann-
Liouville derivative of order α is defined by the expression

Dαf(x) =























1

Γ(−α)

∫ x

a
(x− η)−α−1f(η)dη ;α < 0,

1

Γ(1− α)

d

dx

∫ x

a
(x− η)−α [f(η)− f(a)] dη ; 0 < α < 1,

(

f (α−m)(x)
)(m)

;m ≤ α < m+ 1.

Some important properties for this kind of derivatives were given in [20] as follows:

1. Dαxµ =
Γ(µ+ 1)

Γ(µ+ 1− α)
xµ−α, µ > 0,

2. Dα (f(x)g(x)) = (Dαf(x)) g(x) + f(x) (Dαg(x)),

3. Dαf(u(x)) = Dαf(u) (D(u))
α
,

4. Dα(m) = 0 where m is constant function.

There are some special functions which are studied their fractional derivative by several researchers
( Agarwal [1], Erdelyi [7] and Miller [18]). In this article, we deal with some of these functions such as
Mittag-Leffler and Wright functions.
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The Mittag-Leffler function [7,8] of one parameter is denoted by Eα(x) and defined by:

Eα(x) =
∞
∑

k=0

xk

Γ(αk + 1)
, α ∈ C, α > 0. (1.1)

This function plays a crucial role in classical calculus for α = 1, for α = 1 it becomes the exponential
function, that is ex = E1(x)

ex =
∞
∑

k=0

xk

Γ(k + 1)
.

The other important function which is a generalization of series is represented by:

Eα,β(x) =

∞
∑

k=0

xk

Γ(αk + β)
, α, β ∈ C, α > 0. (1.2)

The functions (1.1) and (1.2) play important role in fractional calculus, also we note that when β = 1 in
(1.2), then (1.1) is obtained which mean that Eα,1(x) = Eα(x).

Another form which is generalization of (1.1) and (1.2) was introduced by Prabhakar [22] such as:

Eδ
α,β(x) =

∞
∑

k=0

(δ)k
Γ(αk + β)

xk, α, β, δ ∈ C, α > 0, (1.3)

where (δ)k, the Pochhammer symbol, is defined by

(δ)k = δ(δ + 1)...(δ + k − 1), δ ∈ C, k ∈ N,

while

(δ)0 = 1, δ 6= 0.

There are some special cases of (1.3) such as:

1. E1
α,1(x) = Eα(x),

2. E1
α,β(x) = Eα,β(x).

The second functions will be discussed is Wright function, which is defined as

W (x;α, β) =

∞
∑

k=0

xk

Γ(αk + β)k!
.

This function plays an important role in the solution of a linear partial differential equation. Furthermore,
there is an interesting link between the Wright function and the Mittag-Leffler function. Hence, some
useful relationships between those functions have been obtained in this work.

2. Main Result

Now, we point out some formulas which do not hold for the classical Riemann-Liouville definition,
but apply with the modified Riemann-Liouville definition.

Theorem 2.1. Assume that α > 0,β > 0 for λ ∈ R, then the following formula holds

Dα
[

xβ−1Eδ
α,β(λx

α)
]

=
xβ−α−1

Γ(β − α)
+ λxβ−1Eδ

α,β(λx
α) (2.1)
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Proof.

D
α
[

x
β−1

E
δ
α,β(λx

α)
]

=D
α

∞
∑

k=0

(δ)kλ
k

Γ(αk + β)k!
x
αk+β−1

=D
α

[

xβ−1

Γ(β)
+

(δ)1λ

Γ(α+ β)
x
α+β−1 +

(δ)2λ
2

Γ(2α+ β)2!
x
2α+β−1 +

(δ)3λ
3

Γ(3α+ β)3!
x
3α+β−1 + ...

]

=
1

Γ(β − α)
x
β−α−1 +

(δ)1λ

Γ(β)
x
β−1 +

(δ)2λ
2

Γ(α+ β)2!
x
α+β−1 +

(δ)3λ
3

Γ(2α+ β)3!
x
α+β−1 + ...

=
1

Γ(β − α)
x
β−α−1 + λx

β−1

[

(δ)1
Γ(β)

+
(δ)2λ

Γ(α+ β)2!
x
α +

(δ)3λ
2

Γ(2α+ β)3!
x
2α + ...

]

=
xβ−α−1

Γ(β − α)
+ λx

β−1

∞
∑

k=0

(δ)k+1λ
k

(k + 1)
W (xα;α, β).

Then we obtain the following relation

Dα
[

xβ−1Eδ
α,β(λx

α)
]

=
xβ−α−1

Γ(β − α)
+ λxβ−1

∞
∑

k=0

(δ)k+1λ
k

(k + 1)
W (xα;α, β).

Also, the following formula is given

Dα
[

xβ−1Eδ
α,β(λx

α)
]

=
xβ−α−1

Γ(β − α)
+ λxβ−1Eδ

α,β(λx
α).

�

Remark 2.2. 1. Since

xβ−1E−1
α,β(λx

α) =
xβ−1

Γ(β)
−

λxα+β−1

Γ(α+ β)
,

then

Dα
[

xβ−1E−1
α,β(λx

α)
]

=
xβ−α−1

Γ(β − α)
−

λxβ−1

Γ(β)

= xβ−α−1E0
α,β−α(λx

α)− λxβ−1E0
α,β(λx

α).

2. When δ = 1 in formula (2.1), then we obtain

Dα
[

xβ−1Eα,β(λx
α)
]

=
xβ−α−1

Γ(β − α)
+ λxβ−1Eα,β(λx

α). (2.2)

3. When δ = 1 and β = 1 in formula (2.1) and 1 − α −→ 0+, then we have the following intersting
formula

DαEα(λx
α) = λEα(λx

α). (2.3)
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Also, we can show this formula by another method such as

DαEα(λx
α) = Dα

∞
∑

k=0

λkxαk

Γ(αk + 1)

=

∞
∑

k=1

λkxαk−α

Γ(α(k − 1) + 1)

=

∞
∑

k=0

λk+1xα(k+1)−α

Γ(αk + 1)

= λ

∞
∑

k=0

λkxαk

Γ(αk + 1)

= λEα(λx
α).

The following figures show some modified Riemann-Liouville derivative of order closed to zero for
Eα(x

α).

Figure 1: D0.1E0.1(x
0.1). Figure 2: D0.4E0.4(x

0.4).

Figure 3: D0.7E0.7(x
0.7). Figure 4: D0.8E0.8(x

0.8).

Corollary 2.3. Let α > 0,β > 0 and for λ ∈ R, then the following formula holds

DαEα (λx) = λα−αx1−αEα (λx) . (2.4)

Proof. We can write

DαEα (λx) = DαEα

((

λ
1

αx
1

α

)α)

.
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Let u = λ
1

αx
1

α and by applying the fractional derivative properties, we get

DαEα (λx) = Eα(u
α)

[

λ
1

αα−1x
1

α
−1

]α

= λα−αx1−αEα(λx).

�

In the following figures there are some modified Riemann-Liouville derivative of order closed to zero
for Eα(x).

Figure 5: D0.1E0.1(x). Figure 6: D0.4E0.4(x).

Figure 7: D0.7E0.7(x). Figure 8: D0.8E0.8(x).

Theorem 2.4. Assume that α > 0,β > 0 for λ ∈ R, then the following formula holds

Dγ
[

xβ−1Eδ
α,β(λx

α)
]

=
xβ−1−γ

Γ(β − γ)
+ λxα+β−γ−1Eδ

α,α+β−γ(λx
α). (2.5)

Proof.

D
γ
[

x
β−1

E
δ
α,β(λx

α)
]

=D
α

∞
∑

k=0

(δ)kλ
k

Γ(αk + β)k!
x
αk+β−1

=D
γ

[

xβ−1

Γ(β)
+

(δ)1λ

Γ(α+ β)
x
α+β−1 +

(δ)2λ
2

Γ(2α+ β)2!
x
2α+β−1 +

(δ)3λ
3

Γ(3α+ β)3!
x
3α+β−1 + ...

]

=x
β−γ−1

∞
∑

k=0

(δ)kλ
k

Γ(αk + β − γ)k!
x
αk

.
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Hence, the relation with the Wright function is

Dγ
[

xβ−1Eδ
α,β(λx

α)
]

= xβ−γ−1
∞
∑

k=0

(δ)kλ
kW (xα;α, β − γ).

Also,

Dγ
[

xβ−1Eδ
α,β(λx

α)
]

=
xβ−γ−1

Γ(β − γ)

+λxα+β−γ−1
∞
∑

k=0

(δ)k+1λ
k

Γ(α(k + 1) + β − γ)(k + 1)!
xαk

=
xβ−γ−1

Γ(β − γ)
+ λxα+β−γ−1Eδ

α,α+β−γ(λx
α).

�

Remark 2.5. 1. If we set γ = α in formula (2.5), then the formula (2.1) is obtained.

2. Let δ = 1 in (2.5), then

Dγ
[

xβ−1Eα,β(λx
α)
]

=
xβ−1−γ

Γ(β − γ)
+ λxα+β−γ−1Eα,α+β−γ(λx

α) (2.6)

Also, if β = 1 and 1− γ −→ 0+ then

DγEα (λxα) = λxα−γEα,α−γ+1(λx
α). (2.7)

This formula is also true when α > 0 and 0 < γ < 1 for λ ∈ R by the following method:

DγEα(λx
α) = Dγ

∞
∑

k=0

λkxαk

Γ(αk + 1)

=

∞
∑

k=1

λkxαk−γ

Γ(αk − γ + 1)

=
∞
∑

k=0

λk+1xαk+α−γ

Γ(αk + α− γ + 1)

= λxα−γ

∞
∑

k=0

λkxαk

Γ(αk + α− γ + 1)

= λxα−γEα,α−γ+1(λx
α).

In the following figures show DγEα(x
α), λ = 1.
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Figure 9: D0.5Eα(x
α)

α = 0.5, 0.25, 0.75.
Figure 10: D0.25Eα(x

α)
α = 0.5, 0.25, 0.75.

Figure 11: D0.75Eα(x
α)

α = 0.5, 0.25, 0.75.

Moreover, we note that
xβ−γ−1

Γ(β − γ)
−→ 0 when β − γ −→ 0+, then

Dβ
[

xβ−1Eα,β (λx
α)
]

= λxα−1Eα,α(λx
α).

3. Asume that α = γ, β = 1 , δ = 1 and 1− γ −→ 0+ in (2.5), then the formula (2.3) is given.

Corollary 2.6. We can write

DβEα (λx) = DβEα

((

λ
1

αx
1

α

)α)

.

Let u = λ
1

α .x
1

α and by applying the fractional derivative properties, we get

DβEα (λx) = uα−βEα,α−β+1(u
α)

[

λ
1

αα−1x
1

α
−1

]β

= λα−βx1−βEα,α−β+1(λx).

Then

DβEα (λx) = λα−βx1−βEα,α−β+1(λx) (2.8)

Let β = α in the above formula, then

DαEα (λx) = λα−αx1−αEα(λx).

In the following figures show DβEα(x), λ = 1.
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Figure 12: D0.5Eα(x)
α = 0.5, 0.25, 0.75.

Figure 13: D0.25Eα(x)
α = 0.5, 0.25, 0.75.

Figure 14: D1Eα(x)
α = 0.5, 0.25, 0.75.

Theorem 2.7. Assume that α > 0,β > 0 for λ ∈ R, then the following formula holds

DβEδ
α,β(λx

−α) = (−1)βλx−α−βEδ
α,α(λx

−α) (2.9)

Proof.

DβEδ
α,β(λx

−α) = Dβ

∞
∑

k=0

(δ)kλ
k

Γ(αk + β)k!
x−αk

=

∞
∑

k=0

(−1)β(δ)k+1λ
k+1

Γ(αk + α)(k + 1)!
x−αk−α−β .

Then

DβEδ
α,β(λx

−α) = (−1)β
∞
∑

k=0

(δ)k+1λ
k+1x−α−β

k + 1
W (x−α;α, α).

Moreover,
DβEδ

α,β(λx
−α) = (−1)βλx−α−βEδ

α,α(λx
−α).

�

When δ = 1, then
DβEα,β(λx

−α) = (−1)βλx−α−βEα,α(λx
−α)

Corollary 2.8. Let u = λ
−1

α x
1

α , then by using formula (2.9) we have

DβEδ
α,β(λx

−1) = (−1)βλ
β
αα−αx−α− β

αEδ
α,α(λx

−1). (2.10)
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Here when δ = 1, then

DβEα,β(λx
−1) = (−1)βλ

β
αα−αx−α−

β
αEα,α(λx

−1).

Theorem 2.9. Assume that α > 0,β > 0 and λ ∈ R, then the following formula holds

DαnEα (λxα) = λnEα (λxα) (2.11)

where n = 1, 2, 3, · · ·

Proof.

DαnEα(λx
α) = Dαn

∞
∑

k=0

λkxαk

Γ(αk + 1)

=

∞
∑

k=n

λkxα(k−n)

Γ(α(k − n) + 1)

=

∞
∑

k=0

λk+nxαk

Γ(αk + 1)

= λn
∞
∑

k=0

λkxαk

Γ(αk + 1)

= λnEα(λx
α).

�

Note that, if n = 1, then we obtain formula (2.3).

Corollary 2.10. Assume that α > 0,β > 0 and λ ∈ R, then the following formula holds

DαnEα (λx) = λnα−αnx(1−α)nEα (λx) (2.12)

where n = 1, 2, 3, · · ·

Proof. Let

DαnEα (λx) = DαnEα

((

λ
1

αx
1

α

)α)

and put u = λ
1

αx
1

α , then by applying the fractional derivative properties, we get

DαnEα (λx) = Eα(u
α)

[

λ
1

αα−1x
1

α
−1

]αn

= λnα−αnx(1−α)nEα(λx).

Let n = 1, then formula (2.4) is obtained . �

Theorem 2.11. Assume that α > 0,β > 0 and λ ∈ R, then the following formula holds

DβnEα (λxα) = λnx(α−β)nEα,αn−βn+1(λx
α) (2.13)

where n = 1, 2, 3, · · ·
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Proof.

DβnEα(λx
α) = Dβn

∞
∑

k=0

λkxαk

Γ(αk + 1)

=

∞
∑

k=n

λkxαk−βn

Γ(αk − nβ + 1)

=

∞
∑

k=0

λk+nxαk+αn−βn

Γ(αk + αn− βn+ 1)

= λnxαn−βn

∞
∑

k=0

λkxαk

Γ(αk + αn− βn+ 1)

= λnxαn−βnEα,αn−βn+1(λx
α).

Here, when n = 1, then formula (2.7) is obtained. �

Corollary 2.12. Assume that α > 0,β > 0 and λ ∈ R, then the following formula holds

DβnEα (λx) = λnα−βnx(1−β)nEα,αn−βn+1(λx) (2.14)

where n = 1, 2, 3, · · ·

Proof. Assume that

DβnEα (λx) = DβnEα

((

λ
1

αx
1

α

)α)

and let u = λ
1

αx
1

α , then by applying the fractional derivative properties, we get

DβnEα (uα) = uαn−βnEα,αn−βn+1(u
α)

[

λ
1

αα−1x
1

α
−1

]βn

= λnα−βnx(1−β)nEα,αn−βn+1(λx).

�

Also, when n = 1, then formula (2.8) is obtained.

Kiryakova introduced and studied the multi-index Mittag-Leffler function as their typical represen-
tatives, including many interesting special cases that have already proven their usefulness in FC and its
applications [12].

Definition 2.13. Assume that n > 1 is an integer, η1, ..., ηn > 0 and β1, ..., βn are arbitrary real numbers.
The multi-idex Mittag-Leffler function is given as

E( 1

η1
),(βi)

(x) = E
(n)

( 1

η1
),(βi)

(x) =
∞
∑

k=0

xk

Γ
(

k
η
1

+ β1

)

· · ·Γ
(

k
ηn

+ βn

) .

The same function was given by Lunchko [17], called by him Mittag-Leffler function of vector index.

Futhermore, the Wright generalized hypergeometric function mW̄n is defined as

mW̄n

[

(ai, Ai)
m
i

(bj, Bj)
n
i

x

]

=

∞
∑

k=0

Γ(a1k +A1) · · ·Γ(amk +Am)

Γ(b1k + b1) · · ·Γ(bnk +Bn)

xk

k!
.
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The mW̄n function is special case of the Fox H-function

Hp,q
m,n

[

x
(ai, Ai)

m
i

(bj , Bj)
n
i

]

.

In particlar, when Ai = Bj = 1, ∀i, j, then Meijer’s G-function is obtained

Hp,q
m,n

[

x
(ai, 1)

m
i

(bj , 1)
n
i

]

= Gp,q
m,n

[

x
(ai)

m
i

(bj)
n
i

]

.

For more detils see [10,11,13,14].

There are some interested properties related to multi- Mittag-Leffler function which were proven in
[12]:

1. Eα =1 W̄1

[

(1, 1)
(α, 1)

x

]

.

2. Eα,β =1 W̄1

[

(1, 1)
(α, β)

x

]

.

3. E(

1

ηi

)

,(βi)
=1 W̄n

[

(1, 1)
( 1
ηi
, βi)

n
1

x

]

.

4. Eδ
α,β = 1

Γ(δ) 1W̄1

[

(1, δ)
(α, β)

x

]

.

In the same paper, the author showed Wright function as a case of multi- Mittag-Leffler function with
n = 2:

W (x;α, β) =
∞
∑

k=0

xk

Γ(αk + β)k!

= 0W̄1

[

−

(α, β)
x

]

= E
(2)
(α,1),(β,1)(x).

Indeed, the multi-idex Mittaag-Leffler function when βi = 1, ∀i can be written as

E(

1

ηi

)(xηi) =

∞
∑

k=0

xηik

n
∏

i=1

Γ

(

k

ηi
+ 1

)

.

Then

D
1

ηi E(

1

ηi

)(x
1

ηi ) =Dηi

∞
∑

k=0

xηik

n
∏

i=1

Γ

(

k

ηi
+ 1

)

=

∞
∑

k=0

Γ
(

k
ηi

+ 1
ηi

+ 1
)

Γ
(

k
ηi

+ 1
)

n
∏

i=1

Γ

(

k

ηi
+

1

η1
+ 1

)

x
k
ηi

=
∞
∑

k=0

Γ
(

k
ηi

+ 1
ηi

+ 1
)

Γ
(

k
ηi

+ 1
) 1W̄n

[

(1, 1)
(

1
ηi
, 1
ηi

+ 1
)n

1

x
1

ηi

]

. (2.15)
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Here, if we set α = 1
ηi

and n = 1, then we obtain formula (2.3), λ = 1.

D
1

ηi E(

1

ηi

)(x) = η
1

ηi

i x
1− 1

ηi

∞
∑

k=0

Γ
(

k
ηi

+ 1
ηi

+ 1
)

Γ
(

k
ηi

+ 1
) 1W̄n

[

(1, 1)
(

1
ηi
, 1
ηi

+ 1
)n

1

x

]

. (2.16)

The above formula can be obtained by putting u = (xηi)
1

ηi and then applying formula (2.15). Especially,
if α = 1

ηi
and n = 1, formula (2.16) yields to the formula (2.4) when λ = 1.

Theorem 2.14. Assume that ηi > 0 are arbitrary real numbers and 0 < γ < 1, then the following
formula holds

DγE(

1

ηi

)

(

x
1

ηi

)

= x
1

ηi
−γ

∞
∑

k=0

Γ
(

k
ηi

+ 1
ηi

+ 1
)

Γ
(

k
ηi

+ 1
ηi

− β + 1
) 1W̄n

[

(1, 1)
(

1
ηi
, 1
ηi

+ 1
)n

1

x
1

ηi

]

. (2.17)

Proof.

DγE(

1

ηi

)

(

x
1

ηi

)

= Dγ

∞
∑

k=0

x
k
ηi

n
∏

i=1

Γ

(

k

ηi
+ 1

)

=

∞
∑

k=0

Γ( k
ηi

+ 1
ηi

+ 1)

Γ( k
ηi

+ 1
ηi

− γ + 1)

n
∏

i=1

Γ

(

k

ηi
+

1

ηi
+ 1

)

x
k
ηi

+ 1

ηi
−γ

.

which is the result. �

As expected when α = 1
ηi

and n = 1,the last formula turns to be the formula (2.7) when λ = 1.

Since DγE(

1

ηi

) (x) can be written as DγE(

1

ηi

)

(

(xηi)
1

ηi

)

and by appling (2.17), the following formula

is given:

DγE(

1

ηi

) (x) = η
γ
i x

1−γ

∞
∑

k=0

Γ
(

k
ηi

+ 1
ηi

+ 1
)

Γ
(

k
ηi

+ 1
ηi

− γ + 1
) 1W̄n

[

(1, 1)
(

1
ηi
, 1
ηi

+ 1
)n

1

x

]

. (2.18)

We would like to mention that if α = 1
ηi

and n = 1 in formula (2.18), then (2.8) is obtained.

Corollary 2.15. For arbitrary n ≥ 2, let ∀ηi = ∞ and ∀βi = 1, i = 1, · · · , n. Then

DγE
(n)
(0,0,··· ,0),(1,1,··· ,1)(x) = x−γ

∞
∑

k=0

Γ(k + 1) 0W̄1

[

−

(1, 1− γ)
x

]

Now, we study modified Riemann-Liouville derivitive of fractional Sine and Cosine function.
Since

cosα(t
α) =

1

2
[Eα(it

α) + Eα(−itα)] ,

then

Dα cosα(t
α) =

1

2
[iEα(it

α)− iEα(−itα)]

= − sinα(t
α).

Hence, we get a very useful relation

Dα cosα(t
α) = − sinα(t

α).



Note on the Fractional Mittag-Leffler Functions 13

By using the same technique we can write

Dα sinα(t
α) = cosα(t

α).

Moreover, since cosα(t) =
1
2 [Eα(it) + Eα(−it)], then

Dα cosα(t) =
1

2

[

iα−αt1−αEα(it)− iα−αt1−αEα(−it)
]

= −α−αt1−α sinα(t).

The following figures show Dα cosα(x) when α = 0.3, 0.5 and 0.75:

Figure 15: D0.3 cos0.3(x) Figure 16: D0.5 cos0.5(x)

Figure 17: D0.75 cos0.75(x)

Also, we can write

Dα sinα(t) = α−αt1−α cosα(t).

The next figures show Dα sinα(x) when α = 0.3, 0.5 and 0.75:
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Figure 18: D0.3 sin0.3(x) Figure 19: D0.5 sin0.5(x)

Figure 20: D0.75 sin0.75(x)

The next step we study Dβ cosα(t
α) and Dβ cosα(t).

Dβ cosα(t
α) =

1

2

[

itα−βEα,α−β+1(it
α)− itα−βEα,α−β+1(−itα)

]

= −tα−β sinα,α−β+1(t
α),

where

sinα,α−β+1(t
α) =

tα

Γ(2α− β + 1)
−

t3α

Γ(4α− β + 1)
+

t5α

Γ(6α− β + 1)
− · · · .

Similarly we can show that
Dβ sinα(t

α) = tα−β cosα,α−β+1(t
α),

where

cosα,α−β+1(t
α) =

1

Γ(β)
−

t2α

Γ(3α− β + 1)
+

t4α

Γ(5α− β + 1)
− · · · .

Dβ cosα(t) =
1

2

[

iα−βt1−βEα,α−β+1(it)− iα−βt1−βEα,α−β+1(−it)
]

= −α−βt1−β sinα,α−β+1(t).

Similarly
Dβ sinα(t) = α−βt1−β cosα,α−β+1(t).

Theorem 2.16. The fractional derivative of hyperbolic function of order m is given as

Dα [hv(x,m)] =
xv−α−1

Γ(v − α)
+ xv+m−α−1Em,v+m−α(x

m), v = 1, 2, · · · .

when v − α −→ 0+, then
Dα [hv(x,m)] = xm−1Em,m(xm).
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Proof. Since hyperbolic function of order m is defined as

hv(x,m) =
∞
∑

k=0

xmk+v−1

Γ(mk + v)
= xv−1Em,v(x

m), v = 1, 2, · · · ,

then by using formula (2.6) we get the result. �

Theorem 2.17. The fractional derivative of Mellin- Ross function,

Rα(β, x) = xα

∞
∑

k=0

βkxk(α+1)

Γ((1 + α)(k + 1)
= xαEα+1,α+1(βx

α+1),

is given by
Dα

[

xαEα+1,α+1(βx
α+1)

]

= λxαEα+1,α+1(x
α+1)

The proof is directed by using formula (2.2).

3. Conclusion

In this note, some useful formulas have been established by using modified Riemann-Liouville def-
inition of fractional derivative. These formulas can be used to solve some linear fractional differential
equations which are useful in several physical problems.
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16 A. Kiliçman and W. Saleh

16. Lu, B., Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial
differential equations, Physics Letters A, 376, 2045–2048, (2012).

17. Luchko, Yuri. Operational method in fractional calculus, Fract. Calc. Appl. Anal 2, 4, 463-488, (1999).

18. Miller, K. S. and Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993).

19. Jumarie, G., Stochastic differential equations with fractional Brownian motion input, International journal of systems
science 24, 6, 1113-1131, (1993).

20. Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further
results, Computers and Mathematics with Applications 51, 9-10, 1367-1376, (2006).

21. Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative
for non-differentiable functions, Applied Mathematics Letters 22, 3, 378-385, (2009).

22. Prabhakar, T. R., A singular integral equation with a generalized Mittag Leffler function in the kernel, (1971).

23. S. Zhang, S. and Zhang, H. Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs,
Physics Letters Section A, 375, 7, 1069–1073, (2011).

Adem Kiliçman,
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